Synchronized Broadcast Spawning by Six Invertebrates (Echinodermata and Mollusca) in the North-Western Red Sea

Total Page:16

File Type:pdf, Size:1020Kb

Synchronized Broadcast Spawning by Six Invertebrates (Echinodermata and Mollusca) in the North-Western Red Sea Research Collection Journal Article Synchronized broadcast spawning by six invertebrates (Echinodermata and Mollusca) in the north-western Red Sea Author(s): Webb, Alice E.; Engelen, Aschwin H.; Bouwmeester, Jessica; van Dijk, Inge; Geerken, Esmee; Lattaud, Julie; Engelen, Dario; de Bakker, Bernadette S.; de Bakker, Didier M. Publication Date: 2021 Permanent Link: https://doi.org/10.3929/ethz-b-000479154 Originally published in: Marine Biology 168(5), http://doi.org/10.1007/s00227-021-03871-6 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Marine Biology (2021) 168:56 https://doi.org/10.1007/s00227-021-03871-6 SHORT NOTES Synchronized broadcast spawning by six invertebrates (Echinodermata and Mollusca) in the north‑western Red Sea Alice E. Webb1 · Aschwin H. Engelen2 · Jessica Bouwmeester3,4 · Inge van Dijk5 · Esmee Geerken1 · Julie Lattaud6 · Dario Engelen1,2,3,4,5,6,7,8 · Bernadette S. de Bakker7 · Didier M. de Bakker8 Received: 26 November 2020 / Accepted: 21 March 2021 © The Author(s) 2021 Abstract On the evenings of June 11 and 12, 2019, 5 and 6 days before full moon, broadcast spawning by four echinoderm species and two mollusc species was observed on the Marsa Shagra reef, Egypt (25° 14′ 44.2" N, 34° 47′ 49.0" E). Water temperature was 28 °C and the invertebrates were observed at 2–8 m depth. The sightings included a single basket star Astroboa nuda (Lyman 1874), 2 large Tectus dentatus (Forskal 1775) sea snails, 14 individuals of the Leiaster cf. leachi (Gray 1840) sea star and 1 Mithrodia clavigera (Lamarck 1816) sea star, 3 Pearsonothuria graefei (Semper 1868) sea cucumbers, and 2 giant clams, Tridacna maxima (Röding 1798). The observations presented here provide relevant information on broadcast spawning of non-coral invertebrate taxa in the Red Sea, where spawning is considerably less well documented than in other tropical geographical regions such as the Indo-Pacifc and Caribbean. Introduction amongst reef populations (Atchison et al. 2008; Nunes et al. 2011). Broadcast spawning occurs across most marine phyla The sedentary nature of many invertebrates on coral reefs (e.g. Hagman and Vize 2003; Ritson-Williams et al. 2005; renders them heavily reliant on dispersal during the pelagic Hofman et al. 2011; Bouwmeester 2013) and is a mode of larval period of their life cycle to ensure connectivity reproduction in which large quantities of male and female gametes are released into the water column within a short period of time. Success of the strategy, however, relies on Responsible Editor: J. Grassle Reviewers:undisclosed experts. reproductive synchrony among intraspecifc individuals within a few hours of specifc nights each year. Such annual * Didier M. de Bakker [email protected] spawning events have been shown to be closely tied to fac- tors such as annual temperature variation, lunar cycles and 1 Department of Ocean Systems, NIOZ-Royal Netherlands photoperiod length (Boch et al. 2011; Sweeney et al. 2011; Institute for Sea Research, and Utrecht University, Keith et al. 2016). To date, Invertebrate species other than 1790 AB Den Burg, The Netherlands scleractinian corals have received noticeably less attention 2 Centro de Ciências Do Mar Do Algarve (CCMAR), with regard to reproduction and this is particularly relevant University of Algarve, 8005 139 Faro, Portugal for the Red Sea, where only very few studies have been con- 3 Smithsonian Conservation Biology Institute, National ducted on multi-species broadcast spawning (Bouwmeester Zoological Park Department, Front Royal, VA 22630, USA et al. 2016). Here we describe spawning observations of 23 4 Hawaii Institute of Marine Biology, Kaneohe, HI 96744, non-coral invertebrates belonging to six species and two USA phyla. 