CW Mode-Locked Dye Lasers for Ultra Fast Spectroscopic Studies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Application of the Theory of Laser to Nitrogen Laser Pumped Dye Laser
SD9900039 AN APPLICATION OF THE THEORY OF LASER TO NITROGEN LASER PUMPED DYE LASER FATIMA AHMED OSMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics. UNIVERSITY OF KHARTOUM FACULTY OF SCIENCE DEPARTMENT OF PHYSICS MARCH 1998 \ 3 0-44 In this thesis we gave a general discussion on lasers, reviewing some of are properties, types and applications. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw. It was noticed that the produced radiation possesses ^ characteristic^ different from those of other types of laser. This' characteristics determine^ the tunability i.e. the possibility of choosing the appropriately required wave-length of radiation for various applications. DEDICATION TO MY BELOVED PARENTS AND MY SISTER NADI A ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Dr. AH El Tahir Sharaf El-Din, for his continuous support and guidance. I am also grateful to Dr. Maui Hammed Shaded, for encouragement, and advice in using the computer. Thanks also go to Ustaz Akram Yousif Ibrahim for helping me while conducting the experimental part of the thesis, and to Ustaz Abaker Ali Abdalla, for advising me in several respects. I also thank my teachers in the Physics Department, of the Faculty of Science, University of Khartoum and my colleagues and co- workers at laser laboratory whose support and encouragement me created the right atmosphere of research for me. Finally I would like to thank my brother Salah Ahmed Osman, Mr. -
Restricted Energy Transfer in Laser Desorption of High Molecular Weight Biomolecules
Scanning Microscopy Volume 5 Number 2 Article 3 4-20-1991 Restricted Energy Transfer in Laser Desorption of High Molecular Weight Biomolecules Akos Vertes University of Antwerp, Belgium, [email protected] Renaat Gijbels University of Antwerp, Belgium Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Biology Commons Recommended Citation Vertes, Akos and Gijbels, Renaat (1991) "Restricted Energy Transfer in Laser Desorption of High Molecular Weight Biomolecules," Scanning Microscopy: Vol. 5 : No. 2 , Article 3. Available at: https://digitalcommons.usu.edu/microscopy/vol5/iss2/3 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy, Vol. 5, No. 2, 1991 (Pages 317-328) 0891-7035/91$3.00+ .00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA RESTRICTED ENERGY TRANSFER IN LASER DESORPTION OF HIGH MOLECULAR WEIGHT BIOMOLECULES Akos Vertes* and Renaat Gijb els Departm ent of Chemistry, University of Antwerp (U.I.A.), Universiteitsplein 1, B-2610 Wilrijk (Belgium) (Received for publication November 15, 1990, and in revised form April 20, 1991) Abstract Introdu ction Producing ions from large molecules is of distin With the growing importan ce of biomedical investi guished importance in mass spectrometry. In our present gations in organic analysis the emphasis has been shift study we survey different laser desorption methods in ing to the detection and structure determination of ever view of their virtues and drawbacks in volatilization and larg er and more complex molecules. -
Wavelength-Tunable Ion Laser Systems
38Ch_AirCooledIonLsrs_f_v3.qxd 6/8/2005 11:19 AM Page 38.4 Diode-Pumped Solid-State Lasers Wavelength-Tunable Ion Laser Systems $ Selectable wavelengths ranging from violet to red SPECIFICATIONS: Air-Cooled Ion Lasers Air-Cooled $ Output power to 195 mW WAVELENGTH-TUNABLE ION LASER SYSTEMS $ Highest output power for its size Transverse Mode : TEM00 (except as noted) Longitudinal Mode Spacing : $ Switching power supplies with power-factor correction 35 (X)AP 321: 469 MHz $ CE, IEC, and CDRH compliant 35 (X)AP 431: 349 MHz These air-cooled ion laser systems are compact devices that pro- Coherence Length : ~10 cm duce high-quality, linearly polarized output that can be tuned over Polarization : Linear (vertical85°) with >250:1 extinction ratio a wide variety of wavelengths. The 35 LAP 321 and 35 MAP 321 are Pointing Stability : <30 mrad°C extremely compact argon-ion lasers, less than 15 inches in length Power Stability : 80.5% over a 2-hour period (excluding cables). The somewhat longer 35 LAP 431 and Optical Noise (%p-p @ <100 kHz / <1 MHz) : 35 MAP 431 are argon-ion lasers that produce as much as 195 mW Argon: 488 nm, 4 / 6; 514 nm, 4 / 6 Helium Cadmium Lasers multimode and up to 130 mW with a clean Gaussian TEM00 mode. Argon/Krypton: 488 nm, 5 / 7; 514 nm, 6 / 10; The model 35 KAP 431 is a mixed-gas (argon/krypton) laser with 568 nm, 3 / 6; 647 nm, 5 / 8 nine selectable wavelengths ranging from 476 nm (violet) to 676 nm Warm-up Time : <15 minutes from cold start (red). -
