Alexis Claude Clairaut
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Network Map of Knowledge And
Humphry Davy George Grosz Patrick Galvin August Wilhelm von Hofmann Mervyn Gotsman Peter Blake Willa Cather Norman Vincent Peale Hans Holbein the Elder David Bomberg Hans Lewy Mark Ryden Juan Gris Ian Stevenson Charles Coleman (English painter) Mauritz de Haas David Drake Donald E. Westlake John Morton Blum Yehuda Amichai Stephen Smale Bernd and Hilla Becher Vitsentzos Kornaros Maxfield Parrish L. Sprague de Camp Derek Jarman Baron Carl von Rokitansky John LaFarge Richard Francis Burton Jamie Hewlett George Sterling Sergei Winogradsky Federico Halbherr Jean-Léon Gérôme William M. Bass Roy Lichtenstein Jacob Isaakszoon van Ruisdael Tony Cliff Julia Margaret Cameron Arnold Sommerfeld Adrian Willaert Olga Arsenievna Oleinik LeMoine Fitzgerald Christian Krohg Wilfred Thesiger Jean-Joseph Benjamin-Constant Eva Hesse `Abd Allah ibn `Abbas Him Mark Lai Clark Ashton Smith Clint Eastwood Therkel Mathiassen Bettie Page Frank DuMond Peter Whittle Salvador Espriu Gaetano Fichera William Cubley Jean Tinguely Amado Nervo Sarat Chandra Chattopadhyay Ferdinand Hodler Françoise Sagan Dave Meltzer Anton Julius Carlson Bela Cikoš Sesija John Cleese Kan Nyunt Charlotte Lamb Benjamin Silliman Howard Hendricks Jim Russell (cartoonist) Kate Chopin Gary Becker Harvey Kurtzman Michel Tapié John C. Maxwell Stan Pitt Henry Lawson Gustave Boulanger Wayne Shorter Irshad Kamil Joseph Greenberg Dungeons & Dragons Serbian epic poetry Adrian Ludwig Richter Eliseu Visconti Albert Maignan Syed Nazeer Husain Hakushu Kitahara Lim Cheng Hoe David Brin Bernard Ogilvie Dodge Star Wars Karel Capek Hudson River School Alfred Hitchcock Vladimir Colin Robert Kroetsch Shah Abdul Latif Bhittai Stephen Sondheim Robert Ludlum Frank Frazetta Walter Tevis Sax Rohmer Rafael Sabatini Ralph Nader Manon Gropius Aristide Maillol Ed Roth Jonathan Dordick Abdur Razzaq (Professor) John W. -
Staying Optimistic: the Trials and Tribulations of Leibnizian Optimism
Strickland, Lloyd 2019 Staying Optimistic: The Trials and Tribulations of Leibnizian Optimism. Journal of Modern Philosophy, 1(1): 3, pp. 1–21. DOI: https://doi.org/10.32881/jomp.3 RESEARCH Staying Optimistic: The Trials and Tribulations of Leibnizian Optimism Lloyd Strickland Manchester Metropolitan University, GB [email protected] The oft-told story of Leibniz’s doctrine of the best world, or optimism, is that it enjoyed a great deal of popularity in the eighteenth century until the massive earthquake that struck Lisbon on 1 November 1755 destroyed its support. Despite its long history, this story is nothing more than a commentators’ fiction that has become accepted wisdom not through sheer weight of evidence but through sheer frequency of repetition. In this paper we shall examine the reception of Leibniz’s doctrine of the best world in the eighteenth century in order to get a clearer understanding of what its fate really was. As we shall see, while Leibniz’s doctrine did win a good number of adherents in the 1720s and 1730s, especially in Germany, support for it had largely dried up by the mid-1740s; moreover, while opponents of Leibniz’s doctrine were few and far between in the 1710s and 1720s, they became increasing vocal in the 1730s and afterwards, between them producing an array of objections that served to make Leibnizian optimism both philosophically and theologically toxic years before the Lisbon earthquake struck. Keywords: Leibniz; Optimism; Best world; Lisbon earthquake; Evil; Wolff The oft-told story of Leibniz’s doctrine of the best world, or optimism, is that it enjoyed a great deal of popularity in the eighteenth century until the massive earthquake that struck Lisbon on 1 November 1755 destroyed its support. -
Pre-Darwinian Thinking, the Voyage of the Beagle, and the Origin of Species
Pre-Darwinian thinking, the voyage of the Beagle, and the Origin of Species How did life originate? What is responsible for the spectacular diversity that we see now? These are questions that have occupied numerous people for all of recorded history. Indeed, many independent mythological traditions have stories that discuss origins, and some of those are rather creative. For example, in Norse mythology the world was created out of the body of a frost giant! Some early attempts at scientific or philosophical discussion of life were apparent in Greece. For example, Thales (the earliest of the identified Greek philosophers) argued that everything stemmed ultimately from water. He therefore had a somewhat vague idea that descent with modification was possible, since things had to diversify from a common origin. Aristotle suggested that in every thing is a desire to move from lower to higher forms, and ultimately to the divine. Anaximander might have come closest to our modern conception: he proposed that humans originated from other animals, based on the observation that babies need care for such a long time that if the first humans had started like that, they would not have survived. Against this, however, is the observation that in nature, over human-scale observation times, very little seems to change about life as we can see it with our unaided eyes. Sure, the offspring of an individual animal aren’t identical to it, but puppies grow up to be dogs, not cats. Even animals that have very short generational times appear not to change sub- stantially: one fruit fly is as good as another. -
