<<

Genome

Characterization and comparison of poorly known communities through DNA barcoding in two Afrotropical environments in Gabon

Journal: Genome

Manuscript ID gen-2018-0063.R1

Manuscript Type: Article

Date Submitted by the 02-Jul-2018 Author:

Complete List of Authors: Delabye, Sylvain; Faculty of Science, University of South Bohemia in České Budějovice, ; Biology Center, The Czech Academy of Science, Rougerie, Rodolphe;Draft Institut Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE Bayendi Loudit, Sandrine M.; Institut de recherches agronomiques et forestieres, IRAF-CENAREST Andeime-Eyene, Myrianne; Institut de recherches agronomiques et forestieres, IRAF-CENAREST Zakharov, Evgeny; Biodiversity Institute of Ontario, Centre for Biodiversity Genomics deWaard, Jeremy; Biodiversity Institute of Ontario, Centre for Biodiversity Genomics Hebert, Paul; Biodiversity Institute of Ontario, Centre for Biodiversity Genomics Kamgang, Roger; Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE UMR 247, IRD–CNRS–Université Paris-Sud) Le-Gall, Philippe; Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE UMR 247, IRD–CNRS–Université Paris-Sud) Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Mavoungou, Jacques-François; Institut de Recherches en Ecologie Tropicale (IRET–CENAREST); Faculté des Sciences, Université des Sciences et Techniques de Masuku, Département de Biologie Moussavou, Ghislain; Institut de Recherches en Ecologie Tropicale (IRET–CENAREST) Moulin, Nicolas; Nicolas Moulin Entomologiste Oslisly, Richard; Agence Nationale des Parcs Nationaux (ANPN); Laboratoire Patrimoines Locaux et Gouvernance (PALOC) UMR 208, IRD- MNHN Rahola, Nil; International Centre for Medical Research, CIRMF Sebag, David; Normandie Université, UNIROUEN, UNICAEN, CNRS, M2C UMR 6143 Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE),

https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 45 Genome

Community ecology, DNA barcodes, , Taxonomic deficit, Keyword: Tropical Africa

Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? :

Draft

https://mc06.manuscriptcentral.com/genome-pubs Genome Page 2 of 45

1 Characterization and comparison of poorly known moth communities through DNA

2 barcoding in two Afrotropical environments in Gabon

3

4 Sylvain Delabye1,2*, Rodolphe Rougerie3*~, Sandrine Bayendi4, Myrianne Andeime-Eyene4,

5 Evgeny V. Zakharov5, Jeremy R. deWaard5, Paul D.N. Hebert5, Roger Kamgang6~, Philippe Le

6 Gall6~, Carlos Lopez–Vaamonde7~, Jacques-François Mavoungou8,9, Ghislain Moussavou8~,

7 Nicolas Moulin10~, Richard Oslisly11,12~, Nil Rahola13~, David Sebag14~, Thibaud Decaëns15$~

8 * Contributed equally to the paper

9 $ Corresponding author

10 ~ Members of the ECOTROP team. RemainingDraft members of this team, and their affiliations, is

11 given in the Acknowledgements section.

12 Addresses:

13 1 Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760,

14 37005, České Budějovice, Czech Republic

15 2 Biology Center, Institute of Entomology, The Czech Academy of Science, Branišovská 31,

16 37005, České Budějovice, Czech Republic

17 3 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire

18 naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France.

19 4 Institut de Recherches Agronomique et Forestière (IRAF–CENAREST), Libreville, Gabon

20 5 Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph,

21 Guelph, ON, Canada N1G 2W1

1 https://mc06.manuscriptcentral.com/genome-pubs Page 3 of 45 Genome

22 6 Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE UMR 247, IRD–CNRS–

23 Université Paris-Sud), Avenue de la Terrasse, Bâtiment 13, Boite Postale 1, 91198 Gif sur

24 Yvette, France

25 7 Unité de Zoologie Forestière (URZF UR 633, INRA-Orléans), 2163 Avenue de la Pomme de

26 Pin, CS 40001 Ardon, 45075 Orléans Cedex 2, France

27 8 Institut de Recherches en Ecologie Tropicale (IRET–CENAREST), Libreville, Gabon

28 9 Département de Biologie, Faculté des Sciences, Université des Sciences et Techniques de

29 Masuku, B.P 943, Franceville, Gabon

30 10 Nicolas Moulin Entomologiste, 82 route de l’Ecole, 76680 Montérolier, France

31 11 Agence Nationale des Parcs NationauxDraft (ANPN), BP 20379, Libreville, Gabon

32 12 Laboratoire Patrimoines Locaux et Gouvernance (PALOC) UMR 208, IRD-MNHN, 57 rue

33 Cuvier - Case Postale 26, 75231 Paris cedex 05, France

34 13 International Centre for Medical Research (CIRMF), Franceville, Gabon

35 14 Normandie Université, UNIROUEN, UNICAEN, CNRS, M2C UMR 6143, Place Emile

36 Blondel - Bâtiment IRESE A, 76821 Mont Saint Aignan Cedex, France

37 15 Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de

38 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293

39 Montpellier, France; [email protected]; +33 (0)4 6761 3243

40

2 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 4 of 45

41 Abstract

42 Biodiversity research in tropical ecosystems – popularized as the most biodiverse habitats on

43 Earth – often neglects invertebrates, yet representing the bulk of local species richness.

44 communities in particular remain strongly impeded by both Linnaean and Wallacean shortfalls,

45 and identifying species often remains a formidable challenge inhibiting the use of these

46 organisms as indicators for ecological and conservation studies.

47 Here we use DNA barcoding as an alternative to traditional taxonomic approach for

48 characterizing and comparing the diversity of moth communities in two different ecosystems in

49 Gabon. Though sampling remains very incomplete, as evidenced by the high proportion (59%) of

50 species represented by singletons, our results reveal an outstanding diversity. With about 3500

51 specimens sequenced and representing Draft1385 BINs (Barcode Index Numbers, used as a proxy to

52 species) in 23 families, the diversity of in the two sites sampled is higher than the current

53 number of species listed for the entire country, highlighting the huge gap in biodiversity

54 knowledge for this country. Both seasonal and spatial turnovers are strikingly high (18.3% of

55 BINs shared between seasons, and 13.3% between sites) and draw attention to the need to

56 account for these when running regional surveys. Our results also highlight the richness and

57 singularity of savannah environments and emphasize the status of Central African ecosystems as

58 hotspots of biodiversity.

59

60 Keywords: Community Ecology, DNA barcodes, Lepidoptera, Tropical Africa, Taxonomic

61 deficit

3 https://mc06.manuscriptcentral.com/genome-pubs Page 5 of 45 Genome

62 Introduction

63 Tropical ecosystems host unrivalled species richness (Kier et al. 2005; Myers 1984; Myers et al.

64 2000), a fact that has long captivated public attention and raised concerns about the way to

65 conserve this immense biodiversity (Wilson 1988). Understanding of tropical biodiversity has

66 historically been biased toward the largest organisms such as angiosperms and vertebrates (May

67 2011), leaving considerable gaps in our knowledge of hyperdiverse groups of smaller ,

68 especially . These organisms are nevertheless key to ecosystem functioning (Erwin

69 1983; Zhang 2011) and the shortfalls in our taxonomic, biogeographic and ecological knowledge

70 are strong impediments against the integration of these organisms in conservation and 71 management strategies (Miller and RogoDraft 2002; Whittaker et al. 2005). Because the few studies 72 addressing this topic predict high extinction numbers for (Fonseca 2009; Stork and Habel

73 2013), it is urgent to lift “the curse of ignorance” (Diniz-Filho et al. 2010) by developing multi-

74 scale studies on insect diversity that benefit from the technological revolution of the ‘genomic

75 era’ (Godfray 2006; Wilson 2003) and its recent developments in biodiversity sciences (Hebert et

76 al. 2003a).

77 The Afrotropical region is one of the Major Tropical Wilderness Areas on earth (Myers 1990;

78 Wilson 2002), i.e. a large and highly diverse area that has seen little impact from human activities

79 until recently (i.e. < 5 inhab km-2 and > 75% of the original vegetation still present) (Mittermeier

80 et al. 1998). However, recent estimates indicate that annual net deforestation of African tropical

81 rainforests, although less dramatic than in Latin America or Southeast Asia, approached 0.3

82 million ha/year- for the 2000-2010 decade (Achard et al. 2014), which could have led to dramatic

83 biodiversity loss. As many as 100 000 insect species have been reported from the area, but Miller

84 and Rogo (2002) suggest that species richness could exceed 600 000 species. In Gabon, a central-

4 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 6 of 45

85 African country which is still covered by 80% of tropical rainforests, insect inventories have only

86 considered butterflies (vande Weghe 2010), a few groups with limited number of species such as

87 Mantodea (Roy 1973), Lucanidae (Maes and Pauly 1998) or Apoidae (Pauly 1998), and groups

88 with specific economical and/or agronomical importance such as Pseudococcidea (Hemiptera)

89 and their parasitoids (Boussienguet et al. 1991). A few studies have also targeted terrestrial

90 assemblages along human disturbance gradients (Basset et al. 2004, 2008).

91 Several authors emphasized the potential of using highly diverse groups, such as Lepidoptera, as

92 environmental indicators (Axmacher et al. 2004a, 2004b; Beck et al. 2013; Kitching et al. 2000;

93 Ricketts et al. 2001). They are indeed key herbivores and an important link within foodwebs as

94 prey or as hosts for parasitoids. Variation in the diversity and structure of lepidopteran

95 communities is thus likely to be representativeDraft of changes at other trophic levels. For instance,

96 lepidopteran species depend on their host plant species (or a few closely related plants), and in

97 turn play a fundamental role as pollinators; this connects them closely to plant community

98 structure and composition (Ehrlich and Raven 1964; Novotny et al. 2002b). On the other hand,

99 trophic cascades in food webs are likely to link both host plant and primary consumer

100 assemblages to associated higher trophic levels of predators and parasitoids. Surprisingly

101 however, only a few studies have examined this group in the Afrotropics. The taxonomic deficit

102 and the high number of species that occur in those environments are certainly important causes

103 for this deficit, because they impede reliable inventories and the description of community

104 patterns. In a recent study based on a substantial sampling effort in Papua New Guinea (over

105 30 000 specimens collected over several years), Ashton et al. (2014) found that no asymptote was

106 reached by species accumulation curves. These authors, however, also suggested that more

5 https://mc06.manuscriptcentral.com/genome-pubs Page 7 of 45 Genome

107 limited sampling could be efficient in highlighting differences in the diversity and composition of

108 moth communities among distant localities.

109 In this study, we use DNA barcodes to document and compare communities of moths in two

110 differing ecosystems of Gabon. Several recent studies have demonstrated the effectiveness of

111 DNA barcoding – a tool for species identification based on a short standardized DNA fragment

112 (Hebert et al. 2003b) – in documenting species diversity of lepidopteran communities in regions

113 where species assemblages are very diverse and when many species are undescribed (Janzen et

114 al., 2009; Lamarre et al. 2016; Lees et al. 2014; Zenker et al. 2016). With this approach we aim at

115 evaluating the sampling effort required to produce relevant census of these communities, to

116 document seasonal variation in community composition, and if species-turnover (β-diversity) as

117 revealed from our data is reflecting significantDraft differences in richness and composition that can

118 be linked to the different habitats sampled. Finally, we discuss the contribution of our study to the

119 current knowledge of moth diversity in Gabon and in the Afrotropical region, with special

120 reference to information compiled in the AfroMoths database (De Prins 2016; De Prins and De

121 Prins 2017).

122 Material and Methods

123 Study sites

124 Moths were collected at two locations (named Lopé 2 and Ipassa research station) in the province

125 of Ogooué-Ivindo, in Gabon (Figures 1 and 2):

126 - Lopé 2 site is situated in the northern part of Lopé National Park, about 12 km south from Lopé

127 village and the Dr. Alphonse Mackanga Missandzou Training Centre (CEDAMM, Wildlife

128 Conservation Society; coordinates: S0°13’9.699” / E11°35’5.6394”; altitude: 300m). Vegetation

6 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 8 of 45

129 comprises a mosaic of forest and shrub savannah (Figure 2A). Shrub savannah is dominated by

130 Poaceae and Cyperaceae like Anadelphia arrecta, Andropogon pseudapricus, Schizachyrium

131 platyphyllum, Hyparrhenia diplandra or Ctenium newtonii and by a shrub layer with

132 Crossopteryx febrifuga and Nauclea latifolia (White and Abernethy 1997). Forest patches are

133 mainly secondary to mature okoumé rainforests, the dominant forest type in western Gabon,

134 dominated by Aucoumea klaineana (“okoumé”), Lophira alata, Desbordesia glaucescens,

135 Scyphocephalium ochochoa, Dacryodes buttneri, Santiria trimera, Sindoropsis le-testui and

136 Uapaca guineensis (Ben Yahmed and Pourtier 2004; White and Abernethy 1997).

137 - The Ipassa research station (Institut de Recherches en Ecologie Tropicale) is situated in the

138 northern part of Ivindo National Park, 12 km from the city of Makokou (coordinates:

139 N0°30’38.1456” / E12°48’1.2594”; altitude:Draft 500m). The site is mainly surrounded by mature

140 Guineo-Congolean rainforest showing both Atlantic and continental influences (Doumenge et al.

141 2004; Nicolas 1977; White 1983), with Baphia leptobotrys and Millettia laurentii dominating the

142 tree cover, as well as Scorodophloeus zenkeri, Plagiostyles africana, Dichostemma glaucescens,

143 Santiria trimera, Polyalthia suaveolens and Poncovia pedicellaris (Figure 2B).

144 The two sites are 160 kilometers apart and share a similar seasonal cycle typical of the equatorial

145 transition zone, with short (January-February) and long (June-September) dry seasons. The

146 average monthly temperature is 24°C while mean annual precipitation is 1500 mm at Lopé and

147 1700 mm at Ipassa.