Single-Pass Laser Frequency Conversion to 780.2 Nm and 852.3 Nm Based on Ppmgo:LN Bulk Crystals and Diode-Laser-Seeded Fiber Amplifiers
applied sciences Article Single-Pass Laser Frequency Conversion to 780.2 nm and 852.3 nm Based on PPMgO:LN Bulk Crystals and Diode-Laser-Seeded Fiber Amplifiers Kong Zhang 1, Jun He 1,2 and Junmin Wang 1,2,* 1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; [email protected] (K.Z.); [email protected] (J.H.) 2 Collaborative Innovation Center of Extreme Optics of the Ministry of Education and Shanxi Province, Shanxi University, Taiyuan 030006, China * Correspondence: [email protected] Received: 16 October 2019; Accepted: 15 November 2019; Published: 17 November 2019 Abstract: We report the preparation of a 780.2 nm and 852.3 nm laser device based on single-pass periodically poled magnesium-oxide-doped lithium niobate (PPMgO:LN) bulk crystals and diode-laser-seeded fiber amplifiers. First, a single-frequency continuously tunable 780.2 nm laser of more than 600 mW from second-harmonic generation (SHG) by a 1560.5 nm laser can be achieved. Then, a 250 mW light at 852.3 nm is generated and achieves an overall conversion efficiency of 4.1% from sum-frequency generation (SFG) by mixing the 1560.5 nm and 1878.0 nm lasers. The continuously tunable range of 780.2 nm and 852.3 nm are at least 6.8 GHz and 9.2 GHz. By employing this laser system, we can conveniently perform laser cooling, trapping and manipulating both rubidium (Rb) and cesium (Cs) atoms simultaneously. This system has promising applications in a cold atoms Rb-Cs two-component interferemeter and in the formation of the RbCs dimer by the photoassociation of cold Rb and Cs atoms confined in a magneto-optical trap. -
Argon-Ion and Helium-Neon Lasers
Argon-Ion and Helium- Neon Lasers The one source for gas lasers What makes Lumentum the choice for argon-ion and helium-neon (HeNe) lasers? Whether you are involved in medical research, semiconductor manufacturing, high-speed printing, or Your Source for another demanding application, we have the expertise, commitment, and technology to ensure you get the best solution for your need. With more than 35 years of experience, we have an unmatched Successful gas laser production requires extraordinary care understanding of the gas laser market. That understanding has during the manufacturing process. Every individual throughout led us to devote extensive resources to help establish a premier, each production stage, from engineering and procurement to Gas Lasers high-volume manufacturing facility. Located in Thailand, the manufacturing and quality control, is attuned to the highly facility produces lasers of the highest standard. And we maintain sensitive nature of the applications for which these products are that standard through regional quality management, on-site used. Consequently, we can assure the steady supply of quality supplier quality engineering, and regular quality audits. products to our customers around the globe. Our products are being used in customers’ new systems and as replacement components in the large installed base of existing systems. 2 3 Key Gas Laser Applications Known for their longevity and predictable electrical and optical performance characteristics, our lasers are being used in a wide variety of applications. Medical Research University, medical, and government laboratories on the cusp of new discoveries rely on instruments designed with Lumentum argon-ion and HeNe lasers for cell mapping, genome analysis, and DNA sequencing. -
PG0308 Pulsed Dye Laser Therapy for Cutaneous Vascular Lesions
Pulsed Dye Laser Therapy for Cutaneous Vascular Lesions Policy Number: PG0308 ADVANTAGE | ELITE | HMO Last Review: 09/22/2017 INDIVIDUAL MARKETPLACE | PROMEDICA MEDICARE PLAN | PPO GUIDELINES This policy does not certify benefits or authorization of benefits, which is designated by each individual policyholder contract. Paramount applies coding edits to all medical claims through coding logic software to evaluate the accuracy and adherence to accepted national standards. This guideline is solely for explaining correct procedure reporting and does not imply coverage and reimbursement. SCOPE X Professional _ Facility DESCRIPTION Port-wine stains (PWS) are a type of vascular lesion involving the superficial capillaries of the skin. At birth, the lesions typically appear as flat, faint, pink macules. With increasing age, they darken and become raised, red-to- purple nodules and papules in adults. Congenital hemangiomas are benign tumors of the vascular endothelium that appear at or shortly after birth. Hemangiomas are characterized by rapid proliferation in infancy and a period of slow involution that can last for several years. Complete regression occurs in approximately 50% of children by 5 years of age and 90% of children by 9 years of age. The goals of pulsed dye laser (PDL) therapy for cutaneous vascular lesions, specifically PWS lesions and hemangiomas, are to remove, lighten, reduce in size, or cause regression of the lesions to relieve symptoms, to alleviate or prevent medical or psychological complications, and to improve cosmetic appearance. This is accomplished by the preferential absorption of PDL energy by the hemoglobin within these vascular lesions, which causes their thermal destruction while sparing the surrounding normal tissues. -
