Current Progress in Femtosecond Laser Ablation/Ionisation Time-Of-Flight Mass Spectrometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Application of the Theory of Laser to Nitrogen Laser Pumped Dye Laser
SD9900039 AN APPLICATION OF THE THEORY OF LASER TO NITROGEN LASER PUMPED DYE LASER FATIMA AHMED OSMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics. UNIVERSITY OF KHARTOUM FACULTY OF SCIENCE DEPARTMENT OF PHYSICS MARCH 1998 \ 3 0-44 In this thesis we gave a general discussion on lasers, reviewing some of are properties, types and applications. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw. It was noticed that the produced radiation possesses ^ characteristic^ different from those of other types of laser. This' characteristics determine^ the tunability i.e. the possibility of choosing the appropriately required wave-length of radiation for various applications. DEDICATION TO MY BELOVED PARENTS AND MY SISTER NADI A ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Dr. AH El Tahir Sharaf El-Din, for his continuous support and guidance. I am also grateful to Dr. Maui Hammed Shaded, for encouragement, and advice in using the computer. Thanks also go to Ustaz Akram Yousif Ibrahim for helping me while conducting the experimental part of the thesis, and to Ustaz Abaker Ali Abdalla, for advising me in several respects. I also thank my teachers in the Physics Department, of the Faculty of Science, University of Khartoum and my colleagues and co- workers at laser laboratory whose support and encouragement me created the right atmosphere of research for me. Finally I would like to thank my brother Salah Ahmed Osman, Mr. -
FY20 National Laser Users' Facility Program
FY20 NATIONAL LASER USERS’ FACILITY PROGRAM FY20 National Laser Users’ Facility Program M. S. Wei Laboratory for Laser Energetics, University of Rochester During FY19, the National Nuclear Security Administration (NNSA) and Office of Science jointly completed a funding opportu- nity announcement (FOA), review, and selection process for National Laser Users’ Facility (NLUF) experiments to be conducted at the Omega Facility during FY20 and FY21. After peer review by an independent proposal review committee for scientific and technical merit and the feasibility review by the Omega Facility team, NNSA selected 11 proposals for funding and Omega shot allocation with a total of 22.5 and 23.5 shot days for experiments in FY20 and FY21, respectively. During the first half of the FY20, LLE completed a one-time solicitation, review, and selection process for Academic and Industrial Basic Science (AIBS) experiments to utilize the remaining NLUF shot allocation in FY20–FY21. Ten new projects were selected for AIBS shot alloca- tion (a total of 11 and 10 shot days) for experiments staring in Q3FY20 and throughout FY21. FY20 was the first of a two-year period of performance for these 21 NLUF including AIBS projects (Table I). Fifteen NLUF and AIBS projects obtained a total of 232 target shots during FY20, which are summarized in this section. A critical part of the NNSA-supported NLUF program and the DOE Office of Fusion Energy Sciences (FES)-supported Laser- NetUS program is the education and training of graduate students in high-energy-density (HED) physics. In addition, graduate students can also access the Omega Laser Facility to conduct their theses research through collaborations with national labora- tories and LLE. -
PG0308 Pulsed Dye Laser Therapy for Cutaneous Vascular Lesions
Pulsed Dye Laser Therapy for Cutaneous Vascular Lesions Policy Number: PG0308 ADVANTAGE | ELITE | HMO Last Review: 09/22/2017 INDIVIDUAL MARKETPLACE | PROMEDICA MEDICARE PLAN | PPO GUIDELINES This policy does not certify benefits or authorization of benefits, which is designated by each individual policyholder contract. Paramount applies coding edits to all medical claims through coding logic software to evaluate the accuracy and adherence to accepted national standards. This guideline is solely for explaining correct procedure reporting and does not imply coverage and reimbursement. SCOPE X Professional _ Facility DESCRIPTION Port-wine stains (PWS) are a type of vascular lesion involving the superficial capillaries of the skin. At birth, the lesions typically appear as flat, faint, pink macules. With increasing age, they darken and become raised, red-to- purple nodules and papules in adults. Congenital hemangiomas are benign tumors of the vascular endothelium that appear at or shortly after birth. Hemangiomas are characterized by rapid proliferation in infancy and a period of slow involution that can last for several years. Complete regression occurs in approximately 50% of children by 5 years of age and 90% of children by 9 years of age. The goals of pulsed dye laser (PDL) therapy for cutaneous vascular lesions, specifically PWS lesions and hemangiomas, are to remove, lighten, reduce in size, or cause regression of the lesions to relieve symptoms, to alleviate or prevent medical or psychological complications, and to improve cosmetic appearance. This is accomplished by the preferential absorption of PDL energy by the hemoglobin within these vascular lesions, which causes their thermal destruction while sparing the surrounding normal tissues. -