Moon-Earth-Sun: the Oldest Three-Body Problem
Moon-Earth-Sun: The oldest three-body problem Martin C. Gutzwiller IBM Research Center, Yorktown Heights, New York 10598 The daily motion of the Moon through the sky has many unusual features that a careful observer can discover without the help of instruments. The three different frequencies for the three degrees of freedom have been known very accurately for 3000 years, and the geometric explanation of the Greek astronomers was basically correct. Whereas Kepler’s laws are sufficient for describing the motion of the planets around the Sun, even the most obvious facts about the lunar motion cannot be understood without the gravitational attraction of both the Earth and the Sun. Newton discussed this problem at great length, and with mixed success; it was the only testing ground for his Universal Gravitation. This background for today’s many-body theory is discussed in some detail because all the guiding principles for our understanding can be traced to the earliest developments of astronomy. They are the oldest results of scientific inquiry, and they were the first ones to be confirmed by the great physicist-mathematicians of the 18th century. By a variety of methods, Laplace was able to claim complete agreement of celestial mechanics with the astronomical observations. Lagrange initiated a new trend wherein the mathematical problems of mechanics could all be solved by the same uniform process; canonical transformations eventually won the field. They were used for the first time on a large scale by Delaunay to find the ultimate solution of the lunar problem by perturbing the solution of the two-body Earth-Moon problem. -
Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time. -
Lagrangian Mechanics - Wikipedia, the Free Encyclopedia Page 1 of 11
Lagrangian mechanics - Wikipedia, the free encyclopedia Page 1 of 11 Lagrangian mechanics From Wikipedia, the free encyclopedia Lagrangian mechanics is a re-formulation of classical mechanics that combines Classical mechanics conservation of momentum with conservation of energy. It was introduced by the French mathematician Joseph-Louis Lagrange in 1788. Newton's Second Law In Lagrangian mechanics, the trajectory of a system of particles is derived by solving History of classical mechanics · the Lagrange equations in one of two forms, either the Lagrange equations of the Timeline of classical mechanics [1] first kind , which treat constraints explicitly as extra equations, often using Branches [2][3] Lagrange multipliers; or the Lagrange equations of the second kind , which Statics · Dynamics / Kinetics · Kinematics · [1] incorporate the constraints directly by judicious choice of generalized coordinates. Applied mechanics · Celestial mechanics · [4] The fundamental lemma of the calculus of variations shows that solving the Continuum mechanics · Lagrange equations is equivalent to finding the path for which the action functional is Statistical mechanics stationary, a quantity that is the integral of the Lagrangian over time. Formulations The use of generalized coordinates may considerably simplify a system's analysis. Newtonian mechanics (Vectorial For example, consider a small frictionless bead traveling in a groove. If one is tracking the bead as a particle, calculation of the motion of the bead using Newtonian mechanics) mechanics would require solving for the time-varying constraint force required to Analytical mechanics: keep the bead in the groove. For the same problem using Lagrangian mechanics, one Lagrangian mechanics looks at the path of the groove and chooses a set of independent generalized Hamiltonian mechanics coordinates that completely characterize the possible motion of the bead. -
History of Mathematics in the Eighteenth Century