5 Alfred-Wegener-Institut, Helmholtz-Zentrum Für Polar-Und Meeresforschung, 27570 Bremerhaven, Germany 6 Biogeoscience Group, ETH Zurich, 8092 Zurich, Switzerland Materials and methods 7 Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, On the evenings of June 11 and 12, 2019 at 19:00–20:30 h, The Netherlands broadcast spawning by six invertebrate species (Mollusca 8 Wageningen Marine Research, Wageningen University and Echinodermata) was observed on the Marsa Shagra reef, and Research, 1780 AB Den Helder, The Netherlands Vol.:(0123456789)1 3 56 Page 2 of 6 Marine Biology (2021) 168:56 Egypt (~ 25 km north of Marsa Alam, 25° 14′ 44.2" N 34° 47′ were encountered releasing a jet of male gametes into the 49.0" E). This fringing reef is characterized by a wide (~ 1 water column (Fig. 1b). They were found 10 m apart, both 000 m) and shallow (< 1 m at high tide) reef fat underlain by perched on top of a coral mound (Table 1). a large carbonate framework. The reef fat is interrupted by a On June 12, 14 starfsh Leiaster cf. leachi (Gray 1840) sand channel (bay) shouldered by gradually downward slop- were seen broadcast spawning. Several individuals released ing reefs on both sides, and which transitions into a reef shelf sperm, while other individuals were observed releasing a at ~ 20 m depth. All spawning was observed on the sloping cloud of eggs (Table 1). Individuals were several meters apart edges of the channel at 2–8 m depth (Table 1). The reef slope from each other (i.e. no clustering) and generally on top of is characterized by a complex structural morphology and a coral mounds. Most of them exhibited the same spawning 60–70% cover of scleractinian coral (mainly Acropora spp., behaviours with raised discs and perched on the tips of their Porites spp. and Pocillopora spp., pers. obs. DdB). Water tem- arms (Fig. 1c). Another sea star species, Mithrodia clavigera perature at 5 m depth was 28 °C, measured with a Suunto D4i (Lamarck 1816), was encountered releasing male gametes in dive computer. All observations were made while SCUBA a fattened position on top of a coral mound (Table 1). diving and an underwater photographic record was taken for During the same evening, spawn was observed emanat- each observation. Species identifcation, and the identifcation ing from three Pearsonothuria graefei (Semper 1868) sea of sperm or egg spawn, was performed visually in situ. Sperm cucumbers (Table 1). One was observed on a sandy bot- release was characterized by a “smoky” cloud emitted by the tom with half of its body lifted of the seafoor in a vertical individuals, and egg release was characterized by a “non- position. It swayed with the waves’ surging motion while smoky” cloud of tiny conspicuous eggs. Taxonomic identi- releasing a cloud of male gametes. The two other individu- fcations were later confrmed by Gustav Paulay (FLMNH, als were encountered briefy emerging from the cryptic reef USA) based on the extensive photographic and video mate- environment to release a single cloud of male gametes before rial. Due to permit limitations and the limited number of indi- rapidly retreating into the reef (ESM_1). Lastly, two giant viduals that were observed spawning, no voucher specimens clams (Tridacna maxima, Röding 1798) were encountered, were collected for posteriori identifcation. releasing a cloud of male gametes. Discharge lasted for only a few seconds and occurred through the excurrent siphons. The two individuals were in close proximity (1 m apart), Results embedded in the same coral mound. They spawned within seconds of each other (ESM_1). Spawning observations A single basket star, Astroboa nuda (Lyman 1874), was Discussion observed on June 11 perched on top of a fre coral releas- ing female gametes (Fig. 1a, Table 1). When encountered, Spawning times of four out of the six species encountered the individual was in a typical feeding position with arm here were not yet described for the Red Sea and to our branches extended and was releasing a vast number of eggs knowledge, this