148 Moth sampling

149 Sampling was conducted at both sites in November 2009 and at Lopé 2 in February-March 2011

150 during a field class organized in the Lopé National Park (ECOTROP field class -

7 https://mc06.manuscriptcentral.com/genome-pubs Page 9 of 45 Genome

151 http://www.ecotrop.com/ECOTROP). We used a standard light trap technique consisting of a

152 250W UV (mercury vapor) bulb placed 4-5 meters above the ground to attract insects (Figures

153 2A and 2C). Two low voltage lamps (80W) were positioned on both sides of a vertical white

154 sheet positioned below the UV bulb. Specimens were collected during dark-moon phases from

155 dusk to dawn (6pm to 6am, local time) in order to collect species with varying flight times

156 (Lamarre et al. 2015). Overall, four collecting nights were carried out in each site in 2009 (10th

157 to 14th of November at Lopé 2 and 14th to 18th of November at Ipassa), and three additional

158 nights at the end of the short dry season at Lopé 2 in 2011 (27th February, 1st and 4th March). Our

159 sampling design was therefore relevant to compare observed communities between sites from the

160 samples collected during the rainy season in 2009, and to investigate seasonal turnover at Lopé 2.

161 Our study focuses on macro-moths, i.e.Draft moths whose wingspan were >1 cm, which includes the

162 nocturnal part of Macrolepidoptera as well as larger representative of non-macrolepidopteran

163 families (so-called “Microlepidoptera”), and exclude the smaller species of other families of

164 Macrolepidoptera (Figure 2D). Each night, we sampled specimens of as many species of macro-

165 moths as could be distinguished morphologically when collecting. Moths were killed using a

166 cyanide jar or by an injection of ammonia into the thorax for larger species, and were placed in

167 glassine envelopes marked with a code unique to each sampling event. Specimens are currently

168 deposited in the Museum national d’Histoire Naturelle in Paris, where they are available for

169 further taxonomic study.

170 DNA barcoding and taxonomic assignments

171 The day after collecting, specimens were sorted into morphospecies, i.e. groups of specimens that

172 were readily distinguishable from their external morphology. A maximum of four specimens per

173 morphospecies and per collecting night were then selected for molecular analyses. A small piece

8 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 10 of 45

174 of tissue (generally a complete leg or its tarsus for the largest species) was sampled for each of

175 them (Figure 2D). DNA extraction was carried out at the Canadian Centre for DNA Barcoding

176 (CCDB) at the University of Guelph following a standard automated protocol (Ivanova et al.

177 2006; Hajibabaei et al. 2005). Tissue lysis occurred in 50µl of lysis buffer and proteinase K [0.02

178 mg/µL] incubated at 56ºC overnight. A 658 bp segment of the 5’ region of the COI mitochondrial

179 gene used as a standard DNA barcode was amplified through PCR using the primer pair

180 LepF1/LepR1 (Hebert et al. 2004). Samples failing to amplify after this first PCR pass were re-

181 processed using the primer sets LepF1/MLepR1 and MLepF1/LepR1 that target 307 bp and 407

182 bp overlapping fragments, respectively (Hajibabaei et al. 2006). A standard PCR reaction

183 protocol was used for all PCR amplifications and products were checked on a 2% E-gel 96

184 Agarose (Invitrogen). Unpurified PCR Draft amplicons were sequenced in both directions using the

185 same primers as those used for the initial amplification, and following standard CCDB protocols

186 (http://ccdb.ca/resources/) (Hajibabaei et al. 2005). Trimming of primers, sequence editing and

187 contig assembly were carried out at CCDB using CodonCode software (CodonCode Corporation,

188 Centerville, MA, USA). All sequences were aligned and inspected for frame-shifts and stop

189 codons for removal of editing errors and possible pseudogenes, and then uploaded in the Barcode

190 of Life Data systems (BOLD, Ratnasingham and Hebert 2007). All records – including specimen

191 and sequence data – can be accessed publicly in BOLD and GenBank, and were assembled

192 within BOLD dataset DS-LOPELEP1.

193 Species identification of specimens using either DNA barcodes or morphology could not be

194 achieved for all the specimens, because of the incompleteness of the current DNA barcode library

195 for the region, and because of the lack of taxonomic expertise for many of the moths collected.

196 Also, the use of provisional morphospecies was intractable considering the large number of

9 https://mc06.manuscriptcentral.com/genome-pubs Page 11 of 45 Genome

197 specimens and the need for a thorough processing of individuals (spreading of wings, genitalia

198 dissections) for a reliable assessment of observed species diversity (Zenker et al. 2016). As a

199 consequence we used DNA barcodes to delineate molecular taxonomic units (MOTUs) as a

200 proxy for species. More specifically, we used Barcode Index Numbers (BINs) derived from the

201 automated MOTU delineation tool implemented in BOLD (Ratnasingham and Hebert 2013), and

202 which have already been used to consistently approximate species in Lepidoptera (Hausmann et

203 al. 2013; Kekkonen and Hebert 2014). In two families, Saturniidae and Sphingidae, species were

204 carefully identified (by RR and TD) on the basis of morphology and the results were used to test

205 their correspondence with BINs.

206 A “reverse taxonomy” approach (Markmann and Tautz 2005) using DNA barcode results

207 coupled with the BOLD identification toolDraft as well as the topology of the NJ tree failed to produce

208 species identification for most of our query sequences. However, we were able to provide a

209 family-level identification for the majority of individuals analyzed using either their general

210 morphology or DNA barcode analysis. For this second approach, the richness of the BOLD DNA

211 barcode library, with records for more than 100 000 species of Lepidoptera – proved very useful

212 using a simple query for best close matches in the database. Instead of applying a threshold to

213 generate family (or occasionally subfamily and genus) assignment, we verified the proposed

214 assignments by comparing images and, where relevant, by examining the specimens and

215 confirming the proposed taxon on the basis of its morphology.

216 Community data analyses

217 The α-diversity at each site was assessed by plotting rarefaction curves and their extrapolations

218 for both species richness and sample coverage (i.e. a measure of sample completeness that

219 estimates the proportion of the total number of individuals in a community that belong to the

10 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 12 of 45

220 species represented in the sample), using specimen numbers as a measure of sampling intensity.

221 These analyses were carried out using the iNEXT package (Hsieh et al. 2014) for R 3.0.2 (R

222 Development Core Team 2004). We then used the Vegan package (Oksanen et al. 2013) to

223 calculate several diversity indices: observed richness (defined as the total number of observed

224 BINs at a given sampling site or on a given date), Chao1, ACE and second order jacknife

225 diversity estimators, and Fisher α-diversity index. We also used iNEXT to calculate the number of

226 species observed given a constant level of sampling coverage, and Vegan for the estimation of

227 species richness rarefied to a constant level of sampling intensity (i.e. a constant number of

228 specimens collected). We finally used fisherfit, prestonfit and prestondistr functions of Vegan to

229 plot rank-abundance diagrams and fit Fisher's logseries, Preston's lognormal and truncated

230 lognormal models to abundance data forDraft each sampling site.

231 To assess β-diversity among sampling sites (for samples collected in 2009) and seasons (in Lopé

232 2 site only), we calculated an average Sørensen’s index of dissimilarity using the package Vegan

233 (Oksanen et al. 2013):

234 βBC = (b+c)/(2 a + b + c)

235 where a is the number of species (here BINs) shared between two sites B and C, and b and c are

236 the numbers of unique BINs for sites B and C.

237 We used the betapart package to decompose β-diversity into two components (Baselga 2010):

238 nestedness (i.e. when the composition of communities with a smaller species number is a subset

239 of a richer community) which reflects non-random processes of species loss, and spatial turnover

240 which results from species replacement as a consequence of environmental sorting or spatial and

241 historical constraints (Qian et al. 2005; Ulrich et al. 2009; Wright and Reeves 1992). Analyses of

11 https://mc06.manuscriptcentral.com/genome-pubs Page 13 of 45 Genome

242 β-diversity were carried out with and without singletons (i.e. BINs represented by a single

243 specimen in the dataset), as their inclusion can lead to overestimation of β-diversity.

244 Results

245 Species richness at the regional scale

246 We obtained 3494 (97.7%) sequences from the 3576 specimens selected for DNA barcoding.

247 These sequences included representatives of 1385 BINs representing 23 families of Lepidoptera

248 (Table 1) and only 6 specimens (6 BINs) could not be identified to family level. Noctuidae,

249 Erebidae and Geometridae represented about one third of the BINs and sampled individuals,

250 whereas 10 other families were each represented by less than 10 specimens. More than half of the

251 BINs (796 in total, 59%) were representedDraft by a single individual in our data set (i.e. singleton).

252 Morphological examination of specimens in the families Saturniidae (177) and Sphingidae (267),

253 led to the distinction of 42 and 63 species, respectively, of which only two (in family Saturniidae)

254 could not be identified to species and were given a provisional name (Orthogonioptilum

255 mgab_RR01 and Dogoia mgab_RR01). The correspondence between morphologically assigned

256 species and BINs was nearly perfect: 42 species versus 43 BINs in Saturniidae (98%) and 63

257 versus 66 in Sphingidae (95%) (see DNA barcode NJ trees in gen-2018-0063.R1Suppla and gen-

258 2018-0063.R1Supplb). In other families, 112 species (representing 121 BINs) were formally

259 identified by taxonomic experts (see acknowledgments) or through DNA barcode matches in

260 BOLD. Overall, with Saturniidae and Sphingidae included, these species represent about 16% of

261 all BINs (230/1385).

262 Comparison between the number of BINs observed in our study and the list of recognized species

263 and subspecies for Gabon, as derived from the AfroMoths online database (De Prins 2016; De

12 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 14 of 45

264 Prins and De Prins 2017), revealed the strong taxonomic deficit and the lack of exploration (i.e.

265 biodiversity surveys, collecting activities) that characterizes moth diversity in the Afrotropics.

266 Afromoths is based on the survey of 7355 published sources for the whole Afro-tropical region

267 (as of August 8th, 2017) and the authors’ own studies. It lists 1301 moth species and subspecies

268 for Gabon, belonging to 36 families. Our survey (Figure 4), limited to macro-moths collected

269 during only 11 nights at two sites, revealed 1385 BINs in just 25 families. Three families

270 (Bombycidae, , and Lecithoceridae) detected in our study lack published records for

271 Gabon in the AfroMoths database. For 10 of the 22 other families, the number of BINs recorded

272 in our study exceeded the number of known species (Table 1). Large differences were observed

273 for Cossidae (1 species in AfroMoths versus 11 BINs), Crambidae (9 vs. 52), Erebidae (309 vs.

274 369), Geometridae (184 vs. 220), LasiocampidaeDraft (68 vs. 101), Noctuidae (71 vs. 224), and

275 Pyralidae (6 vs. 70), which may represent the most understudied families or those yet

276 incompletely surveyed in the AfroMoths database.