MATHEMATICS Craig Fraser Considered broadly, mathematical activity in the eighteenth century was characterized by a strong emphasis on analysis and mechanics. The great ad- vances occurred in the development of calculus-related parts of mathematics and in the detailed elaboration of the program of inertial mechanics founded during the Scientific Revolution. There were other mathematical develop- ments of note – in the theory of equations, number theory, probability and statistics, and geometry – but none of them reached anything like the depth and scope attained in analysis and mechanics. The close relationship between mathematics and mechanics had a basis that extended deep into Enlightenment thought. In the Preliminary Discourse to the famous French Encyclopédie, Jean d’Alembert distinguished between “pure” mathematics (geometry, arithmetic, algebra, calculus) and “mixed” mathe- matics (mechanics, geometrical astronomy, optics, art of conjecturing). He classified mathematics more generally as a “science of nature” and separated it from logic, a “science of man.” An internalized and critical spirit of inquiry, associated with the invention of new mathematical structures (for example, non-commutative algebra, non-Euclidean geometry, logic, set theory), rep- resents characteristics of modern mathematics that would emerge only in the next century. Although there were several notable British mathematicians of the period – Abraham De Moivre, James Stirling, Brook Taylor, and Colin Maclaurin among them – the major lines of mathematical production occurred on the Continent, a trend that intensified as the century developed.1 Leadership was provided by a relatively small number of energetic figures: Jakob, Johann, and Daniel Bernoulli, Jakob Hermann, Leonhard Euler, Alexis Clairaut, Jean d’Alembert, Johann Heinrich Lambert, Joseph Louis Lagrange, Adrien Marie Legendre, and Pierre Simon Laplace. -
The 18Th-Century Battle Over Lunar Motion - Physics Today Janu
The 18th-century battle over lunar motion - Physics Today Janu... http://ptonline.aip.org/servlet/PrintPTJ Physics Today URL: http://ptonline.aip.org/journals/doc/PHTOAD-ft/vol_63/iss_1 Published: January 2010 /27_1.shtml [Permission to reprint or copy this article/photo must be obtained from Physics Today. Call 301-209-3042 or e-mail [email protected] with your request.] ARTICLES The 18th-century battle over lunar motion In a dispute with more than just scientific import, Alexis Clairaut, Leonhard Euler, and Jean le Rond d’Alembert each employed their own strategies to establish that they were the first to understand a puzzling feature of the Moon’s orbit. Siegfried Bodenmann About two years after Sputnik 1 began emitting radio signals, the Soviet Union’s Luna 2 became the first manmade object to reach the Moon. The intentional crash landing of the spacecraft on 13 September 1959 once again demonstrated Soviet technological superiority over the US. That event can be regarded as the trigger of the so-called race to the Moon, initiated by President John F. Kennedy in May 1961. As the much-broadcast commemoration of Apollo 11 and the first manned landing on the Moon reminded us, the Americans won the competition. Every story has a prologue. The one preceding Neil Armstrong’s historic steps shows that a captivating plot from the past needn’t include a cold war or spies. It tells of three men who competed to develop a predictive theory that would accurately describe the motion of the Moon and therefore furnish a key tool that, much later, would help the Soviets and the Americans anticipate the position of their celestial target. -
Mentors, the Marquise Du Châtelet and Historical Memory Author(S): Judith P
Mentors, the Marquise Du Châtelet and Historical Memory Author(s): Judith P. Zinsser Source: Notes and Records of the Royal Society of London, Vol. 61, No. 2 (May 22, 2007), pp. 89-108 Published by: The Royal Society Stable URL: http://www.jstor.org/stable/20462616 . Accessed: 15/11/2013 10:27 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The Royal Society is collaborating with JSTOR to digitize, preserve and extend access to Notes and Records of the Royal Society of London. http://www.jstor.org This content downloaded from 75.102.94.107 on Fri, 15 Nov 2013 10:27:53 AM All use subject to JSTOR Terms and Conditions NOTES & RECORDS Notes Rec. R. Soc. (2007) 61, 89-108 -OF THE ROYAL doi: 10.1098/rsnr.2006.0174 SOCIETY Published online 27 March 2007 MENTORS, THE MARQUISE DU CHATELET AND HISTORICAL MEMORY by JUDITH P. ZINSSER* Department of History, Miami University, Upham Hall, 252 Oxford, OH 45056, USA When writing a biography, much has to be omitted to keep the life story focused and manageable for the reader. In La Dame d'Esprit: a biography of themarquise Du Chatelet the information about Emilie Du Chatelet's mentors seems, in retrospect, all too brief. -
Worldview Guided by Least Action