A Programmable Mode-Locked Fiber Laser Using Phase-Only Pulse Shaping and the Genetic Algorithm
hv photonics Article A Programmable Mode-Locked Fiber Laser Using Phase-Only Pulse Shaping and the Genetic Algorithm Abdullah S. Karar 1,* , Raymond Ghandour 1 , Ibrahim Mahariq 1 , Shadi A. Alboon 1,2, Issam Maaz 1, Bilel Neji 1 and Julien Moussa H. Barakat 1 1 College of Engineering and Technology, American University of the Middle East, Kuwait; [email protected] (R.G.); [email protected] (I.M.); [email protected] (S.A.A.); [email protected] (I.M.); [email protected] (B.N.); [email protected] (J.M.H.B.) 2 Electronics Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163, Jordan * Correspondence: [email protected] Received: 24 July 2020; Accepted: 2 September 2020; Published: 4 September 2020 Abstract: A novel, programmable, mode-locked fiber laser design is presented and numerically demonstrated. The laser programmability is enabled by an intracavity optical phase-only pulse shaper, which utilizes the same linearly chirped fiber Bragg grating (LC-FBG) from its two opposite ends to perform real-time optical Fourier transformation. A binary bit-pattern generator (BPG) operating at 20-Gb/s and producing a periodic sequence of 32 bits every 1.6 ns, is subsequently used to drive an optical phase modulator inside the laser cavity. Simulation results indicate stable programmable intensity profiles for each optimized user defined 32 code words. The laser operated in the self-similar mode-locking regime, enabling wave-breaking free operation. The programmable 32 bit code word targeting a specific intensity profile was determined using 100 generations of the genetic algorithm. -
MRI-Guided Laser Ablation Surgery of Hypothalamic Hamartomas
NEUROSURGERY MRI-Guided Laser Ablation Surgery of Hypothalamic Hamartomas HOW DOES THE TEAM DECIDE IF A PATIENT IS A CANDIDATE FOR MRI-GUIDED LASER ABLATION? A careful review of each patient’s medical records is the first step, including MR imaging of the brain and any applicable neurology or neurosurgery records. Patients with Hypothalamic Hamartomas (HH) typically have gelastic seizures, which are characterized by emotionless laughing, although variations including abnormal movements or staring spells are also common. Every patient’s case is handled individually, and it may be necessary for a patient to come to Texas Children’s Hospital for further testing to determine if they are a candidate for MRI-guided laser ablation surgery. WHAT HAPPENS DURING MRI-GUIDED LASER ABLATION SURGERY? After being placed under general anesthesia, a head frame, or a set of markers, is fitted to the patient’s skull. A CT scan is completed to orient the brain to the frame in 3 dimensions. With the help of computer software, a safe pathway that goes through the brain to the HH is calculated for the laser. The neurosurgeon then makes a small incision and drills a small hole through the skull (3.2 mm wide). The laser applicator, a small tube about the width of a strand of spaghetti, is inserted and guided through the brain into the HH. Once the laser applicator is inserted into the brain, the head frame is removed, and the patient is transported to the MRI scanner. After confirming proper placement of the laser applicator and setting safety markers, the surgeon performs a small test firing using the laser. -
Construction of a Flashlamp-Pumped Dye Laser and an Acousto-Optic
; UNITED STATES APARTMENT OF COMMERCE oUBLICATION NBS TECHNICAL NOTE 603 / v \ f ''ttis oi Construction of a Flashlamp-Pumped Dye Laser U.S. EPARTMENT OF COMMERCE and an Acousto-Optic Modulator National Bureau of for Mode-Locking Iandards — NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measure- ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scien- tific community, industry, and commerce. The Institute consists of a Center for Radia- tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation 2—Nuclear Radiation 2—Applied Radiation 2—Quantum Electronics 3— Electromagnetics 3—Time and Frequency 3 —Laboratory Astrophysics3—Cryo- 3 genics . -
Laser Threshold