277 In the few families that are well-studied for this region, we collected approximately half the

278 known number of species (48.2%, sd=6.9, N=4 – including Saturniidae (43 BINS vs. 110 species

279 listed in AfroMoths, 39%), Eupterotidae (15 vs. 32, 47%), Sphingidae (66 vs. 124, 53%) and

280 Lasiocampidae (101 vs. 188 as listed by P. Basquin, personal communication, 54%).

281 Species richness and diversity patterns between sampling sites

282 Our survey revealed a total of 823 BINs (1604 specimens analyzed) and 782 BINs (1890

283 specimens analyzed) in the Ipassa and Lopé 2 sites, respectively (Table 1). Sampling resulted in a

284 high proportion of singletons at both sites (64% and 59% of BINs in Ipassa and Lopé 2,

285 respectively; 57% of all BINs when combining the two sites), and the distributions of BIN

13 https://mc06.manuscriptcentral.com/genome-pubs Page 15 of 45 Genome

286 abundance are a strong fit to a log-series model (gen-2018-0063.R1Supplc). While observed

287 richness was similar between the sites, we collected fewer BINs in Lopé 2, despite collecting

288 three additional nights in this site during the dry season.

289 For comparison of the two sites, we only considered specimens collected during the wet season

290 when sampling efforts were identical. The four collecting nights at each site resulted in the

291 capture of 1604 and 1110 specimens, which belonged to 823 and 481 BINs for Ipassa and Lopé

292 2, respectively (Table 2). Richness estimators indicate that species richness ranged between 1250

293 and 1850 species at Ipassa and between 700 and 1200 species at Lopé 2. Rarefaction curves

294 clearly show a higher richness in Ipassa (Figure 5a), while sampling coverage rate was slightly

295 higher at Lopé 2 (73% versus 68% at Ipassa) (Table 2, Figures 4b and 4c). Overall, the moth

296 communities at both sites showed a similarDraft relative abundance of the different families, both in

297 terms of specimen numbers and BINs, although observed richness in the most diverse families

298 was consistently higher in Ipassa, with the exception of Crambidae and Pyralidae, which had

299 more BINs at Lopé 2 (Table 1).

300 Comparison of BINs collected during the wet season at Lopé 2 and Ipassa revealed only 158

301 BINs shared by the two sites, 13.8% of the total number analyzed. Sørensen’s index of β-

302 diversity calculated between the two sites was 0.76 for the whole dataset and 0.42 after singletons

303 were removed (Table 3). In both cases, β-diversity was mainly explained by spatial turnover

304 (71.0% and 67.6%, respectively) and to a lesser extent by nestedness (29.0% and 32.4%).

305 Seasonal changes in moth assemblages at Lopé 2

306 We generated DNA barcodes for 1110 and 780 specimens from Lopé 2 during the rainy and the

307 dry seasons, respectively. Observed richness during the wet season was slightly higher (478 BINs

14 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 16 of 45

308 versus 441 BINs during the dry season), but this trend was reversed after rarefying richness to a

309 constant sampling effort or a constant sampling coverage. Rarefaction curves and diversity

310 estimators were also quite similar, the latter ranging between 650 and 1100 for both seasons

311 (Figure 5).

312 During the dry season, we collected moths belonging to 17 families versus 21 families during the

313 wet season. Seven families were not shared between the two sampling seasons, but all were

314 represented by few BINs (maximum 2) and individuals (maximum 2), excepting one BIN in the

315 family Thyrididae for which 18 specimens were collected in the wet season. Overall, the diversity

316 for each family was similar for the two sampling periods (Table 1) with a few exceptions: the

317 Crambidae (31 vs. 16 BINs), Pyralidae (37 vs. 18), and Saturniidae (31 vs. 9), which were all

318 more diverse during the wet season, andDraft the Sphingidae (40 vs. 28) that was more diverse during

319 the dry season. Out of a total of 782 BINs, 144 (i.e. 18.5%) were found during both the rainy and

320 the dry seasons. Sørensen’s index of dissimilarity between seasons was 0.69, largely explained by

321 temporal turnover (95.4%), but it dropped to 0.23 and was evenly explained by turnover and

322 nestedness after removing singletons from the data set (Table 3).

323 Discussion

324 DNA barcodes for the study of moth diversity in the tropics

325 Overall, we documented in our study a number of molecular units (BINs) that was higher than the

326 total number of species listed for the country in AfroMoths database, including three families not

327 documented so far (De Prins and De Prins 2017). Considering the relatively shallow geographical

328 range and temporal extent of our study, this result highlights the weakness of the current

329 knowledge of moth diversity in the Afrotropics, despite the remarkable efforts by De Prins and

15 https://mc06.manuscriptcentral.com/genome-pubs Page 17 of 45 Genome

330 De Prins (2017) to synthesize and centralize this knowledge in the AfroMoths database. Our

331 results clearly highlight the value of DNA barcoding for producing a rapid and accurate census of

332 moth diversity in a poorly studied tropical region. Because this approach facilitates comparisons

333 between sampling campaigns through barcode matches (as exemplified here between sites, but it

334 can also be applied between countries as currently in progress with a similar campaign in Central

335 African Republic), its systematic implementation would represent a powerful mean to address

336 both the Linnean and Wallacean shortfalls (Lomolino 2004), i.e. the inadequacies in taxonomic

337 and distributional knowledge that characterise most invertebrate taxa in poorly studied regions

338 such as the Congo basin (Whittaker et al. 2005).

339 In our study, the large number of BINs without taxonomic assignation at species level (1155 out

340 of 1385) corresponds both to already knownDraft species not yet documented in the BOLD libraries

341 and to species that are new to science. The number and proportion of the latter remains unclear

342 and further study by expert taxonomists of the specimens collected is needed, as well as

343 continued efforts to populate DNA barcode reference libraries. In addition, the inflation of

344 species numbers in many families may reflect an incomplete census of Gabonese records in past

345 studies, a considerable task initiated in the Afromoths database, but certainly suffering from the

346 absence of recent dedicated efforts to synthesize lepidopteran diversity data for this country. The

347 bombycid Amusaron kolga (Druce, 1887) and brahmaeid Dactyloceras lucina (Drury, 1782) for

348 instance represent new records for their respective families in Gabon, but are species known to

349 occur in neighbouring countries of the Congo basin (De Prins and De Prins 2017). In

350 Lasiocampidae the number of species listed in AfroMoths (68) is identical to the number of

351 species reported from an independent literature survey by a specialist of this family on the

352 African continent (P. Basquin, personal communication). Furthermore, this same taxonomic

16 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 18 of 45

353 authority (unpublished results) has recorded approximately 188 Gabonese lasiocampid species in

354 natural history collections worldwide, which clearly demonstrates how insufficient the published

355 data are for this family at the regional scale and is consistent with the number of BINs (101)

356 reported in our study.

357 The very close fit we found between species names and BINS in the Saturniidae and Sphingidae

358 families supports previous assessments of BINs as good proxies for species in Lepidoptera where

359 empirical studies (e.g. Hausmann et al. 2013) revealed only few occurrences of discrepancies

360 between morphologically identified and molecular species (for instance one species divided in

361 two or more BINS, or multiple species merged within a single BIN; see Ratnasingham and

362 Hebert, 2013). Within the two families thoroughly investigated here, mismatches between BINs

363 and species are cases where supposedlyDraft well-defined morphological species appeared to be split

364 into two or three distinct BINs. These require further study using an integrative approach and

365 may represent cases of cryptic species, i.e. species that cannot be distinguished from

366 morphological characters, or that present subtle morphological and/or ecological traits previously

367 ascribed to intra-specific variation or thought to be insignificant for species-level recognition

368 (Janzen et al. 2009; Janzen et al. 2013; Rougerie et al. 2014). Alternatively, these BIN “splits”

369 may also cause an overestimation of species diversity if they represent cases of pseudogene

370 amplification (although this is considered unlikely here because of the absence of indels, stop

371 codons or unusual amino acid substitutions), insufficient sampling of genetic variation biasing

372 BIN assignments, or Wolbachia infections isolating lineages within species (Smith et al. 2012).

373 Geographical structure of populations in poorly mobile species could also cause strong genetic

374 structure that may inflate the number of BINs per species, but we consider this unlikely in the

375 present study because of the small geographical distance between sampled sites, the absence of

17 https://mc06.manuscriptcentral.com/genome-pubs Page 19 of 45 Genome

376 geographical barriers, and the generally high vagility of moth species. DNA barcoding has

377 revealed many cases of cryptic diversity in Lepidoptera since its broad integration in the

378 taxonomic toolbox of lepidopteran taxonomists (e.g. Vaglia et al. 2008; Rougerie et al. 2012,

379 2014) and we consider it is very likely that speciose and less studied families such as Erebidae,

380 Geometridae and Noctuidae will also reveal many such cases, leading to an increase of species

381 numbers in these groups compared to available checklists only based on morphologically

382 recognized species.

383 Moth diversity at Ivindo and Lopé National Parks

384 Among the 1385 BINs found in our samples, 796 (i.e. 58% of the total) were represented by a 385 single specimen, which is a high singletonDraft proportion compared to the average of 32% found by 386 Coddington et al. (2009) in a review of tropical arthropod studies. There are little or no biological

387 explanations for the high proportion of rare species usually found in tropical insect surveys

388 (Novotný and Basset 2000). Rather, this pattern can be attributed to undersampling of highly

389 diverse communities (Coddington et al. 2009), suggesting that caution should be taken when

390 interpreting the observed patterns of community composition and structure. It also suggests that

391 the estimates of species richness derived from our results probably represent a low estimation of

392 the actual diversity of these ecosystems. Both rarefaction curves and sampling coverage indices

393 (Figure 5, Table 2) support this idea, suggesting that at least twice the number of collected

394 species may occur in the study area.

395 We found only a few studies that assessed moth local richness in tropical rainforest or savannah

396 ecosystems and that can be readily compared with our own results. Ashton et al. (2014) sampled

397 791 to 2795 species and produced Chao1 estimates ranging from 1478 to 3666 among three

398 rainforest locations in Malaysia. In Costa Rica, Janzen et al. (2009) published a census of 2349

18 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 20 of 45

399 species using a DNA barcode-based assessment of macro-moth assemblages in the Area de

400 Conservación Guanacaste (see also Janzen and Hallwachs, 2016). On the other hand, Hawes et al.

401 (2009) reported 98 species of Arctiinae (Erebidae), 43 of Saturniidae and 5 of Sphingidae in a

402 primary forest area of Brazilian Amazonia, which is well below our findings in the present study.

403 Variations in the number of species observed among studies are however difficult to interpret,

404 because they can both reflect real differences in species diversity, but can also be biased by

405 differences in sampling efforts and/or sampling performed in different seasons. In fact, the moth

406 sampling by Ashton et al. (2014) and Hawes et al. (2009) was done through 264 and 30 collecting

407 nights per study site, respectively, while the survey of Janzen et al. (2009) was conducted over

408 decades and involved additional sampling methods (in particular, the mass rearing of

409 caterpillars). Comparing the results obtainedDraft in different studies and with different sampling

410 intensity requires standardization through rarefaction procedure (Gotelli and Colwell 2001).

411 Applying this approach to the data from Ashton et al. (2014) produces a result different from

412 what can be directly deduced from observed richness (Nakamura A., Ashton L.A., Kitching.

413 R.L., personal communication). For instance, species numbers in their Malaysian sites ranged

414 from 290 to 475 after standardization to a constant sampling effort of 1000 individuals, and

415 between 100 to 270 at a constant sampling coverage of 50%, which was lower to what we found

416 in our two study sites (Table 2). This suggests that Central African rainforests may represent an

417 important hotspot for moth diversity.

418 Variation in moth diversity and composition among study sites

419 Our analyses of moth assemblages during the rainy season in the rainforest of Ipassa and the

420 savannah/forest landscape of Lopé 2 unveiled significant differences in both species diversity and

421 composition. As expected from differences in vegetation coverage, the observed and estimated

19 https://mc06.manuscriptcentral.com/genome-pubs Page 21 of 45 Genome

422 richness were both higher in Ipassa. Plant diversity is indeed higher in the rainforest landscape of

423 Ipassa than in the shrubland savannahs and peaty marshes that dominate the landscapes of the

424 northern part of Lopé National Park (White and Abernethy 1997). In addition, despite presenting

425 a comparable structure, forests at Ipassa are more humid and present higher tree diversity when

426 compared with the gallery forests of Lopé 2. These features presumably offer a broader diversity

427 of ecological niches in terms of trophic resources and microhabitats, in particular via the

428 important diversity of epiphytes and lianas (Ben Yahmed and Pourtier 2004).