Second Harmonic Generation in Nonlinear Optical Crystal
Second Harmonic Generation in Nonlinear Optical Crystal Diana Jeong 1. Introduction In traditional electromagnetism textbooks, polarization in the dielectric material is linearly proportional to the applied electric field. However since in 1960, when the coherent high intensity light source became available, people realized that the linearity is only an approximation. Instead, the polarization can be expanded in terms of applied electric field. (Component - wise expansion) (1) (1) (2) (3) Pk = ε 0 (χ ik Ei + χ ijk Ei E j + χ ijkl Ei E j Ek +L) Other quantities like refractive index (n) can be expanded in terms of electric field as well. And the non linear terms like second (E^2) or third (E^3) order terms become important. In this project, the optical nonlinearity is present in both the source of the laser-mode-locked laser- and the sample. Second Harmonic Generation (SHG) is a coherent optical process of radiation of dipoles in the material, dependent on the second term of the expansion of polarization. The dipoles are oscillated with the applied electric field of frequency w, and it radiates electric field of 2w as well as 1w. So the near infrared input light comes out as near UV light. In centrosymmetric materials, SHG cannot be demonstrated, because of the inversion symmetries in polarization and electric field. The only odd terms survive, thus the second order harmonics are not present. SHG can be useful in imaging biological materials. For example, the collagen fibers and peripheral nerves are good SHG generating materials. Since the SHG is a coherent process it, the molecules, or the dipoles are not excited in terms of the energy levels. -
Air-Cooled Argon-Ion Laser Heads in Cylindrical Package 2213 Series
Air-Cooled Argon-Ion Laser Heads in Cylindrical Package 2213 Series www.lumentum.com Data Sheet Air-Cooled Argon-Ion Laser Heads in Cylindrical Package Lumentum’s air-cooled argon lasers are designed for complex, high-resolution OEM applications such as flow cytometry, DNA sequencing, graphic arts, and semiconductor inspection. Symmetric design and axial airflow in the cylindrical argon ion Key Features laser heads provide the best mechanical package to ensure • Integral-mirror, metal-ceramic construction optimum beam-pointing stability and fast warm-up. Both initial • Hands-off operation installation and routine maintenance are straightforward due to • Ultralow noise tight production control of optical and mechanical tolerances. Blower-induced mechanical vibration is virtually eliminated • Fast warm-up through the use of flexible ducting between the laser head and • Rugged construction blower assembly. • Vibration isolation • Ultrastable resonator and beam pointing Applications • DNA sequencing • Flow cytometry • Confocal microscopy • Semiconductor inspection • Hematology • High-speed printing • Photo processing Compliance • CE per specification EN55011 and EN50082-2 • UL 1950 and 1262 • CDRH 21 CFR 1040.10 • CUL • EN60825-2 • EN60950, IEC 950 and EN61010 www.lumentum.com 2 Air-Cooled Argon-Ion Laser Heads in Cylindrical Package 2213 Series Cylindrical Head (Specifications in inches unless otherwise noted. E-vector is aligned with the umbilical cable.) 11.5 5.37 72.0 MOUNTING AIR INTAKE AREAS 3.88 BEAM AIR .50 OUTPUT EXHAUST 1.0 4X 4-40 -
Nonlinear Optical Characterization of 2D Materials
nanomaterials Review Nonlinear Optical Characterization of 2D Materials Linlin Zhou y, Huange Fu y, Ting Lv y, Chengbo Wang y, Hui Gao, Daqian Li, Leimin Deng and Wei Xiong * Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (L.Z.); [email protected] (H.F.); [email protected] (T.L.); [email protected] (C.W.); [email protected] (H.G.); [email protected] (D.L.); [email protected] (L.D.