Main Requirements of the Laser • Optical Resonator Cavity • Laser Gain Medium of 2, 3 or 4 level types in the Cavity • Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction • Population Inversion in the Gain Medium due to pumping Laser Types • Two main types depending on time operation • Continuous Wave (CW) • Pulsed operation • Pulsed is easier, CW more useful Optical Resonator Cavity • In laser want to confine light: have it bounce back and forth • Then it will gain most energy from gain medium • Need several passes to obtain maximum energy from gain medium • Confine light between two mirrors (Resonator Cavity) Also called Fabry Perot Etalon • Have mirror (M1) at back end highly reflective • Front end (M2) not fully transparent • Place pumped medium between two mirrors: in a resonator • Needs very careful alignment of the mirrors (arc seconds) • Only small error and cavity will not resonate • Curved mirror will focus beam approximately at radius • However is the resonator stable? • Stability given by g parameters: g1 back mirror, g2 front mirror: L gi = 1 − ri • For two mirrors resonator stable if 0 < g1g2 < 1 • Unstable if g1g2 < 0 g1g2 > 1 • At the boundary (g1g2 = 0 or 1) marginally stable Stability of Different Resonators • If plot g1 vs g2 and 0 < g1g2 < 1 then get a stability plot • Now convert the g’s also into the mirror shapes Polarization of Light • Polarization is where the E and B fields aligned in one direction • All the light has E field in same direction • Black Body light is not polarized -
Development of the LDS698 Solid Dye Laser for High Durability
Transactions of the Korean Nuclear Society Spring Meeting Chuncheon, Korea, May 25-26 2006 Development of the LDS698 Solid Dye Laser for High Durability Ji-Hun Kim, Chan-Ju Lim, Sang-Beom Joa and Heon-Ju Lee Faculty of Mechanical & Energy System Engineering, Cheju National Univ., 1 Ara-1 Dong, Jeju-Do, Korea [email protected] 1. Introduction grazing incidence configuration with an incident angle of 11.4°. The reflectivity of the rear mirror is 99% and It is essential to use a tunable laser in atomic its dimension are 50 × 50mm. The reflectivity of the spectroscopy and environmental analysis. LDS 698 dye partial reflector is 10% at 650nm. The solid dye cell is laser can be used for hydrogen plasma spectroscopy. located between the total reflector and the diffraction Solid dye laser has the advantages that are cheap, grating. The partial reflector is in the direction of 1st compact and simple to operate. Recently, compact solid order diffracted light from the grating. The length of the dye lasers have been developed by many researchers resonator is 80 nm. The solid dye cell is pumped by the with various solid-host materials by the sol-gel and 2nd harmonics of the Nd-YAG laser (532nm). When a polymerization methods. However, the durability is the narrower spectrum or a scanning of the spectrum is main problem in the solid dye laser because of the dye needed, it can be achieved by adding a turning mirror at bleaching. To fabricate the reliable diagnostic system of the position of the 0th order diffraction beam. -
Experimental Studies and Simulation of Laser Ablation of High-Density Polyethylene Films by Sandeep Ravi Kumar a Thesis Submitte
Experimental studies and simulation of laser ablation of high-density polyethylene films by Sandeep Ravi Kumar A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Industrial Engineering Program of Study Committee: Hantang Qin, Major Professor Beiwen Li Matthew Frank The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2020 Copyright © Sandeep Ravi Kumar, 2020. All rights reserved. ii DEDICATION I dedicate my thesis work to my family and many friends. A special feeling of gratitude to my loving parents Ravi Kumar and Vasanthi, whose words of encouragement have made me what I am today. iii TABLE OF CONTENTS Page LIST OF FIGURES .................................................................................................................... v LIST OF TABLES ....................................................................................................................vii NOMENCLATURE ................................................................................................................ viii ACKNOWLEDGMENTS .......................................................................................................... ix ABSTRACT .............................................................................................................................. -
With Short Pulse • About 7% Coupling Significantly Less Than the Osaka Experiment