is the frst feld observation of a basket star (~ 1 mm diameter) that were dispersed by the prevailing cur- releasing female gametes. Relatively little is known about rent. When illuminated, it continued spawning but drew in the life history of A. nuda, but our observations suggest that its arms towards the central disk, which is typical for this this species—like many Ophiuroids—relies on broadcast extremely light-sensitive species (Tsurnamal and Marder spawning. Apart from our description of mass egg release 1966; Hendler et al. 1995). A few minutes later, two large in the north-western Red Sea, the only other in situ descrip- top-shell snails (Trochidae), Tectus dentatus (Forskal 1775) tion of spawning appears to be a single A. nuda individual Table 1 Timetable and specifcations of the recorded invertebrate spawning Days before full moon Species Number of indi- Time of spawning Type of gametes Depth (m) viduals 6 (June 11) Astroboa nuda 1♀ 19:45 Eggs 8 Tectus dentatus 2♂ 20:00–20:10 Sperm 3–5 5 (June 12) Leiaster cf. leachi 5♂ & 9♀ 19:30–20:15 Sperm & eggs 3–8 Mithrodia clavigera 1♂ 20:15 Sperm 2 Tridacna maxima 2⚥ 19:50 Sperm 3 Pearsonothuria graefei 3♂ 19:50–20:10 Sperm 2–5 1 3 Marine Biology (2021) 168:56 Page 3 of 6 56 Fig. 1 Nocturnal spawning of non-coral invertebrates on the shallow dentatus sea snail. c Leiaster cf. leachi discharging female gametes reef of the Egyptian Red Sea. a Astroboa nuda releasing eggs. b Con- in typical upright position. Video footage of all observed species is tinuous jet-like release of male gametes from the siphon of a Tectus provided as Supplementary Resource 1 (ESM_1) releasing sperm two nights before the full moon (July 2012) 1966), and this behaviour did not appear to be afected by on the Red Sea reef Al Fahal (Saudi Arabia) (Bouwmeester their spawning activity.
Recommended publications
  • Educators' Resource Guide
    EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p
    [Show full text]
  • Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
    NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D.
    [Show full text]
  • Ophiuroids of the Order Euryalida (Echinodermata) from Hachijōjima Island and Ogasawara Islands, Japan
    国立科博専報,(47): 367–385,2011年4月15日 Mem. Natl. Mus. Nat. Sci., Tokyo, (47): 367–385, April 15, 2011 Ophiuroids of the Order Euryalida (Echinodermata) from Hachijōjima Island and Ogasawara Islands, Japan Masanori Okanishi1, 2, Kunihisa Yamaguchi3, Yoshihiro Horii4 and Toshihiko Fujita2, 1 1 Department of Biological Science, Graduate School of Science, The University of Tokyo, 7–3–1 Hongō, Bunkyō-ku, Tokyo 113–8654, Japan 2 Department of Zoology, National Museum of Nature and Science, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo 169–0073, Japan E-mail: [email protected] (MO) 3 Ōshima Branch, Tokyo Metropolitan Islands Area Research and Development Center of Agriculture, Forestry and Fisheries, 18 Habuminato, Ōshima-cho, Tokyo 100–0212, Japan 4 Hachijō Branch, Tokyo Metropolitan Islands Area Research and Development Center of Agriculture, Forestry and Fisheries, 4222–1 Mitsune, Hachijō-cho, Hachijōjima, Tokyo 100-1511, Japan Abstract. Ophiuroids of the order Euryalida were collected from the depth between 20 and 1980 m off Hachijōjima Island and off Ogasawara Islands, southern Japan. A total of 17 species (12 genera, 4 families) were identified. Key words: Ophiuroidea, Euryalida, taxonomy, deep sea, Japan. Two hundred and fifty one specimens were newly Introduction collected by the project “Species Diversity of The order Euryalida (Echinodermata: Ophi- Sagami Sea and Adjacent Coastal Areas: Origin uroidea) consists of four families, Asteronychi- of Influential Factors” conducted by the National dae, Asteroschematidae, Euryalidae and Gorgono- Museum of Nature and Science, Tokyo in addi- cephalidae. Euryalid ophiuroids often live on hard tion to 88 specimens already deposited in the Na- bottoms or attach to soft corals and sponges with tional Museum of Nature and Science.