Worldview guided by least action The principle of least action: A difference in energy of any kind will level off in the least time Pierre Louis Maupertuis (1698‐1759) Gottfried Wilhelm Leibniz (1646‐1716) The action The optimal among all conceivable changes in nature among all conceivable worlds is always at a minimum. is the actual. Maupertuis (1698‐1759) Leibniz (1646‐1716) Euler (1707‐1783)Lagrange (1736‐1813) Hamilton (1805‐1865) Open and path‐dependent processes Closed and path‐independent motions tt22 A 2Kdtpx d x U t Q dt A Ldt K U dt t tt11 The ppprinciple of least action A 2Kdtx U t Q dt t Fermat’s principle: Light takes the path of least time. Newton’s 2nd law of motion ddmdEdQp Favmdm; dt dt c22 v A bbbobymovesalong the path of resultan t force. The 2nd law of thermodynamics dQ dS;2;ln TS K S k P T B Heat flows along the path of least resistance. Any differentiable symmetry of the action of a physical system has a corresponding conservation law. Nature evolves from one state to another by consuming free energy in spontaneous symmetry breaking processes. Emmy Noether (1882‐1935) U(n) U(1) World in terms of actions The absolutely least action Neutrino SU(2) Photon U(1) World in terms of actions Electron and positron are least‐action paths wound from multiples of the most elementary action. Magnetic moment e e ; me 2 2 e Fine‐structure constant 4 oc World in terms of actions Proton (p) and neutron (n) are least‐action paths assembled from quarks and gluons wound from multiples of the most elementary action. -
A Crucible in Which to Put the Soul”: Keeping Body and Soul Together in the Moderate Enlightenment, 1740-1830
“A CRUCIBLE IN WHICH TO PUT THE SOUL”: KEEPING BODY AND SOUL TOGETHER IN THE MODERATE ENLIGHTENMENT, 1740-1830 DISSERTATION Presented in partial fulfillment of the requirements for the doctor of philosophy degree in the Graduate School of The Ohio State University KARA ELIZABETH BARR, M.A. DEPARTMENT OF HISTORY THE OHIO STATE UNIVERSITY 2014 DISSERTATION COMMITTEE: Dale K. Van Kley, director Matthew D. Goldish, advisor Geoffrey Parker COPYRIGHT BY KARA ELIZABETH BARR 2014 ABSTRACT This dissertation examines the relationship between Christianity and the Enlightenment in eighteenth-century Europe. Specifically, it explores how the Enlightenment produced the modern Western perception of the nature of the mind and its relationship to the body. While most traditional Enlightenment historiography argues that the movement was defined by radical, atheistic thinkers, like Diderot and Spinoza, who denied the existence of the traditional Christian immaterial and immortal soul, this project demonstrates that these extreme thinkers were actually a minority, confined largely to the intellectual fringes. By contrast, not only were many Enlightenment thinkers sincere Christians, but they were actually the most effective communicators of new ideas by showing how the Enlightenment supported, rather than attacked, traditional Christian beliefs. This moderate Enlightenment is responsible for developing Western ideas about how the mind and body are related, especially within the emerging fields of psychology and psychiatry in the mid-nineteenth century. This dissertation gains its focus through an examination of the work of two historiographically neglected enlightened thinkers—David Hartley in Britain, and the Abbé de Condillac in France. Both of them argued for the traditional Christian belief in an immortal soul, but used enlightened ideas to do so. -
John Greenberg (1945–2004)
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Historia Mathematica 32 (2005) 1–3 www.elsevier.com/locate/hm In Memoriam John Greenberg (1945–2004) Born and educated in New York, John Greenberg took his first degree at Shimer College in Waukegan, Illinois. The curriculum at this liberal arts college included a course based upon the Great Books pro- gramme, which presumably gave him his first taste for the history of ideas. After taking a Master’s degree in mathematics at Johns Hopkins University in Baltimore, he began research in the history of science. His work focused upon the mathematics and mechanics of the 18th century, with a special focus upon France, the development of the calculus of several variables, and the study of the shape of the Earth. All these topics were rehearsed in his doctoral thesis (1979), which he pursued at the University of Wiscon- sin at Madison under the supervision of Dan Siegel. During its preparation he spent time in the archives and academies of Paris, and in order to continue his studies he moved in 1979 with his wife, Maité, and two children to Palaiseau near Paris. But in 1981 he secured a two-year appointment in the archives of the California Institute of Technology (Caltech) in Pasadena in his native USA, in connection with a project on the history of the Institute; it led to a paper (1983b) on the applied mathematician Theodore von Kármán (1881–1963), written with the Institute’s archivist, Judith R. Goodstein. The employment at Caltech was extended to three years; it was the only academic post that Greenberg was to hold in his maturity.