Electron/proton generation from solid targets and applications Farhat Beg University of California, San Diego This work was performed under the auspices of the U.S. DOE under contracts No.DE-FG02-05ER54834, DE-FC0204ER54789 and DE-AC52-07NA27344. We greatly acknowledge support of Institute for Laser Science Applications, LLNL. Committee on Atomic, Molecular and Optical Sciences Meeting The National Academy of Sciences Washington DC, April 5, 2011 1 Summary ü Short pulse high intensity laser solid interactions create matter under extreme conditions and generate a variety of energetic particles. ü There are a number of applications from fusion to low energy nuclear reactions. 10 ns ü Fast Ignition Inertial Confinement Fusion is one application that promises high gain fusion. ü Experiments have been encouraging but point towards complex issues than previously anticipated. ü Recent, short pulse high intensity laser matter experiments show that low coupling could be due to: - prepulse - electron source divergence. ü Experiments on fast ignition show proton focusing spot is adequate for FI. However, conversion efficiency has to be increased. 2 Outline § Short Pulse High Intensity Laser Solid Interaction - New Frontiers § Extreme conditions with a short pulse laser § Applications § Fast Ignition - Progress - Current status § Summary Progress in laser technology 10 9 2000 Relativistic ions 8 Nonlinearity of 10 Vacuum ) Multi-GeV elecs. V 7 1990 Fast Ignition e 10 ( e +e- Production y 6 Weapons Physics g 10 Nuclear reactions r e 5 Relativistic -
Chapter 20 SOFT LASER DESORPTION IONIZATION - MALDI, DIOS and NANOSTRUCTURES
Chapter 20 SOFT LASER DESORPTION IONIZATION - MALDI, DIOS AND NANOSTRUCTURES Akos Veites Department of Chemistry, Institute for Proteomics Technology and Applications, The George Washington University, Washington DC 20052 1. INTRODUCTION In 1948, Ame Tiselius won the Nobel Prize in chemistry for the discovery of electrophoresis and its application to analyze large molecules, specifically complex serum proteins. During the following decades, gel electrophoresis and its derivative techniques became a central method for molecular biology. They allowed for the identification of molecular mass with an accuracy of ~1 kDa, i.e., a thousand atomic mass units. Although this method enabled the separation of thousands of proteins from biological samples, the determination of the actual molecular weight, and with it finding the true identity of many substances, remained unachievable. When it came to accurate mass determination of small molecules, mass spectrometry was the method of choice. However, for the accurate mass analysis of large molecules, their low volatility presented a fundamental obstacle. Typically, the larger the molecule, the harder it is to transfer it into the gas phase without degradation. Depositing the energy necessary for volatilization initiates other competing processes that elevate the internal energy of the adsorbate and results in its fragmentation. This competition between evaporation (or desorption) and fragmentation was recognized early on and the method of rapid heating was proposed to minimize the latter (Beuhler, et al., 1974). Lasers with submicrosecond pulse length were appealing tools for rapid heating but the initial results indicated limitations with respect to the ultimate size of the biomolecules (m/z < 1,500) that could 506 Laser Ablation and its Applications be successfully analyzed (Posthumus ,et al., 1978). -
Laser Ablationablation
LaserLaser AblationAblation FundamentalsFundamentals && ApplicationsApplications Samuel S. Mao Department of Mechanical Engineering Advanced Energy Technology Department University of California at Berkeley Lawrence Berkeley National Laboratory March 10, 2005 University of California at Berkeley Q Lawrence Berkeley National Laboratory LaserLaser AblationAblation What is “Laser Ablation”? Mass removal by coupling laser energy to a target material University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er IsIs itit important?important? las ) Film deposition substrate * oxide/superconductor films material * nanocrystals/nanotubes plume target mass spectrometer ) Materials characterization * semiconductor doping profiling plasma lens * solid state chemical analysis target optical spectrometer ) Micro structuring * direct wave guide writing * 3D micro fabrication microstructure target transparent solid University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er IsIs itit important?important? las ) Film deposition * oxide/superconductor films * nanocrystals/nanotubes ) Materials characterization * semiconductor doping profiling * solid state chemical analysis 100 µm ) Micro structuring * direct wave guide writing * 3D micro fabrication University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er DoDo wewe reallyreally understand?understand? las laser beam “Laser ablation … is still largely unexplored at the plasma fundamental level.” J. C. Miller &