    [Show full text]
  • Behaviour As Part of Ecological Adaptation
    Helgolgnder wiss. Meeresunters. 24, 120-144 (1973) Behaviour as part of ecological adaptation In situ studies in the coral reef H. W. FRICK~ Max-Planck-Institut ~iir Verhaltensphysiologie (Abteilung Lorenz); Seewiesen und Erling-Andechs, Federal Republic of Germany KURZFASSUNG: Verhalten als Tell 8kologischer Anpassung. In-situ-Untersuchungen im Korallenriff. Der Einflut~ des Lebensraumes als Evolutionsfaktor des Verhaltens l~it~t sich durch Artenvergleich erschliet~en.Verhaltensweisen sind Tell der/SkologischenAnpassung. Nicht verwandte Tiere, die in ~ihnlichenBiotopen leben, zeigen ott Verhaltenskonvergenzen; verwandte Tiere in unterschiedlichen Biotopen dagegen Verhaltensdivergenzen. Im Korallenriff wurden analoge und homologe Verhaltensweisen an den Funktionskreisen Nahrungserwerb (Plankton- fang bei Seeanemonen, kriechenden Kammquatlen, Schlangensternen und R6hrenaalen), Beute- fang und Feindvermeidung (bei einigen benthonischen Invertebraten) und Sozialverhatten (bei Korallenbarschen) untersucht. Auch Sozialstrukturen sind 6kologischeAnpassungen. Monogamie und Plakatfarben der im Rift besonders zahlreich vertretenen Schmettertingsfische werden als Fortpflanzungsisolationsme&anismen interpretiert. Sie erm6glichen das Nebeneinander vieler sympatrischer Arten. INTRODUCTION The environment as a selection factor, and thus one which influences an animal's behaviour, has recently reached importance in modern ethology. Behaviour patterns develop with time and are based on the same evolutionary mechanisms as anatomical structures (WIcKL~I~
    [Show full text]
  • Benthic Habitats and Biodiversity of Dampier and Montebello Marine
    CSIRO OCEANS & ATMOSPHERE Benthic habitats and biodiversity of the Dampier and Montebello Australian Marine Parks Edited by: John Keesing, CSIRO Oceans and Atmosphere Research March 2019 ISBN 978-1-4863-1225-2 Print 978-1-4863-1226-9 On-line Contributors The following people contributed to this study. Affiliation is CSIRO unless otherwise stated. WAM = Western Australia Museum, MV = Museum of Victoria, DPIRD = Department of Primary Industries and Regional Development Study design and operational execution: John Keesing, Nick Mortimer, Stephen Newman (DPIRD), Roland Pitcher, Keith Sainsbury (SainsSolutions), Joanna Strzelecki, Corey Wakefield (DPIRD), John Wakeford (Fishing Untangled), Alan Williams Field work: Belinda Alvarez, Dion Boddington (DPIRD), Monika Bryce, Susan Cheers, Brett Chrisafulli (DPIRD), Frances Cooke, Frank Coman, Christopher Dowling (DPIRD), Gary Fry, Cristiano Giordani (Universidad de Antioquia, Medellín, Colombia), Alastair Graham, Mark Green, Qingxi Han (Ningbo University, China), John Keesing, Peter Karuso (Macquarie University), Matt Lansdell, Maylene Loo, Hector Lozano‐Montes, Huabin Mao (Chinese Academy of Sciences), Margaret Miller, Nick Mortimer, James McLaughlin, Amy Nau, Kate Naughton (MV), Tracee Nguyen, Camilla Novaglio, John Pogonoski, Keith Sainsbury (SainsSolutions), Craig Skepper (DPIRD), Joanna Strzelecki, Tonya Van Der Velde, Alan Williams Taxonomy and contributions to Chapter 4: Belinda Alvarez, Sharon Appleyard, Monika Bryce, Alastair Graham, Qingxi Han (Ningbo University, China), Glad Hansen (WAM),
    [Show full text]
  • Updated Morphological Description of Asteroporpa (Asteroporpa)Annulata(Euryalida: Gorgonocephalidae) from the Brazilian Coast, W
    Revista de Biología Marina y Oceanografía Vol. 47, Nº1: 141-146, abril 2012 Research Note Updated morphological description of Asteroporpa (Asteroporpa) annulata (Euryalida: Gorgonocephalidae) from the Brazilian coast, with notes on the geographic distribution of the subgenus Descripción morfológica actualizada de Asteroporpa (Asteroporpa) annulata (Euryalida: Gorgonocephalidae) de la costa brasileña, con notas sobre la distribución geográfica del subgénero Anne I. Gondim1, Thelma L. P. Dias2 and Cynthia L. C. Manso3 1Universidade Federal da Paraíba, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Laboratório de Invertebrados Paulo Young, Departamento de Sistemática e Ecologia, Campus I. Cidade Universitária, CEP 58051-900, João Pessoa, PB, Brasil. [email protected] 2Universidade Estadual da Paraíba, CCBS, Departamento de Biologia, Campus I, Rua Baraúnas, 351, Bairo Universitário, CEP 58429-500, Campina Grande, PB, Brasil 3Universidade Federal de Sergipe, Laboratório de Invertebrados Marinhos, Departamento de Biociências. Av. Vereador Olimpio Grande, S/N, CEP 49500-000, Itabaiana, SE, Brasil Abstract.