429 Difference in species assemblage composition among sites was high, with only 13.3% of BINs

430 found in both. This high β-diversity was mainly attributed to spatial turnover, meaning that

431 undersampling may only weakly account for this variation. This is in contrast with other studies

432 that reported relatively low β-diversityDraft of insect herbivores in comparable tropical rainforest

433 habitats (Basset et al. 2012; Novotny et al. 2007). This also concords with other studies having

434 reported high species turnovers among sites as long as these comprised enough variability in

435 vegetation types (Beck and Chey 2007; Ødegaard 2006). In fact, contrasted composition of

436 dominant forest tree species among our study sites may have selected for different assemblages

437 of herbivorous species, as leaf-chewing insects are usually specialized on a single genus of host

438 plants (Novotny et al. 2002a, 2002b). Similarly, the presence of herbaceous ecosystems and

439 secondary forests at Lopé 2 may have also driven the presence of specific species assemblages

440 associated with these open habitats. The high diversity of Crambidae and Pyralidae observed at

441 this site compared to Ipassa could for instance be linked to species preferences within these

442 groups for herbaceous host-plants (Kitching et al. 2000).

443 Even if additional sampling is necessary to confirm this finding, these preliminary results suggest

444 that landscapes dominated by a savannah-forest patchwork may host substantial levels of

20 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 22 of 45

445 herbivore insect diversity with a high compositional specificity at species level compared to

446 typical tropical rainforests. This argues in favor of a better consideration of savannah ecosystems

447 in both global estimates and conservation strategies of insect biodiversity.

448 Seasonal variation of moth assemblages

449 At Lopé 2 we found little difference in species richness of moth assemblages collected during the

450 rainy and the dry seasons. In contrast, BINs compositions clearly differed from one season to the

451 other, with only 18.3% of the BINs collected being observed in both seasons, and this temporal

452 β-diversity being clearly explained by seasonal turnover rather than by nestedness (Table 3).

453 Composition may simply be influenced by the level of vegetation development during the 454 seasonal cycle, which is well known toDraft influence the phenology of lepidopteran species, or by 455 different climatic preferences linked to the feeding and/or reproductive activity of the moths.

456 From a methodological point of view, these results highlight the importance of standardizing the

457 period of sampling to provide fully comparable results among different localities. They also

458 suggest the need of sampling different seasons to obtain a reliable inventory of species at a given

459 study site, as the assemblages observed at the rainy season (the usually preferred period for moth

460 collecting) clearly do not provide a representative overview of the actual species composition of

461 the focal community.

462 Conclusion

463 Our study highlights the usefulness of utilizing DNA barcodes for performing rapid analyses of

464 taxonomic diversity and composition of moth assemblages in poorly studied areas. It also stresses

465 the need to accelerate biodiversity inventories in those areas that have been insufficiently

466 explored regarding moths and other poorly studied invertebrates. Central Africa clearly is one of

21 https://mc06.manuscriptcentral.com/genome-pubs Page 23 of 45 Genome

467 those areas and our results represent the first robust assessment of moth diversity in Gabonese

468 forests and savannahs, highlighting a strongly understudied fauna. The material collected and the

469 DNA barcode library released with this study are thus important contributions and we expect that

470 they will serve the development of knowledge on the diversity and distribution of African moths.

471 In general, studies combining molecular data and traditional taxonomic expertise are critically

472 needed to better document invertebrate communities in tropical areas, especially in the regions

473 where anthropogenic pressures are high and where species extinctions remain unaccounted for

474 because species simply remain undocumented.

475 Acknowledgements 476 Fieldwork was supported by grants fromDraft the University of Rouen, SCALE Research Federation, 477 French Embassy at Libreville (“Service de Coopération et d’Action Culturelle”) and IRD

478 (“Action Thématique Structurante” call). Logistical support was provided by ANPN, the National

479 Agency for National Parks (Libreville, Gabon), WCS (Libreville, Gabon) and CEDAMM

480 (National Park, Lopé, Gabon), Research Station on Gorilla and Chimpanzee (SEGC, Gabon), as

481 well as “Agence des Universités Francophones” and the numerical campus of Libreville.

482 Sequencing costs were covered by grants to PDNH from Genome Canada and from the Ontario

483 Ministry of Research, Innovation and Science. Patrick Basquin (for Lasiocampidae) and Ugo

484 Dall Asta (for Lymantriinae) provided taxonomic assistance. We also thank the institutions that

485 made this project possible: CENAREST for research authorizations, IRET and IRAF (Libreville,

486 Gabon), Science University of Masuku (Franceville, Gabon (Libreville, Gabon), CIRMF

487 (Franceville, Gabon), University O. Bongo (Libreville, Gabon), and University of Douala

488 (Cameroun).

22 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 24 of 45

489 The ECOTROP team is a multidisciplinary and international consortium of university teachers

490 and researchers working together at organizing field classes in the domain of environmental and

491 ecological research in the tropics. From 2011 to 2014, they coordinated four successive editions

492 of a training course in biodiversity assessment in the North of the Lope National Park in Gabon,

493 producing some of the results included in this paper. The following table gives the list of the

494 members not already listed as authors on the manuscript:

Names Contact Emilie Arlette APINDA CENAREST, IRET, Libreville, Gabon. Email: LEGNOUO [email protected] Diego AYALA MIVEGEC, IRD, CRMF, Franceville, Gabon. Email: [email protected] Marlucia BONIFACIO Museu Paraense Emilio Goeldi, Belem, Para, Brazil. MARTINS Email:Draft [email protected] Laurent BREMOND ISEM, Université de Montpellier, EPHE, IRD, CNRS, Montpellier, France. Email: [email protected] Barabara EVRARD Normandie Univ, UNIROUEN, UNICAEN, CETAPS 76000 Rouen, France. Email: barbara.evrard@univ- rouen.fr Damien FEMENIAS Normandie Univ, UNIROUEN, UNICAEN, CETAPS 76000 Rouen, France. Email: Damien.Femenias@univ- rouen.fr Flore KOUMBA PAMBO CENAREST, IRAF, Libreville, Gabon. Email: [email protected] Boris MAKANGA CENAREST, IRET, Libreville, Gabon. Email: [email protected] Mike MAKAYA MVOUBOU Université des Sciences et Techniques de Masuku, Franceville, Gabon. Email: [email protected] Elise MAZEYRAC WCS-Gabon, La Lopé, Gabon. Email: [email protected] Judicaël OBAME NKOGHE CIRMF, Franceville, Gabon. Email: [email protected] Marjolaine OKANGA-GUAY LAGRAC, Université Omar Bongo, Libreville, Gabon. Email: [email protected]

23 https://mc06.manuscriptcentral.com/genome-pubs Page 25 of 45 Genome

Didier OREVOUNO Ecole Nationale des Eaux et Forêts, Libreville, Gabon. Email: [email protected] Johan OSZWALD LETG, CNRS, Université Rennes 2, Rennes, France. Email: [email protected] Christophe PAUPY MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France. Email: [email protected] Olivia SCHOLTZ WCS-Gabon, Libreville, Gabon. Email: [email protected] Maurice TINDO Université de Douala, Cameroun. Email: [email protected] Michel VEUILLE ISYEB, CNRS, MNHN, UPMC, EPHE, Paris, France. Email: [email protected] 495

496 References

497 Achart, F., Beuchle, R., Mayaux, P., Stibig,Draft H.J., Bodart, C., Brink, A., Carboni, S., Desclee, B., 498 Donnay, F., Eva, H.D, Lupi, A., Rasi, R., Seliger, R., and Simonetti, D. 2014.

499 Determination of tropical deforestation rates and related carbon losses from 1990 to 2010.

500 Glob. Change Biol. 20: 2540-2554.

501 Ashton, L., Barlow, H.S., Nakamura, A., and Kitching, R.L. 2014. Diversity in tropical

502 ecosystems: the species richness and turnover of moths in Malaysian rainforests. Insect.

503 Conserv. Divers. 8(2): 132–142.

504 Axmacher, J.C., Holtmann, G., Scheuermann, L., Brehm, G., Müller-Hohenstein, K., and Fiedler,

505 K. 2004a. Diversity of geometrid moths (Lepidoptera: Geometridae) along an

506 Afrotropical elevational rainforest transect. Divers. Distrib. 10: 293-302.

507 Axmacher, J.C., Tünte, H., Schrumpf, M., Müller-Hohenstein, K., Lyaruu, H.V.M., and Fiedler,

508 K. 2004b. Diverging diversity patterns of vascular plants and geometrid moths during

509 forest regeneration on Mt Kilimanjaro, Tanzania. J. Biogeogr. 31: 895–904.

24 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 26 of 45

510 Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob.

511 Ecol. Biogeogr. 19: 134-143.

512 Basset, Y., Cizek, L., Cuenoud, P., Didham, R.K., Guilhaumon, F., Missa, O., Novotny, V.,

513 Odegaard, F., Roslin, T., Schmidl, J., Tishechkin, A.K., Winchester, N.N., Roubik, D.W.,

514 Aberlenc, H.P., Bail, J., Barrios, H., Bridle, J.R., Castano-Meneses, G., Corbara, B.,

515 Curletti, G., da Rocha, W.D., de Bakker, D., Delabie, J.H.C., Dejean, A., Fagan, L.L.,

516 Floren, A., Kitching, R.L., Medianero, E., Miller, S.E., de Oliveira, E.G., Orivel, J.,

517 Pollet, M., Rapp, M., Ribeiro, S.P., Roisin, Y., Schmidt, J.B., Sorensen, L., and Leponce,

518 M. 2012. Arthropod Diversity in a Tropical Forest. Science 338(6113): 1481-1484. doi:

519 10.1126/science.1226727. Draft 520 Basset, Y., Mavoungou, J.F., Mikissa, J.B., Missa, O., Miller, S.E., Kitching, R.L., and Alonso,

521 A. 2004. Discriminatory power of different arthropod data sets for the biological

522 monitoring of anthropogenic disturbance in tropical forests. Biodivers. Conserv. 13: 709-

523 732.

524 Basset, Y., Missa, O., Alonso, A., Miller, S.E., Curletti, G., De Meyer, M., Eardley, C., Lewis,

525 O.T., Mansell, M.W., Novotny, V., and Wagner, T. 2008. Changes in arthropod

526 assemblages along a wide gradient of disturbance in Gabon. Conserv. Biol. 22: 1552-

527 1563.

528 Beck, J., Ballesteros-Mejia, L., Nagel, P., and Kitching, I.J. 2013. Online solutions and the

529 “Wallacean shortfall”: what does GBIF contribute to our knowledge of species’ ranges?

530 Divers. Distrib. 19: 1043-1050.

25 https://mc06.manuscriptcentral.com/genome-pubs Page 27 of 45 Genome

531 Beck, J., and Chey, V.K.J. 2007. Beta-diversity of geometrid moths from northern Borneo:

532 effects of habitat, time and space. J. Anim. Ecol. 76: 230-237.

533 Ben Yahmed, D., and Pourtier, R. 2004. Atlas du Gabon. Editions J.A., Paris, France.

534 Boussienguet, J., Neuenschwander, P., and Herren, H.R. 1991. Essais de lutte biologique contre

535 la Cochenille du manioc au Gabon: I. — Établissement, dispersion du parasite exotique

536 Epidinocarsis lopezi [Hym.: Encyrtidae] et déplacement compétitif des parasites

537 indigènes. Entomophaga 36: 455-469.

538 Coddington, J.A., Agnarsson, I., Miller, J.A., Kuntner, M., and Hormiga, G. 2009.

539 Undersampling bias: the null hypothesis for singleton species in tropical arthropod 540 surveys. J. Anim. Ecol. 78: 573-584.Draft 541 De Prins J, De Prins W (2017) Afromoths, online database of Afrotropical moth species

542 (Lepidoptera). World Wide Web electronic publication (www.afromoths.net) [accessed

543 on Aug. 8th, 2017]

544 Diniz-Filho, J.A.F., de Marco Jr, P., and Hawkins, B.A. 2010. Defying the curse of ignorance:

545 perspectives in insect macroecology and conservation biogeography. Insect. Conserv.

546 Divers. 3: 172-179.

547 Doumenge, C., Issembé, Y., Mertens, B., and Trébuchon, J.-F. 2004. Amélioration de la

548 connaissance et de la cartographie des formations végétales du parc national de l’Ivindo

549 (Gabon). Rapport de mission d’expertise CIFOR/IRET-CENAREST/CIRAD.

550 Ehrlich, P.R., and Raven, P.H. 1964. Butterflies and plants - A study in coevolution. Evolution

551 18(4): 586-608.

