Carnival of Evolution #58: Visions of the Evolutionary Future Bradly Alicea Michigan State University
Total Page:16
File Type:pdf, Size:1020Kb
Carnival of Evolution #58: visions of the evolutionary future Bradly Alicea Michigan State University Originally published at: http://syntheticdaisies.blogspot.com on April 1, 2013 (http://syntheticdaisies.blogspot.com/2013/04/carnival-of-evolution-58-visions-of.html) Welcome to Carnival of Evolution! Now with albedo! Introduction What does the future look like? For some, the future is the place of constant progress and a place where dreams become reality. For others, the future is a scary, dystopian place. When actualized, however, future worlds fall somewhere in between these two visions. Can we make accurate projections about the future? As I pointed out in a Synthetic Daisies post from February [1], futurists and technologists have a pretty dismal track record at projecting future scenarios, and often get things notoriously wrong. UPPER LEFT: Ad from the 1982 opening of EPCOT Center, Florida. UPPER RIGHT: Dystopic future city from the movie "Idiocracy" (Inset is the cover of "Future Shock" by Alvin Toffler). BOTTOM LEFT: Bank of England Economic Forecast (circa 2011). BOTTOM RIGHT: New New York, circa 3000 (from the TV show "Futurama"). With visions of the future in mind, this month's Carnival of Evolution (#58) theme is the future of evolution. While a significant component of evolutionary biology involves reconstructing the past [2], we are actually (with error, of course) also predicting the future. Yet can we do any better than futurists or technologists? It is hard to say, and if you have opinions on this I would be glad to hear them. However, this month's CoE will address five themes that may (or may not) help us understand where the complexity of life is headed. 2 A new academic discipline: prospective phylogenetics? PART I: The future of evolution is an open book. Some depictions of future evolution involves both "speculative evolution" and "hyperevolved" creatures [3]. The work of Dougal Dixon [4] is a nice introduction to this point of view. His work ties together science fiction allegory with a functional view of phenotypic evolution to "project" the following future taxa: the engineered pack animal (5 million years from now), the aquatics (50,000 years from now), the tic (1,000 from now with help from engineered soft materials), and the symbiont carrier (10,000 years of coevolution). All of these examples are, of course, based on fictitious forms. And the rate of evolutionary change bears no 3 relationship to known examples of evolution. Nevertheless, these conceptions highlight the role of chance in evolution. One can see parallels (and discrepancies) with this animation of whale evolution. Here are some posts that provide some scientific fact to inform our speculations about what future evolution might look like: * Carl Zimmer from the Scientific American blog Phenomena discusses the concept of and hype surrounding "nightmare bacteria". The nightmare in question is the rise of antibiotic-resistant bacteria, about which the post covers in detail. * Sorting out Science brings us more installments in their "Scientific Tourist" series. Featured this month are the pilot whale and saber-tooth cat. And David Morrison from Genealogical World of Phylogenetic Networks brings us tattooed representations of the scala naturae, or the progressive evolutionary ladder (as opposed to the more realistic branching bush) model of evolution. 4 A scala naturae conception of future evolution (this time involving robots). COURTESY: Machine Overlords and John Long's "Darwin's Devices". * Teaching Biology blog features an educational slideshow on Lamarckism, the scala naturae, and its intellectual precedents. In addition, we have two posts this month by Zen Faulkes, who writes at Neurodojo: the first is on the misinterpretation of Charles Darwin's writings as "emotionless" (No, Darwin was not a Robot), and the other is on a new paper that focuses on tail morphology to bring taxonomic clarity to the genus Xenagama. * Good projections of speculative evolutionary trajectories rely on good estimates of genomic function. Whether the ENCODE project accomplished this for the human genome has been hotly debated since their results were published in Nature late last year. I have posted some slides to Tumbld Thoughts on the debate and scientific reasoning surrounding the latest set of ENCODE results. These slides serve as a new section to my Evolutionary Systems Biology course. * There are two more in-depth critiques on ENCODE this month. Ken Weiss from Mermaid's Tale focuses on a new paper called "On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE" [5]. Both Ken's post and the paper critique the ENCODE projects results on several grounds. And Larry Moran's blog Sandwalk features W. Ford Doolittle's critique of the ENCODE project, which is one of four papers that critically address the claims made by the ENCODE group. * To put this all in further perspective (Functional Illiteracy and Genetic Background), Anne Buchanan from Mermaid's Tale points us to a new paper in Trends in Genetics [6] on genomic function in the context of genetic backgrounds, which should serve as a nice addition to the ENCODE debate over genomic function. And as a case in point, we have a post by Jeremy Yoder writing on the blog Denim and Tweed, who critically examines (he calls it a "false discovery") a recent article on how one's genetics may predict whether or not they will attend University. 