- This study provides an updated morphological description of Asteroporpa (Asteroporpa) annulata based on one specimen from the northeastern coast of Brazil, thus validating the previously uncertain occurrence of this species there. We also provide notes on the known geographic distribution of the subgenus Asteroporpa (Asteroporpa) and comments on ecological aspects of this taxon. Given our limited knowledge of the Euryalida fauna along the Brazilian coast, these new records are important for understanding the distribution, dispersal and speciation patterns of this group. The number of Euryalida reported for the Brazilian coast is increased to eight with this record. Key words: Echinodermata, taxonomy, ophiurans, geographical distribution INTRODUCTION The order Euryalida represents a group of brittle stars, slowly than in other echinoderm taxa (Baker 1980).
    [Show full text]
  • Benthic Field Guide 5.5.Indb
    Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates Invertebrates Benthic Moore Islands Kirrily and McDonald and Hibberd Ty Island Heard to Guide cation Identifi Field Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates A guide for scientifi c observers aboard fi shing vessels Little is known about the deep sea benthic invertebrate diversity in the territory of Heard Island and McDonald Islands (HIMI). In an initiative to help further our understanding, invertebrate surveys over the past seven years have now revealed more than 500 species, many of which are endemic. This is an essential reference guide to these species. Illustrated with hundreds of representative photographs, it includes brief narratives on the biology and ecology of the major taxonomic groups and characteristic features of common species. It is primarily aimed at scientifi c observers, and is intended to be used as both a training tool prior to deployment at-sea, and for use in making accurate identifi cations of invertebrate by catch when operating in the HIMI region. Many of the featured organisms are also found throughout the Indian sector of the Southern Ocean, the guide therefore having national appeal. Ty Hibberd and Kirrily Moore Australian Antarctic Division Fisheries Research and Development Corporation covers2.indd 113 11/8/09 2:55:44 PM Author: Hibberd, Ty. Title: Field identification guide to Heard Island and McDonald Islands benthic invertebrates : a guide for scientific observers aboard fishing vessels / Ty Hibberd, Kirrily Moore. Edition: 1st ed. ISBN: 9781876934156 (pbk.) Notes: Bibliography. Subjects: Benthic animals—Heard Island (Heard and McDonald Islands)--Identification.
    [Show full text]
  • Ophiuroidea: Euryalida: Gorgonocephalidae) from Korea
    ISSN 1226-9999 (print) ISSN 2287-7851 (online) Korean J. Environ. Biol. 33(2) : 205~208 (2015) http://dx.doi.org/10.11626/KJEB.2015.33.2.205 A Newly Recorded Basket Star of Genus Gorgonocephalus (Ophiuroidea: Euryalida: Gorgonocephalidae) from Korea Donghwan Kim and Sook Shin* Department of Life Science, Sahmyook University, Seoul 139-742, Korea Abstract - Some euryalid specimens were collected with fishing nets from Mipo, Gyungsangnam- do and Aewol, Jejudo Island, Korea. They were identified as Gorgonocephalus eucnemis (Müller & Troschel, 1842), belonging to family Gorgonocephalidae of order Euryalida, which was new to the Korean fauna. Their molecular analyses were done with newly intended COI primers of mitochondrial cytochrome oxidase I (COI) gene for the accurate molecular identification. The Korean G. eucnemis was coincident with this NCBI species as a result of Blast analysis, which showed the 99% similarity. In the current study, three Gorgonocephalus species have been report- ed from Korea. Key words: Gorgonocephalus‌ eucnemis, basket star, morphology, molecular analysis, Korea INTRODUCTION MATERIALS AND METHODS Family Gorgonocephalidae including 34 genera is the Basket stars were collected at a depth of 100~150 m deep largest one of three families belonging to order Euryalida by fishing nets from Mipo, Korea Strait and Aewol, Jejudo (Okanishi and Fujita 2013) and its four genera, Astroboa, Island, Korea on June 1983 and January 2013, respectively. Astrocladus, Astrodendrum and Gorgonocephalus, have been The specimens were preserved in 95% ethyl alcohol and reported in Korean fauna (Shin 2013). Almost all Gorgono- identified on the basis of morphological characteristics and cephalus species distribute exclusively in deep water and are molecular analyses.