26 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 28 of 45

552 Erwin, T.L. 1983. Tropical forest canopies: the last biotic frontier. Bull. Ecol. Soc. Am. 29: 14-

553 20.

554 Fonseca, C.R. 2009. The silent mass extinction of insect herbivores in biodiversity hotspots.

555 Conserv. Biol. 23(6): 1507-1515.

556 Godfray, H.C.J. 2006. To boldly sequence. Trends Ecol. Evol. 21: 603–604.

557 Gotelli, N.J., and Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the

558 measurement and comparison of species richness. Ecol. Lett. 4(4): 379-391. doi:

559 10.1046/j.1461-0248.2001.00230.x.

560 Hajibabaei, M., deWaard, J.R., Ivanova, N.V., Ratnasingham, S., Dooh, R.T., Kirk, S.L., Mackie, 561 P.M., and Hebert, P.D.N. 2005.Draft Critical factors for assembling a high volume of DNA 562 barcodes. Philos. Trans. R. Soc. B-Biol. Sci. 360: 1959-1967.

563 Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., and Hebert, P.D.N. 2006. DNA

564 barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. U. S. A. 103:

565 968-971.

566 Hausmann, A., Godfray, H.C.J., Huemer, P., Mutanen, M., Rougerie, R., van Nieukerken, E.J.,

567 Ratnasingham, S., and Hebert, P.D.N. 2013. Genetic patterns in European geometrid

568 moths revealed by the barcode index number (BIN) system. PLoS ONE 8: e84518.

569 Hawes, J., Motta, C.d.S., Overal, W.L., Barlow, J., Gardner, T.A., and Peres, C.A. 2009.

570 Diversity and composition of Amazonian moths in primary, secondary and plantation

571 forests. J. Trop. Ecol. 25: 281-300. doi: 10.1017/s0266467409006038.

572 Hebert, P.D.N., Cywinska, A., Ball, S.L., and deWaard, J.R. 2003a. Biological identifications

573 through DNA barcodes. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 270: 313-321.

27 https://mc06.manuscriptcentral.com/genome-pubs Page 29 of 45 Genome

574 Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., and Hallwachs, W. 2004. Ten species in

575 one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes

576 fulgerator. Proc. Natl. Acad. Sci. U. S. A. 101: 14812–14817.

577 Hebert, P.D.N., Ratnasingham, S., and deWaard, J.R. 2003b. Barcoding life: cytochrome

578 c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. Ser.

579 B-Biol. Sci. 270: S96–S99.

580 Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., and Francis, C.M. 2004. Identification of birds

581 through DNA barcodes. PLoS Biol. 2: e312.

582 Hsieh, T.C., Ma, K.H., and Chao, A. 2014. iNEXT: An R package for interpolation and 583 extrapolation in measuring speciesDraft diversity. 584 Ivanova, N.V., deWaard, J.R., and Hebert, P.D.N. 2006. An inexpensive, automation-friendly

585 protocol for recovering high-quality DNA. Mol. Ecol. Notes 6: 998–1002.

586 Janzen, D.H., Hallwachs, W., Blandin, P., Burns, J.M., Cadiou, J.-M., Chacon, I., Dapkey, T.,

587 Deans, A.R., Epstein, M.E., Espinoza, B., Franclemont, J.G., Haber, W.A., Hajibabaei,

588 M., Hall, J.P.W., Hebert, P.D.N., Gauld, I.D., Harvey, D.J., Hausmann, A., Kitching, I.J.,

589 Lafontaine, D., Landry, J.-F., Lemaire, C., Miller, J.Y., Miller, J.S., Miller, L., Miller,

590 S.E., Montero, J., Munroe, E., Green, S.R., Ratnasingham, S., Rawlins, J.E., Robbins,

591 R.K., Rodriguez, J.J., Rougerie, R., Sharkey, M.J., Smith, M.A., Solis, M.A., Sullivan,

592 J.B., Thiaucourt, P., Wahl, D.B., Weller, S.J., Whitfield, J.B., Willmott, K.R., Wood,

593 D.M., Woodley, N.E., and Wilson, J.J. 2009. Integration of DNA barcoding into an

594 ongoing inventory of complex tropical biodiversity. Mol. Ecol. Resour. 9: 1–26.

28 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 30 of 45

595 Janzen, D.H., Hallwachs, W., Harvey, D., K., D., Rougerie, R., Hajibabaei, M., Smith, M.A.,

596 Chacon, I., Espinoza, B., Sullivan, B., Decaëns, T., Herbin, D., Chavarria, L.F., Franco,

597 R., Cambronero, H., Rios, S., Quesada, F., Pereira, G., Vargas, J., Guadamuz, A.,

598 Espinoza, R., Hernandez, J., Rios, L., Cantillano, E., Moraga, R., Moraga, C., Rios, P.,

599 Rios, M., Calero, R., Martinez, D., Briceño, D., Carmona, M., Apu, E., Aragon, K.,

600 Umaña, C., Perez, J., Cordoba, A., Umaña, P., Sihezar, G., Espinoza, O., Cano, C., Araya,

601 E., Garcia, D., Ramirez, H., Pereira, M., Cortez, J., Pereira, M., and Hebert, P.D.N. 2013.

602 What happens to the traditional taxonomy when a well-known tropical saturniid moth

603 fauna is DNA barcoded? Invertebr. Syst. 26: 478–505.

604 Kekkonen, M., and Hebert, P.D.N. 2014. DNA barcode-based delineation of putative species:

605 efficient start for taxonomic workflows.Draft Mol. Ecol. Resour. 4(4): 706-715.

606 Kier, G., Mutke, J., Dinerstein, E., Ricketts, T.H., Küper, W., Kreft, H., and Barthlott, W. 2005.

607 Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32: 1107–1116.

608 Kitching, R.l., Orr, A.G., Thalib, L., Mitchell, H., Hopkins, M.S., and Graham, A.W. 2000. Moth

609 assemblages as indicators of environmental quality in remnants of upland Australian rain

610 forest. J. Appl. Ecol. 37: 284-297.

611 Lamarre, G., Mendoza, I., Rougerie, R., Decaëns, T., Hérault, B., and Bénéluz, F. 2015. Stay out

612 (almost) all night: contrasting responses in flight activity among tropical moth

613 assemblages. Neotrop. Entomol. 44: 109-115.

614 Lamarre, G.P.A., Decaëns, T., Rougerie, R., Barbut, J., deWaard, J.R., Hebert, P.D.N., Herbin,

615 D., Laguerre, M., Thiaucourt, P., and Martins Bonifacio, M. 2016. An integrative

29 https://mc06.manuscriptcentral.com/genome-pubs Page 31 of 45 Genome

616 taxonomy approach unveils unknown and threatened moth species in Amazonian

617 rainforest fragments. Insect. Conserv. Divers. 9(5): 475-479. doi: 10.1111/icad.12187.

618 Lees, D.C., Kahawara, A.Y., Rougerie, R., Kawakita, A., Bouteleux, O., De Prins, J., and Lopez-

619 Vaamonde, C. 2013. DNA barcoding reveals a largely unknown fauna of Gracillariidae

620 leaf-mining moths in the Neotropics. Mol. Ecol. Resour. 14(2): 286–296.

621 Lomolino, M.V. 2004. Conservation biogeography. In Frontiers of biogeography: new directions

622 in the geography of nature. Edited by M.V. Lomolino and L.R. Heaney. Sinauer

623 Associates, Sunderland, Massachusetts. pp. 293–296.

624 Maes, J.-M., and Pauly, A. 1998. Lucanidae (Coleoptera) du Gabon. Bull. Ann. Soc. R. Belge 625 Entomolog. 134: 279-285. Draft 626 May, R.M. 2011. Why worry about how many species and their loss? PLoS Biol. 9(8): e1001130.

627 Miller, S.E., and Rogo, L. 2002. Challenges and opportunities in understanding and utilisation of

628 African insect diversity. Cimbebesia 17: 197-218.

629 Mittermeier, R.A., Myers, N., Thomsen, J.B., Da Fonseca, G.A.B., and Olivieri, S. 1998.

630 Biodiversity hotspots and major tropical wilderness areas: approaches to setting

631 conservation priorities. Conserv. Biol. 12: 516-520.

632 Myers, N. 1984. The primary source: tropical forests and our future. W.W. Norton, New York.

633 Myers, N. 1990. The biodiversity challenge: expanded hot-spots analysis. Environmentalist 10:

634 243-256.

635 Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., and Kent, J. 2000.

636 Biodiversity hotspots for conservation priorities. Nature 403: 853-858.

30 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 32 of 45

637 Nicolas, P. 1977. Contribution à l’étude phytogéographique de la forêt du Gabon. Université de

638 Paris I.

639 Novotný, V., and Basset, Y. 2000. Rare species in communities of tropical insect herbivores:

640 pondering the mystery of singletons. Oikos 89: 564-572.

641 Novotny, V., Basset, Y., Miller, S.E., Drozd, P., and Cizek, L. 2002a. Host specialization of leaf-

642 chewing insects in a New Guinea rainforest. J. Anim. Ecol. 71: 400-412.

643 Novotny, V., Basset, Y., Miller, S.E., Weiblen, G.D., Bremer, B., Cizek, L., and Drozd, P. 2002b.

644 Low host specificity of herbivorous insects in a tropical forest. Nature 416(6883): 841-

645 844. doi: 10.1038/416841a.

646 Novotny, V., Miller, S.E., Hulcr, J., Drew,Draft R.A.I., Basset, Y., Janda, M., Setliff, G.P., Darrow, 647 K., Stewart, A.J.A., Auga, J., Isua, B., Molem, K., Manumbor, M., Tamtiai, E., Mogia,

648 M., and Weiblen, G.D. 2007. Low beta diversity of herbivorous insects in tropical forests.

649 Nature 448: 692-697.

650 Ødegaard, F. 2006. Host specificity, alpha- and beta-diversity of phytophagous beetles in two

651 tropical forests in Panama. Biodivers. Conserv. 15: 83-105.

652 Oksanen, J., Blanchet, F.G., Kindt, R., Oksanen, M.J., and Suggests, M. 2013. Package “vegan.”

653 Community ecology package. R package version 2.0-10.

654 Pauly, A. 1998. Hymenoptera Apoidea from Gabon. Ann Mus. R. Afr. Cent. Sci. Zool. 282: 1–

655 121.

656 Qian, H., Ricklefs, R.E., and White, P.S. 2005. Beta diversity of angiosperms in temperate floras

657 of eastern Asia and eastern North America. Ecol. Lett. 8: 15-22.

31 https://mc06.manuscriptcentral.com/genome-pubs Page 33 of 45 Genome

658 R Development Core Team. 2004. R: a language and environment for statistical computing. R

659 Foundation for Statistical Computing, Vienna, Austria.

660 Ratnasingham, S., and Hebert, P.D.N. 2007. BOLD: The Barcode of Life Data System

661 (http://www.barcodinglife.org). Mol. Ecol. Notes 7: 355-364.

662 Ratnasingham, S., and Hebert, P.D.N. 2013. A DNA-based registry for all animal species: the

663 barcode index number (BIN) system. PLoS ONE 8: e66213.

664 Ricketts, T.H., Daily, G.C., Ehrlich, P.R., and Fay, J.P. 2001. Countryside biogeography of

665 moths in a fragmented landscape: biodiversity in native and agricultural habitats. Conserv.

666 Biol. 15: 378-388.

667 Rougerie, R., Kitching, I.J., Haxaire, J.,Draft Miller, S.E., Hausmann, A., and Hebert, P.D.N. 2014. 668 Australian Sphingidae – DNA Barcodes challenge current species boundaries and

669 distributions. PLoS ONE 9(7): e101108.

670 Roy, R. 1973. Premier inventaire des mantes du Gabon. Biol. Gab. 8: 235–290.

671 Stork, N.E., and Habel, J.C. 2013. Can biodiversity hotspots protect more than tropical forest

672 plants and vertebrates? J. Biogeogr. 41: 421-428.

673 Ulrich, W., Almeida-Neto, M., and Gotelli, N.J. 2009. A consumer’s guide to nestedness

674 analysis. Oikos 118: 3-17.