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 7 October 2020; Accepted: 30 October 2020; Published: 16 November 2020 Abstract: Characterizing the physical and chemical properties of two-dimensional (2D) materials is of great significance for performance analysis and functional device applications. As a powerful characterization method, nonlinear optics (NLO) spectroscopy has been widely used in the characterization of 2D materials. Here, we summarize the research progress of NLO in 2D materials characterization. First, we introduce the principles of NLO and common detection methods. Second, we introduce the recent research progress on the NLO characterization of several important properties of 2D materials, including the number of layers, crystal orientation, crystal phase, defects, chemical specificity, strain, chemical dynamics, and ultrafast dynamics of excitons and phonons, aiming to provide a comprehensive review on laser-based characterization for exploring 2D material properties. Finally, the future development trends, challenges of advanced equipment construction, and issues of signal modulation are discussed. In particular, we also discuss the machine learning and stimulated Raman scattering (SRS) technologies which are expected to provide promising opportunities for 2D material characterization. -
Construction of a Flashlamp-Pumped Dye Laser and an Acousto-Optic
; UNITED STATES APARTMENT OF COMMERCE oUBLICATION NBS TECHNICAL NOTE 603 / v \ f ''ttis oi Construction of a Flashlamp-Pumped Dye Laser U.S. EPARTMENT OF COMMERCE and an Acousto-Optic Modulator National Bureau of for Mode-Locking Iandards — NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measure- ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scien- tific community, industry, and commerce. The Institute consists of a Center for Radia- tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation 2—Nuclear Radiation 2—Applied Radiation 2—Quantum Electronics 3— Electromagnetics 3—Time and Frequency 3 —Laboratory Astrophysics3—Cryo- 3 genics . -
Efficient Frequency Doubling at 399Nm Arxiv:1401.1623V3 [Physics
Efficient Frequency Doubling at 399 nm Marco Pizzocaro,1, 2, ∗ Davide Calonico,2 Pablo Cancio Pastor,3, 4 Jacopo Catani,3, 4 Giovanni A. Costanzo,1 Filippo Levi,2 and Luca Lorini2 1Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni, C.so duca degli Abruzzi 24, 10125 Torino, Italy 2Istituto Nazionale di Ricerca Metrologica (INRIM), Str. delle Cacce 91, 10135 Torino, Italy 3Istituto Nazionale di Ottica (INO-CNR), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Italy 4European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Italy (Dated: May 22, 2014) Abstract This article describes a reliable, high-power, and narrow-linewidth laser source at 399 nm useful for cooling and trapping of ytterbium atoms. A continuous-wave titanium-sapphire laser at 798 nm is frequency doubled using a lithium triborate crystal in an enhancement cavity. Up to 1:0 W of light at 399 nm has been obtained from 1:3 W of infrared light, with an efficiency of 80 %. arXiv:1401.1623v3 [physics.optics] 21 May 2014 ∗ Author to whom correspondence should be addressed. Electronic mail: [email protected] 1 Ytterbium holds interest for several atomic physics experiments because it is easy to cool and trap and has seven stable isotopes. Such experiments include optical frequency standards [1], non-conservation measurement [2], Bose-Einstein condensation [3], degenerate Fermi gases [4,5], bosonic-fermionic systems [6], and quantum information [7]. Ytterbium atoms can be cooled at millikelvin temperature using a magneto-optical trap (MOT) on the 1 1 strong blue transition S0− P1 at 399 nm. -
Imaging with Second-Harmonic Generation Nanoparticles
1 Imaging with Second-Harmonic Generation Nanoparticles Thesis by Chia-Lung Hsieh In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2011 (Defended March 16, 2011) ii © 2011 Chia-Lung Hsieh All Rights Reserved iii Publications contained within this thesis: 1. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, "Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging," Opt. Express 17, 2880–2891 (2009). 2. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, "Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes," Biomaterials 31, 2272–2277 (2010). 3. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, "Second harmonic generation from nanocrystals under linearly and circularly polarized excitations," Opt. Express 18, 11917–11932 (2010). 4. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, "Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media," Opt. Express 18, 12283–12290 (2010). 5. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, "Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle," Opt. Express 18, 20723–20731 (2010). iv Acknowledgements During my five-year Ph.D. studies, I have thought a lot about science and life, but I have never thought of the moment of writing the acknowledgements of my thesis. At this moment, after finishing writing six chapters of my thesis, I realize the acknowledgment is probably one of the most difficult parts for me to complete.