    [Show full text]
  • Echinodermata, Ophiuroidea, Gorgonocephalus Leach, 1815: First Report of the Genus for the Brazilian Istributio
    ISSN 1809-127X (online edition) © 2010 Check List and Authors Chec List Open Access | Freely available at www.checklist.org.br Journal of species lists and distribution N Echinodermata, Ophiuroidea, Gorgonocephalus Leach, 1815: First report of the genus for the Brazilian ISTRIBUTIO D continental margin RAPHIC G Carlos A. M. Barboza 1*, Fabricio M. Mendes 2, Andrea Dalben 3 and Luiz R. Tommasi 2 EO G N O 1 Universidade Federal do Paraná, Programa de Pós-graduação em Zoologia, Centro de Estudos do Mar, Laboratório de Bentos - Av. Beira-mar s/n. CEP 83255-000. Pontal do Paraná, PR, Brazil. OTES 2 Fundação de Estudos e Pesquisas Aquáticas – FUNDESPA Av. Afrânio Peixoto, 412, Butantã. CEP 05507-000. São Paulo, SP, Brazil. N 88040-970. Florianópolis, SC, Brazil. * 3 Corr Universidadeesponding Federal author. de E Santamail: [email protected], Departamento de Ecologia e Zoologia, Laboratório de Biogeografia e Macroecologia Marinha. CEP Abstract: Gorgonocephalus chilensis The Gorgonocephalidae includes 38 genera, five of themGorgonocephalus reported for genusBrazilian for w theaters. Brazilian continental margin andhas aextend wide distrib the northernution thr limitoughout of distribution Antartica andof G. Subantartican chilensis to the regions coast of and Santa its northern Catarina. limit Tolerance was restricted to a large t otemperature the coast of andUruguay. bathimetric This work range aims are to crucial report tothe understand first occurr theence distributions of the patterns of ophiuroids from the polar circle that also occur at southern South America. - - tober 2004 and totalized 130 hours. One single specimen (PatersonThe Gor 1985;gonocephalidae Rosenberg familyet al. 2005).has a w Theorldwide family distri com- of G.Sampling chilensis was conducted by SCUBA diving during Oc bution and occurs from shallow waters to the deep ocean (Gorgonacea) octocoral at 21 °C and 20 m depth.
    [Show full text]
  • Behavior and Functional Morphology of Respiration in The
    BEHAVIOR AND FUNCTIONAL MORPHOLOGY OF RESPIRATION IN THE BASKET STAR, GORGONOCEPHALUS EUCNEMIS AND TWO BRITTLE STARS IN THE GENUS OPHIOTHRIX. by MACKENNA A. H. HAINEY A THESIS Presented to the Department of Biology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Master of Science September 2018 THESIS APPROVAL PAGE Student: MacKenna A. H. Hainey Title: Behavior and Functional Morphology of Respiration in the Basket Star, Gorgonocephalus eucnemis and Two Brittle Stars in the Genus Ophiothrix This thesis has been accepted and approved in partial fulfillment of the requirements for the Master of Science degree in the Department of Biology by: Richard B. Emlet Advisor Alan L. Shanks Member Maya Watts Member and Janet Woodruff-Borden Vice Provost and Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded September 2018 ii © 2018 MacKenna A. H. Hainey This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike (United States) License. iii THESIS ABSTRACT MacKenna A. H. Hainey Master of Science Department of Biology September 2018 Title: Behavior and Functional Morphology of Respiration in the Basket Star, Gorgonocephalus eucnemis and Two Brittle Stars in the Genus Ophiothrix Gorgonocephalus eucnemis, Ophiothrix suensonii and Ophiothrix spiculata are aerobic Echinoderms. Previous observations on the anatomy of these two genera state five pairs of radial shields and genital plates are responsible for regulating the position of the roof of the body disc and the flushing of water in and out of the bursae.