675 Vande Weghe, J.P. 2010. Papillons du Gabon. Wildlife Conservation Society, Libreville.

676 White, F. 1983. The vegetation of Africa: a descriptive memoir to accompany the

677 Unesco/AETFAT/UNSO vegetation map of Africa. Unesco/AETFAT/UNSO. pp. 356.

32 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 34 of 45

678 White, L.J.T., and Abernethy, K.A. 1997. A guide to the vegetation of the Lopé Reserve, Gabon.

679 Wildlife Conservation Society, New York.

680 Whittaker, R.J., Araújo, M.B., Jepson, P., Ladle, R.J., Watson, J.E.M., and Willis, K.J. 2005a.

681 Conservation biogeography: assessment and prospect. Divers. Distrib. 11: 3–23.

682 Whittaker, R.J., Araujo, M.B., Paul, J., Ladle, R.J., Watson, J.E.M., and Willis, K.J. 2005.

683 Conservation Biogeography: assessment and prospect. Divers. Distrib. 11(1): 3-23. doi:

684 10.1111/j.1366-9516.2005.00143.x.

685 Wilson, E.O. 1988. Biodiversity. National Academies of Sciences, Washington DC.

686 Wilson, E.O. 2002. The future of life. Vintage Books, New York.

687 Wilson, E.O. 2003. The encyclopedia ofDraft life. Trends Ecol. Evol. 18: 77-80.

688 Wright, D.H., and Reeves, J.H. 1992. On the meaning and measurement of nestedness of species

689 assemblages. Oecologia 92: 416-428.

690 Zenker, M.M., Rougerie, R., Teston, J.A., Laguerre, M., Pie, M.R., and Freitas, A.V.L. 2016.

691 Fast Census of Moth Diversity in the Neotropics: A Comparison of Field-Assigned

692 Morphospecies and DNA Barcoding in Tiger Moths. PloS ONE 11(2): e0148423. doi:

693 10.1371/journal.pone.0148423.

694 Zhang, Z.-Q. 2011. Animal biodiversity: an introduction of higher-level classification and survey

695 of taxonomic richness. Zootaxa 3148 : 7-12.

33 https://mc06.manuscriptcentral.com/genome-pubs Page 35 of 45 Genome

696 Figure Captions

697 Figure 1. Location of the study sites; Dark grey areas on the upper right map represent National

698 Parks in Gabon. The Ipassa site is located near Ivindo.

699 Figure 2. Photos of the two study sites and sampling methods: A) View of the savannah-forest

700 patchwork in Lopé National Park, showing the position of the light trap (Lopé 2, November

701 2009); B) Rainforests at Ipassa research station at the edge of the Ivindo river (November 2009);

702 C) Light trapping at Lopé 2 in March 2011; D) Tissue sampling for DNA barcoding during the

703 ECOTROP field class in March 2011.

704 Figure 3. Diversity and composition of the macro-moth sample at the two locations (Lopé 2 and 705 Ipassa): the circular phylogram representsDraft the results of a Neighbor Joining analysis in BOLD of 706 3,494 COI sequences clustering into 1,385 BINs; barcodes obtained for specimens from Ipassa

707 are in green while those from Lopé 2 are in grey. The pie chart represents the relative

708 contribution (ordered) of the different families and sub-families (for Erebidae) of moths collected

709 in the two sites; numbers within brackets indicate the number of BINs and number of specimens

710 sampled, respectively.

711 Figure 4. Comparisons between the numbers of BINs observed in this study for 28 families and

712 sub-families of macro-moths (dashed bars) and the numbers reported from Gabon in the

713 AfroMoths online database (grey bars; De Prins and De Prins 2017).

714 Figure 5. Individual-, sample-, and coverage-based rarefaction and extrapolation curves for the

715 two study sites and for two seasons at Lopé 2 (DS: dry season, WS: wet season): A) Size-based

716 rarefaction/extrapolation curves; B) Sample coverage plotted against the number of individuals;

717 C) Coverage-based rarefaction/extrapolation (rarefaction curves are represented in solid lines,

34 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 36 of 45

718 extrapolation curves in dashed lines; shaded areas represent a 95% confidence intervals based on

719 a bootstrap method with 200 replications).

Draft

35 https://mc06.manuscriptcentral.com/genome-pubs Page 37 of 45 Genome

720 Tables

721 Table 1. Number of individuals and number of BINs collected for different families/sub-families

722 of macro-moths at the two study sites and for two seasons at Lopé 2, and number of species listed

723 in the AfroMoths online database (grey bars; De Prins and De Prins 2017) for the same

724 families/sub-families (WS= wet season; DS= dry season).

Ipassa (WS) Lopé (WS) Lopé (DS) Lopé Total

# ind # BINs # ind # BINs # ind # BINs # ind # BINs # ind # BINs

Bombycidae 2 2 2 2

Brahmaeidae 2 1 2 1 2 1 4 1

Cossidae 6 5 5 4 8 4 13 8 19 11

Crambidae 17 14 73 31 19 16 92 43 109 52

Drepanidae 6 4 Draft 1 1 1 1 7 5

Erebidae (Arctiinae) 198 71 131 41 75 37 206 65 404 113

Erebidae (Erebinae) 75 38 71 24 47 34 118 46 193 72

Erebidae

(Lymantriinae) 220 103 47 32 79 54 126 73 346 164

Other Erebidae 61 33 102 18 22 18 124 32 185 60

Eriocottidae 2 2 2 2 2 2

Eupterotidae 13 10 22 3 5 3 27 5 40 15

Euteliidae 1 1 4 2 5 2 5 2

Geometridae 293 153 130 63 117 62 247 107 540 220

Lasiocampidae 88 55 80 42 74 36 154 61 242 101

Lecithoceridae 1 1 2 1 3 2 3 2

Limacodidae 31 15 20 14 8 7 28 18 59 30

Noctuidae 199 125 103 66 95 69 198 124 397 224

Nolidae 2 2 2 2 2 2

Notodontidae 155 77 72 31 45 27 117 49 272 104

Psychidae 1 1 2 2 6 4 8 4 9 5

36 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 38 of 45

Pyralidae 65 29 82 37 25 18 107 49 172 70

Saturniidae 62 32 79 31 36 9 115 33 177 43

Sphingidae 98 44 58 28 111 40 169 47 267 66

Thyrididae 4 4 18 1 18 1 22 5

Tineidae 2 1 2 1 2 1

Tortricidae 5 4 1 1 1 1 6 5

Uraniidae 1 1 1 1 1 1

Zygaenidae 1 1 0 1 1

Not identified 2 2 4 4 4 4 6 6

Total 1604 823 1110 481 780 443 1890 782 3494 1385

725

Draft

37 https://mc06.manuscriptcentral.com/genome-pubs Page 39 of 45 Genome

727 Table 2. Summary of macro-moth data sets collected at the two study sites and for two seasons in

728 Lopé 2 (numbers in parentheses represent the 95% confidence intervals based on a bootstrap

729 method with 200 replications).

Ipassa (WS) Lopé (WS) Lopé (DS) Lopé

Number of indiduals collected 1604 1110 780 1890

Observed richness 823 481 443 782

Proportion of singletons (%) 63.85 63.61 64.93 59.31

Sampling coverage (%) 67.32 (± 2.95) 72.44 (± 2.27) 63.14 (± 3.02) 75.54 (± 1.77)

Richness at constant sampling coverage of 50% 469.2 (± 13.8) 197.6 (± 7.0) 313.7 (± 12.9) 330.4 (± 7.6)

Richness at constant sampling intensity of 1000 indiv. 599.1 (± 8.9) 449.9 (± 4.4) 511.4 (± 25.6) 521.5 (± 9.5)

Chao1 estimated richness 1837.0 (± 130.6) 1011.6 (± 107.9) 869.5 (± 70.9) 1513.4 (± 96.5)

ACE estimated richness 1849.4 (± 27.6) 1120.6 (± 20.7) 1054.4 (± 22.9) 1629.5 (± 26.2)

First order jackniffe estimated richness Draft1269.2 (± 286.2) 728.5 (± 169.7) 663.7 (± 166.9) 1211.4 (± 197.0)

Fisher alpha 678.3 (± 36.5) 318.2 (± 21.0) 419.3 (± 32.3) 491.5 (± 25.0)

730

38 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 40 of 45

732 Table 3. Comparison of macro-moth species assemblages between the two study sites and for

733 two seasons in Lopé 2 showing the Sørensen index of dissimilitude (with singletons removed or

734 not from the dataset) and its partitioning into geographical/seasonal turnover and nestedness.

Sørensen Turnover (%) Nestedness (%)

Ipassa vs Lopé 2 0.75 70.97 29.03

Same without singletons 0.40 67.57 32.43

Wet vs dry season (Lopé 2) 0.69 95.39 4.61

Same without singletons 0.23 54.76 45.24

735

Draft

39 https://mc06.manuscriptcentral.com/genome-pubs Page 41 of 45 Genome

736 Captions for Supplementary materials

737 gen-2018-0063.R1Suppla. Neighbour Joining (NJ) tree based on K2P distances for the

738 Sphingidae and Saturniidae moths collected in Ipassa (terminals labelled as ‘makokou’ in the

739 tree) and Lopé 2 (labelled as ‘La Lope’). The tree was produced with records in BOLD dataset

740 DS-LOPELEP1 using BOLD-alignment and default settings.

741 gen-2018-0063.R1Supplb. Images of specimens in NJ tree of gen-2018-0063.R1Suppla;

742 numbers of images correspond to numbers of terminals in gen-2018-0063.R1Suppla tree.

743 gen-2018-0063.R1Supplc. Rank-abundance diagrams for Ipassa (left panels) and Lopé 2 (right

744 panels): (A) and (C) represent Fisher's logseries functions fitted on abundance data; (B) and (D) 745 represent Preston's lognormal (red lines)Draft and truncated lognormal (blue lines) models.

40 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 42 of 45

Draft

https://mc06.manuscriptcentral.com/genome-pubs Page 43 of 45 Genome A B

Draft

C D

https://mc06.manuscriptcentral.com/genome-pubs Genome Page 44 of 45

Ogo Og Og Ogo Ogo OgoOg Ogo Og OgoOgoOgo OgoOgoOgo Og OgoOg Og OgoOgo OgoOgoOg OgoOgoOgo OgoOgoOgo OgoOgoOgo OgoOgoOg OgoOgoOgo OgoOgoOgo OgoOgoOgo OgoOgoOg OgoOgoOgo OgoOgoOgo OgoOgo o o OgoOgo a pudens|TDGAB−1908 o o OgoOgoOg OgoOgo o o OgoOg o OgoOgoOgo o OgoOgo via pudens|TDGAB−1938 Ogo via pudens|TDGAB−2020via pudens|TDGAB−2155via pudens|Lope11−0915via pudens|Lope11−0919 via pudens|TDGAB−1901vi via pudens|TDGAB−1925via pudens|Lope11−0593 o via pudens|TDGAB−1734via pudens|TDGAB−1818via pudens|TDGAB−1878 via pudens|TDGAB−1713via pudens|TDGAB−1714via pudens|TDGAB−1732 via viapudens|TDGAB−1640 pudens|TDGAB−1687via pudens|TDGAB−1704 via viapudens|TDGAB−1517 viapudens|TDGAB−1610 pudens|TDGAB−1636 via viapudens|TDGAB−1417 viapudens|TDGAB−1471 viapudens|TDGAB−1476 pudens|TDGAB−1508 o via viapudens|TDGAB−1378via pudens|TDGAB−1389 pudens|TDGAB−1396 viavia pudens|TDGAB−1346 pudens|TDGAB−1361 E E Erebinae|TDGAB−1947 via pudens|TDGAB−1250 Erebinae|TDGAB−0882Erebinae|TDGAB−0812Erebinae|TDGAB−0808 Erebinae|Lope11−0100 Erebinae|Lope11−0932 Erebinae|TDGAB−1661Erebinae|TDGAB−1516Erebinae|TDGAB−1388 via pudens|TDGAB−1047 Erebinae|TDGAB−1533 viavia pudens|TDGAB−0911 pudens|TDGAB−0959 Erebinae|TDGAB−1244Erebinae|TDGAB−0806Erebinae|TDGAB−0941Erebinae|TDGAB−1212 via pudens|TDGAB−0902 Erebinae|TDGAB−0140Erebinae|TDGAB−1419 via pudens|TDGAB−0895 Erebinae|TDGAB−1924 Erebinae|Lope11−0592 via pudens|TDGAB−0834 Erebinae|TDGAB−1891Erebinae|TDGAB−1344Erebinae|TDGAB−1745Erebinae|Lope11−0874 viavia pudens|TDGAB−0575 pudens|TDGAB−0772 Erebinae|TDGAB−1248Erebinae|TDGAB−1363Erebinae|Lope11−0873 viavia pudens|TDGAB−0125 pudens|TDGAB−0520 Erebinae|TDGAB−1897Erebinae|TDGAB−0835Erebinae|Lope11−0440 o viavia pudens|TDGAB−0033via pudens|TDGAB−0048 pudens|TDGAB−0057 viavia pudens|TDGAB−0053via pudens|TDGAB−1318 pudens|TDGAB−1580 o 4580− via pudens|TDGAB−1394 738 289 93 3880− 8 4 via pudens|TDGAB−1515 2380− 435 2490− 9 3400− 6580− via pudens|TDGAB−1586 6850− 555 99 8 via pudens|TDGAB−1633 6780− 6 0060− 742 1 viavia pudens|TDGAB−1703 pudens|TDGAB−1803 rE 3090− viavia pudens|TDGAB−1168via pudens|TDGAB−0909 pudens|TDGAB−1691 rE viavia pudens|TDGAB−1898via pudens|TDGAB−1486 pudens|TDGAB−1373 viavia pudens|TDGAB−0035via pudens|TDGAB−1255 pudens|TDGAB−1648 via pudens|TDGAB−1128 erEerE via pudens|TDGAB−1559 5 e 320− via pudens|TDGAB−1558 790− via pudens|TDGAB−1319 Ogo 1 viavia pudens|TDGAB−1723 pudens|TDGAB−1032 Ogo Ogo 5 002− viavia pudens|TDGAB−0914via pudens|TDGAB−1557 pudens|TDGAB−1830 Mocis con 7202−