5 Visions of the Neozooic Era (COURTESY: Alexis Rockman). Artnet profile. Finally, here are a few posts from Mermaid's Tale that might allow us to think about our explorations of future evolution in a more critical manner. Dan Parker brings us "Evolution in a Terrarium", which is an essay about the coevolutionary relationships between human civilization and mosquitos. Anne Buchanan discusses the "Ifs" of natural selection, which involves a critical assessment of what it means for a trait to be naturally selected and what the potential outcomes of natural selection might be. And Holly Dunsworth discusses the caveats and potential for thinking about the outcomes of evolution and other natural processes in an Anthropomorphized manner (a.k.a. the personification of nature). PART II: Future possibilities as phenotypic space. Another depiction involves using a top-down design method to understand forces of natural selection. The video game Spore provides an example of this type of top-down design. While this is an example of "naive evolution" [7], it does provide a conceptual mechanism for future phenotypes. Above are a collection of “animal” forms from the video game Spore. In Spore, phenotypes are determined in a top-down fashion, but live in a world of "naive" ecology and evolution. They still exhibit a form of (non-Darwinian) descent with modification. 6 While the creatures in Spore open up the possibilities of phenotypic space, they are not all that plausible as models of biological processes. Perhaps when projecting into the future, plausibility is as much a conceptual roadblock as it is a biological one. In light of this, Jean Flanagan from Sci-Ed discusses the dangers of taking shortcuts during the process of communicating evolution. This includes overcoming the default use of naive models to fill in conceptual gaps. So perhaps we can construct imaginary phenotypes that are a bit more consistent with molecular mechanisms and formal evolutionary theory. We can use our imagination to build better conceptual models in cases where available data is limited or sparse. In a Synthetic Daisies post from last month (Plausibility and de navitus Models of Complex Systems), I have sketched out the means to solve this problem using something called a de navitus model, which combines naive (e.g. common sense) theories of natural phenomena, machine intelligence, and artificial selection techniques. * Continuing with the theme of simulated evolution, the BEACON Center blog profiles some work being done by Cory Kohn at Michigan State (Testing Phylogenetic Inference with Experimental Evolution), who uses digital evolution (the AVIDA platform) to better understand the relationship between phylogenetic inference and lineage recombination. * Carl Zimmer from Phenomena brings us another post (Watching Bodies Evolve), this time on the experimental study of evolutionary transitions. This involves replicating the evolution of multicellularity in a yeast model. The post reports on a recent publication [8] by William Ratcliff and Michael Travisano (among other co-authors), and features a number of nice microscopy images. Besides the use of virtual worlds and experimental methods, we might also use LEGO kits and other types of physical models to represent possible phenotypes. Below is an entry in the MOCathalon by Sean and Stephanie Mayo, featuring a number of existing invertebrate species. This approach can be leveraged for our purposes by building on the work of Mark Changizi, who observed a scaling law that is shared between LEGOs and the natural world [9]. 7 * The So Much Science Tumblr brings us Phylo: the trading card game, which looks like a potential exhibit at next year's Comic-Con. Build a collection of your favorite species, or create new ones. And Prehistoric Taxonomie (another Tumblr blog) features excellent scientific illustrations of Moschops capensis, a herbivore from the late Permian. * A consideration of future evolutionary trajectories also requires us to consider potential mechanisms behind such changes. Joachim Dagg from Mousetrap brings us a host of posts on evolutionary maintenance, which mediates the relationship between sexual reproduction and heritable variation. He provides both a short introduction to the set of relevant issues ("A very short history of evolutionary maintenance problems"), and follows up with two specific examples ("DNA repair as a cooperative venture" and "Males and the maintenance of sex"). Blake Stacey from Science after Sunclipse brings us a short reading list on Evolutionary Dynamics.