    [Show full text]
  • Echinodermata
    Echinodermata Gr : spine skin 6500 spp all marine except for few estuarine, none freshwater 1) pentamerous radial symmetry (adults) *larvae bilateral symmetrical 2) spines 3) endoskeleton mesodermally-derived ossicles calcareous plates up to 95% CaCO3, up to 15% MgCO3, salts, trace metals, small amount of organic materials 4) water vascular system (WVS) 5) tube feet (podia) Unicellular (acellular) Multicellular (metazoa) protozoan protists Poorly defined Diploblastic tissue layers Triploblastic Cnidaria Porifera Ctenophora Placozoa Uncertain Acoelomate Coelomate Pseudocoelomate Priapulida Rotifera Chaetognatha Platyhelminthes Nematoda Gastrotricha Rhynchocoela (Nemertea) Kinorhyncha Entoprocta Mesozoa Acanthocephala Loricifera Gnathostomulida Nematomorpha Protostomes Uncertain (misfits) Deuterostomes Annelida Mollusca Echinodermata Brachiopoda Hemichordata Arthropoda Phoronida Onychophora Bryozoa Chordata Pentastomida Pogonophora Sipuncula Echiura 1 Chapter 14: Echinodermata Classes: 1) Asteroidea (Gr: characterized by star-like) 1600 spp 2) Ophiuroidea (Gr: snake-tail-like) 2100 spp 3) Echinoidea (Gr: hedgehog-form) 1000 spp 4) Holothuroidea (Gr: sea cucumber-like) 1200 spp 5) Crinoidea (Gr: lily-like) stalked – 100 spp nonstalked, motile comatulid (feather stars)- 600 spp Asteroidea sea stars/starfish arms not sharply marked off from central star shaped disc spines fixed pedicellariae ambulacral groove open tube feet with suckers on oral side anus/madreporite aboral 2 Figure 22.01 Pincushion star, Culcita navaeguineae, preys on coral
    [Show full text]
  • Papers from Dr. Th. Mortensen's Pacific Expedition LIV
    Qg'jsjTRAU M a r i n e F i s h e r i e s r e s e a r c h s t a t i o n , m a d r a s . Papers from Dr. Th. Mortensen’s Pacific Expedition 1914— 16. LIV. Ophiures recueillies par le Docteur Th. Mortensen dans les Mers d’Australie et dans I’Archipel Malais par Ren€ Koehler, Professeur & la Faculty des Sciences de rUniversit6 de Lyon. Avec Planches I— XX. M on excellent ami et collegue, M. le Dr. Th. M o rten sen , de Copenhague, a bien voulu me confier I’etude des Asteries et Ophiures recueillies par lui au cours de ses diverses expeditions dans les Oceans Indien et Pacifique, et je le remercie bien vivement de la confiance qu’il m’a t6moignee. Ses collections, fort importantes et tres intferes- santes, proviennent de ses voyages en Siam, en Australie et dans I’Archipel de la Sonde. Aux collections de Siam sont ajout^es les espfeces recueillies par M. S. Gad a Singapore en 1907; celles de I’Australiesont not6es par M. M o rte n se n sous la designation “Expedi­ tion du Pacifique”, et celles des iles de la Sonde sous la designation “‘Expedition des lies Kei”.Au cours decettederniere,qui aeu lieu en 1922, M. M ortensen a explore notamment les iles Kei elles-memes, ainsi que d ’autres localites: Amboine, Banda, etc.; on trouvera des ren- seignements tres d^tailles sur cette dernifere expedition dans I’ouvrage que M o rte n se n a public recemment: The Danish Expedition to the Kei Islands (Vidensk.
    [Show full text]