ber berEbeb Ericeia inangulata|Lope11−0938 b 1 1 Ericeia inangulata|TDGAB−0892 80 5 1

i iberE1 1 2− 0− 1 iberE 1 1 Erebinae|Lope11−0917 0− 1 Erebinae|TDGABb−342Erebinae|TDGAB−0900Erebinae|TDGAB−1989Erebinae|Lope11−0162Erebinae|Lope11−0591 niberEniberE Erebinae|TDGAB−1913 n Erebinae|TDGAB−1390Erebinae|TDGAB−1355Erebinae|TDGAB−1755 Erebinae|TDGAB−1912 − − − Erebinae|TDGAB−0764 − − − Erebinae|TDGAB−2364Erebinae|TDGAB−1583 − Erebinae|TDGAB−0347Erebinae|TDGAB−0368Erebinae|TDGAB−2321 a a Erebinae|TDGAB−2311 via|TDGAB−0339 Erebinae|TDGAB−2012Erebinae|TDGAB−2131 via|Lope11−0911via|Lope11−0922 a Erebinae|TDGAB−0581Erebinae|TDGAB−1306Erebinae|TDGAB−2011

11epoL| 11epoL|eaniberE Erebinae|TDGAB−2191 11epoL|eaniberE 11e 11epoL|eaniberE Erebinae|TDGAB−0278 11 11epoL|ea 11ep BAGDT Erebinae|TDGAB−0519 B BAGDT|e BAGDT|eanib BAGDT|eaniberE BAGDT|eanib BAGDT|eaniberE Erebinae|TDGAB−2005 BAGDT|eaniberE BA Amphip BAGDT|ean BAGDT|eaniberE BAGDT|eaniberE Erebinae|TDGAB−1985 BAGDT|eani BA eaniber BAGDT|eaniberE Amphip Erebinae|TDGAB−0346 ean Amphip Erebinae|TDGAB−1059 eanieaniberEeani AmphipAmphip Erebinae|TDGAB−1828Erebinae|TDGAB−1601Erebinae|TDGAB−1874 AmphipAmphip Erebinae|TDGAB−1819Erebinae|TDGAB−1863Erebinae|TDGAB−1784 AmphipAmphipAmphip Erebinae|TDGAB−0045Erebinae|TDGAB−0724Erebinae|TDGAB−1387 Erebinae|TDGAB−0009 |ean AmphipAmphipAmphip Erebinae|TDGAB−1455Erebinae|TDGAB−1582Erebinae|TDGAB−1600 AGDT|eaniberE Amphip Erebinae|TDGAB−0811 BAGDT|suberE

T|e T|T|eanib Amphip Erebinae|Lope11−0445 T|eaniberET|eani AmphipAmphip Erebinae|Lope11−0588Erebinae|Lope11−0599 epoL|e Erebinae|TDGAB−0866Erebinae|TDGAB−1273Erebinae|TDGAB−2244Erebinae|Lope11−0190 Erebinae|TDGABb−327Erebinae|Lope11−0450Erebinae|TDGAB−0598

GDT|eaniberE

D T|e a nib er E Erebinae|TDGAB−2264Erebinae|Lope11−0155 D Erebinae|TDGAB−1372Erebinae|Lope11−0505Erebinae|Lope11−0510 D poL|eaniberE GDT| Erebinae|TDGAB−0447Erebinae|TDGAB−1621Erebinae|TDGAB−0012Erebinae|Lope11−0072 Erebinae|TDGAB−1186Erebinae|TDGAB−1668 veniens|TDGAB−2044 oL|ea

AGD AGD |e yrinae|TDGAB−0707yrinae|TDGAB−1911 yrinae|TDGAB−1477yrinae|TDGAB−1809 e e BAGBAGDT| BAGDT|eBAGBAGDT| B BAGDT|BAGDTB yrinae|TDGAB−1385yrinae|TDGAB−1428 BAGBAGDBAGDT| MarMarMar yrinae|TDGAB−1729yrinae|TDGAB−1362 BAGDT|eBAGDT|eani MarMar yrinae|TDGAB−0148yrinae|TDGAB−1725 ymas|TDGABb−348

yrinae|TDGAB−1565 an aniberE Mar aniberE Mar yrinae|TDGAB−0259 aniberE MarMar yrinae|TDGAB−1424yrinae|TDGAB−1422yrinae|TDGAB−0301 an

− − − − − yrinae|TDGAB−1444 − − − MarMar − − yrinae|TDGAB−1528 − Mar − Notodontidae|TDGAB−1190 MarMarMar niberE MarMar niberE

1 1 i Mar 1 1 1 1 0−0 1 hira|Lope11−0130 Mar ib hira|Lope11−0136 1 1 MarMarMar iberE MarMar cipa|TDGAB−1148cipa|Lope11−0380 Mar 9 Mar cipa|TDGAB−0405 5 7

berE Mar cipa|TDGAB−1353 5 MarMar cipa|TDGAB−1170cipa|TDGAB−1292 b MarMaMar cipa|TDGAB−2248cipa|TDGAB−0497cipa|TDGAB−1271

cipa|Lope11−0308 29 Ma 200 cipa|TDGAB−1408 500− Noctuidae|Lope11−0643Mar cipa|TDGAB−0987 erE erE erE Noctuidae|TDGAB−2126Noctuidae|Lope11−0004Noctuidae|Lope11−0597MarMar cipa|TDGAB−1205cipa|TDGAB−0244cipa|Lope11−0341 erE Noctuidae|TDGAB−0713Noctuidae|TDGAB−1628MarMarMar cipa|TDGAB−0956cipa|TDGAB−0211cipa|TDGAB−2298

Mar 1 73964 Noctuidae|TDGAB−1553 1 7300586 cipa|TDGAB−2081 495051 535 Mar 08729 cipa|TDGAB−0416 87588 Noctuidae|TDGAB−0630Noctuidae|TDGAB−0298Noctuidae|Lope11−0613MarMarMar cipa|TDGAB−0673cipa|TDGAB−1525cipa|TDGAB−0237 Noctuidae|TDGAB−2053Noctuidae|TDGAB−2215Noctuidae|TDGAB−0810 cipa|TDGAB−1230cipa|Lope11−0092cipa|TDGAB−0670 r cipa|TDGAB−0150 Erebinae|Lope11−0447 Erebinae|Lope11−0906 Erebinae|TDGAB−0718 Noctuidae|Lope11−0603 ymantriinae|TDGAB−0328ymantriinae|TDGAB−1138 cipa|TDGAB−1847 Erebinae|TDGAB−0901Erebinae|TDGAB−0933 ymantriinae|TDGAB−2002 Erebinae|Lope11−0868 empta|TDGAB−1510 r Erebinae|TDGAB−1350Erebinae|TDGAB−1719 Noctuidae|Lope11−0609 Erebinae|TDGAB−1581 cipa|TDGAB−1566 Erebinae|TDGAB−1885Erebinae|Lope11−0594 Noctuidae|TDGAB−2113 Erebinae|Lope11−0913Erebinae|Lope11−0057 Amphip Erebinae|Lope11−0615 cipa|TDGAB−0715 Erebinae|TDGAB−1892Erebinae|TDGAB−1888Erebinae|Lope11−0871 ymantriinae|Lope11−0623ymantriinae|Lope11−0637 Amphip Erebinae|Lope11−0920Erebinae|TDGAB−1690Erebinae|Lope11−0982Noctuidae|TDGAB−1180 Noctuidae|Lope11−0611 Noctuidae|TDGAB−1242 cipa|TDGAB−0657 Noctuidae|TDGAB−1298 Amphip Noctuidae|TDGAB−0069Noctuidae|TDGAB−1325Noctuidae|TDGAB−1556Noctuidae|TDGAB−0509 ysodeixis acuta|TDGAB−1934 Noctuidae|Lope11−0088 cipa|TDGAB−1604 Noctuidae|TDGAB−1589 ysodeixis acuta|TDGAB−1845 Amphip cipa|TDGAB−1459 Noctuidae|TDGAB−0655Noctuidae|TDGAB−2342Noctuidae|TDGAB−1285Noctuidae|TDGAB−1119 ysodeixis acuta|TDGAB−1458 Noctuidae|Lope11−0598 Noctuidae|TDGAB−2225 ysodeixis acuta|TDGAB−0702 Noctuidae|TDGAB−1281 cipa|TDGAB−1587 Noctuidae|TDGAB−0849 ysodeixis acuta|TDGAB−0104 Agaristinae|TDGAB−2138Noctuidae|TDGAB−1016 cipa|TDGAB−0649 Noctuidae|TDGAB−2208Noctuidae|TDGAB−2374Noctuidae|Lope11−0059Noctuidae|Lope11−0607 ysodeixisysodeixis acuta|Lope11−0096 acuta|Lope11−0610 Amphip L L L Aediinae|Lope11−0300 Noctuidae|Lope11−0334 cipa|TDGAB−0779 DasycDasycJana MGABsp2|TDGABb−333 Noctuidae|TDGAB−1643 cipa|TDGAB−0646 JanaL eur cipa|TDGAB−0726 L Noctuidae|TDGAB−0201Noctuidae|TDGAB−0590 ysanoplusia spoliata|Lope11−0324 cipa|TDGAB−1554 Noctuidae|TDGAB−1821Noctuidae|TDGAB−0070Noctuidae|TDGAB−0563 Agaristinae|Lope11−0519 cipa|TDGAB−1957 Noctuidae|TDGAB−0852Noctuidae|TDGAB−2117Noctuidae|TDGAB−2145 Agaristinae|TDGAB−1971 cipa|TDGAB−1014 Noctuidae|TDGAB−0285Noctuidae|TDGAB−0577Noctuidae|TDGAB−0290Noctuidae|TDGAB−0766 Agaristinae|TDGAB−0917 cipa|TDGAB−1308 Noctuidae|TDGAB−0586Noctuidae|TDGAB−2255Noctuidae|TDGAB−1995 cipa|TDGAB−1577 Noctuidae|TDGAB−2398Noctuidae|TDGAB−1990Noctuidae|TDGAB−0351Noctuidae|TDGAB−2009 ys crini|Lope11−0544 ScSc cipa|TDGAB−1882 Noctuidae|Lope11−0083Noctuidae|Lope11−0178Gracilodes|TDGAB−0393 ys crini|Lope11−0945 Sc Calpinae|TDGAB−0171Calpinae|TDGAB−0274Calpinae|TDGAB−2080Noctuidae|TDGAB−2043 Noctuidae|TDGAB−0967Noctuidae|TDGAB−0289Noctuidae|TDGAB−2109Noctuidae|TDGAB−2151 Sc Noctuidae|TDGAB−0503Noctuidae|TDGAB−0845Noctuidae|TDGAB−1349 ScSc Noctuidae|TDGAB−0511Noctuidae|TDGAB−1243Noctuidae|Lope11−0157 Noctuidae|Lope11−0828Noctuidae|TDGAB−0060Noctuidae|TDGAB−0114 Auc Noctuidae|TDGAB−1936Noctuidae|TDGAB−2405ThChr ChrChrChr ChrChrChrGeometridae|TDGAB−0422 Noctuidae|Lope11−0587hausia|TDGAB−0349hausia|Lope11−0601 Geometridae|TDGAB−0782Geometridae|TDGAB−2230Geometridae|Lope11−0108Metallospora|Lope11−0774 Noctuidae|TDGAB−1718Noctuidae|TDGAB−1932hausia|TDGAB−1414 Noctuidae|TDGAB−0388Noctuidae|TDGAB−0401Noctuidae|TDGAB−0825Noctuidae|TDGAB−1829 Noctuidae|TDGAB−1629Utetheisa|TDGAB−1749hausia|TDGAB−0876 Noctuidae|TDGAB−1103Noctuidae|TDGAB−0164Noctuidae|TDGAB−0601 Noctuidae|TDGAB−1539Noctuidae|TDGAB−1548hausia|TDGAB−0181hausia|TDGAB−0429 Noctuidae|TDGAB−2360Noctuidae|TDGAB−2400Earias|TDGAB−0111Noctuidae|TDGAB−0431 Noctuidae|TDGAB−0098Noctuidae|TDGAB−0089 Noctuidae|TDGAB−1376Noctuinae|TDGAB−0756Noctuidae|TDGAB−1537Noctuidae|TDGAB−1695 Noctuidae|TDGAB−0758 Noctuidae|Lope11−0089Noctuidae|Lope11−0176Noctuidae|TDGAB−1757Noctuidae|TDGAB−0798 Noctuidae|TDGAB−0243Noctuidae|TDGAB−0064yrinae|TDGAB−2257 Noctuidae|TDGAB−0569Noctuidae|Lope11−0090Noctuidae|TDGAB−2017 Noctuidae|TDGAB−0571Noctuidae|Lope11−0486yrinae|TDGAB−0441 Noctuidae|TDGAB−2210Noctuidae|Lope11−0296BrithBrith Noctuidae|Lope11−0376henisa|TDGAB−0761yrinae|TDGAB−0313yrinae|TDGAB−1201 Callopistria|TDGAB−0663Noctuidae|TDGAB−1618Noctuidae|Lope11−0001 Noctuidae|TDGAB−2397Noctuidae|TDGAB−2416yrinae|TDGAB−0203 Noctuidae|TDGAB−1055Noctuidae|TDGAB−0984Noctuidae|TDGAB−1324 Noctuidae|TDGAB−1263Noctuidae|TDGAB−1165 Noctuidae|TDGAB−0236Noctuidae|Lope11−0175Lacinipolia|TDGAB−0802Lacinipolia|TDGAB−0696 Noctuidae|TDGAB−1077Noctuidae|TDGAB−2074 Lacinipolia|TDGAB−1233Noctuidae|TDGAB−1966Noctuidae|TDGAB−2060Noctuidae|TDGAB−1538 Noctuidae|TDGAB−1972Noctuidae|TDGAB−2252Xyleninae|Lope11−0165Xyleninae|TDGAB−0711 Xyleninae|Lope11−0325Xyleninae|Lope11−0650Noctuidae|Lope11−0851Noctuidae|Lope11−0852 Noctuidae|TDGAB−2207Noctuidae|TDGAB−2386Noctuidae|Lope11−0086Noctuidae|TDGAB−1733 Erebinae|TDGAB−0141Erebinae|Lope11−0912Erebinae|Lope11−0916 Noctuidae|Lope11−0836Noctuidae|TDGAB−2394Noctuidae|Lope11−0323Noctuidae|Lope11−0335 Erebinae|TDGAB−2000 Noctuidae|TDGAB−0871Noctuidae|TDGAB−0963Noctuidae|TDGAB−1013 Erebinae|TDGAB−2299Erebinae|Lope11−0087 Noctuidae|TDGAB−0979Noctuidae|TDGAB−0964Noctuidae|TDGAB−0872Noctuidae|TDGAB−0369ctiinae|TDGAB−1461 Erebinae|TDGAB−0564Erebinae|TDGAB−2004 Noctuidae|TDGAB−0176Noctuidae|TDGAB−0510Noctuidae|TDGAB−0965ctiinae|TDGAB−1080ctiinae|TDGAB−1093 Erebinae|TDGAB−0397Erebinae|TDGAB−0183 Noctuidae|TDGAB−1029Noctuidae|TDGAB−1096Noctuidae|TDGAB−1025ctiinae|TDGAB−0952ctiinae|TDGAB−0975ctiinae|TDGAB−1216 Erebinae|Lope11−0606Erebinae|Lope11−0301 Noctuidae|TDGAB−2317Noctuidae|TDGAB−1198Noctuidae|Lope11−0053ctiinae|TDGAB−0040ctiinae|TDGAB−2025ctiinae|TDGAB−2032 Erebinae|TDGAB−0913Erebinae|Lope11−0135 Noctuidae|TDGAB−1849Noctuidae|Lope11−0843Noctuidae|Lope11−0151Noctuidae|Lope11−0164 Erebinae|TDGAB−0552Erebinae|Lope11−0129 Noctuidae|Lope11−0990ArSpodoptera triturata|TDGAB−1097 Erebinae|TDGAB−1114Erebinae|Lope11−0080 SpodopteraSpodopteraAr triturata|TDGAB−1333 ex Erebinae|TDGAB−1142Erebinae|TDGAB−2136 ArArAr Erebinae|TDGAB−0487Erebinae|TDGAB−0528 ArArArAr Erebinae|TDGAB−0522Erebinae|TDGAB−1117Erebinae|TDGAB−0332 Spilosoma|Lope11−0173Spilosoma|Lope11−0534Spilosoma|TDGAB−0027Spilosoma|TDGAB−0028 Hypocala|TDGAB−1870Hypocala|TDGAB−1903Hypocala|Lope11−0655Erebinae|TDGAB−0378 Spilosoma|TDGAB−1642Spilosoma|Lope11−0289Spilosoma|Lope11−0290Spilosoma|Lope11−0657 Hypocala|TDGAB−1770Hypocala|TDGAB−1859 Erebinae|TDGAB−1057Erebinae|TDGAB−2121Erebinae|TDGAB−2190 Hypocala|TDGAB−1645Hypocala|TDGAB−1677 Erebinae|TDGAB−0521Erebinae|TDGAB−2196Erebinae|TDGAB−1804Erebinae|TDGAB−0160 Hypocala|TDGAB−0722Hypocala|TDGAB−1595 Erebinae|TDGAB−1536Erebinae|TDGAB−2373Asota speciosa|TDGAB−1681 HypsorHypsorHypocala|TDGAB−0807Hypocala|TDGAB−0080 AsotaAsotaAsota speciosa|TDGAB−1386 speciosa|TDGAB−1682 speciosa|TDGAB−1832 Hypocala|TDGAB−1345Hypocala|TDGAB−1343 AsotaErebidae|Lope11−0608Amerila|TDGAB−1740 speciosa|TDGABb−337 Hypocala|TDGAB−0044Hypocala|TDGAB−1552 Amerila|TDGAB−0717Amerila|TDGAB−1223Amerila|TDGAB−1240Amerila|TDGAB−0020 Hypocala|TDGAB−1807Hypocala|TDGAB−1644 Amerila|TDGAB−0793Amerila|TDGAB−1715Amerila luteibarba|TDGAB−0629 Eudocima|TDGABb−326Hypocala|TDGAB−1364 AmerilaAmerilaAmerila luteibarba|TDGAB−0046 luteibarba|TDGAB−2029 luteibarba|TDGAB−0047 Eudocima|TDGAB−1669 AmerilaAmerilaAmerila luteibarba|TDGAB−0407 luteibarba|TDGAB−0637 luteibarba|TDGAB−0174 AmerilaAmerilaAmerila luteibarba|Lope11−0292 luteibarba|TDGAB−1249 luteibarba|TDGAB−0409 Noctuidae|Lope11−0841 AmerilaAmerilaAmerilaAmerila luteibarba|TDGAB−0907 luteibarba|TDGAB−0168 luteibarba|TDGAB−0197 luteibarba|Lope11−0342 Noctuidae|TDGAB−1224Noctuidae|Lope11−0172Hypena|TDGAB−2283 AmerilaAmerilaAmerilaAmerila luteibarba|TDGAB−0464 luteibarba|TDGAB−0486 luteibarba|TDGAB−1228 luteibarba|Lope11−0524 Noctuidae|Lope11−0179Noctuidae|Lope11−0181Noctuidae|Lope11−0604Hypena|TDGAB−0408Hypena|TDGAB−0572Hypena|TDGAB−1293 Amerila|Lope11−0658Amerila|TDGAB−0006Amerila|TDGAB−0137Amerila|TDGAB−0730 Noctuidae|TDGAB−0071Noctuidae|Lope11−0718Hypena|TDGAB−0360Hypena|TDGAB−0179opha|Lope11−0441 Amerila|Lope11−0526Amerila|Lope11−0677Noctuidae|TDGAB−1302Noctuidae|TDGAB−0156 Noctuidae|TDGAB−2127Noctuidae|TDGAB−1693opha|Lope11−0139 Noctuidae|TDGAB−0548Noctuidae|TDGAB−1178Noctuidae|TDGAB−1018 Noctuidae|TDGAB−0337Noctuidae|TDGAB−1983Noctuidae|TDGAB−0250 Noctuidae|TDGAB−2116Noctuidae|TDGAB−0645Noctuidae|TDGAB−1040omiaomia lethe|TDGAB−0476lethe|TDGAB−0611ustissima|Lope11−0060 Noctuidae|TDGAB−1674Noctuidae|TDGAB−0043 Noctuidae|TDGAB−0930Noctuidae|TDGAB−0468Noctuidae|TDGAB−0361omiaomiaomia|TDGAB−2353 lethe|TDGAB−1208 lethe|TDGAB−1652 Noctuidae|TDGAB−2046Noctuidae|Lope11−0612 Noctuidae|TDGAB−2331Noctuidae|TDGAB−1334Noctuidae|TDGAB−1311omia|TDGAB−0537omia|TDGAB−0335omia|TDGAB−0398 Noctuidae|Lope11−0618Noctuidae|TDGAB−0443 Noctuidae|TDGAB−1326Noctuidae|TDGAB−0444Noctuidae|Lope11−0359omia|TDGAB−0612omia|TDGAB−1209omia|Lope11−0808 Noctuidae|TDGAB−0032Noctuidae|Lope11−0377Noctuidae|TDGAB−0109 Noctuidae|TDGAB−1653Noctuidae|TDGAB−1314Noctuidae|TDGAB−2362Noctuidae|TDGAB−2417 a|TDGAB−2221 Antiophlebia|TDGAB−1758Antiophlebia|Lope11−0784Noctuidae|TDGAB−0121Noctuidae|TDGAB−0304 Noctuidae|TDGAB−1231Noctuidae|TDGAB−1305Noctuidae|Lope11−0554ctiinae|TDGAB−1960 Antiophlebia|Lope11−0097Noctuidae|TDGAB−1264Noctuidae|TDGAB−2106Noctuidae|Lope11−0340 Noctuidae|TDGAB−0982Noctuidae|TDGAB−1183Noctuidae|TDGAB−1561Noctuidae|TDGAB−1780 Noctuidae|TDGAB−1339Noctuidae|TDGAB−2068AcontiaNoctuidae|TDGAB−0430 transfigurata|Lope11−0645 Erebinae|TDGAB−1772Erebinae|Lope11−0872 ArNoctuidae|Lope11−0649EuchrEuchr octis|TDGAB−1087octis|TDGAB−0427ycopsis|Lope11−0937 Noctuidae|Lope11−0337Noctuidae|Lope11−0614Erebinae|TDGAB−2423 EuchrEuchrEuchr ctiinae|TDGAB−1864ctiinae|TDGAB−2124ctiinae|TDGABb−369octis|Lope11−0140octis|Lope11−0628octis|Lope11−0629 Noctuidae|Lope11−0168Noctuidae|Lope11−0347 EuchrEuchrEuchrEuchr ctiinae|TDGABb−359ctiinae|TDGAB−1125ctiinae|TDGABb−360 AnapisaAnapisa monotica|Lope11−0153monotica|Lope11−0364Noctuidae|Lope11−0149Noctuidae|Lope11−0018 EuchrEuchrNoctuidae|TDGAB−0558ctiinae|TDGABb−361ctiinae|TDGABb−370 Noctuidae|TDGAB−0666Noctuidae|TDGAB−0256Noctuidae|TDGAB−0418 Noctuidae|Lope11−0936ArAr rr Noctuidae|TDGAB−0199Noctuidae|TDGAB−1006Noctuidae|TDGAB−1041 ArArArAr ytometra|TDGAB−0113 Noctuidae|Lope11−0298Noctuidae|Lope11−0368 AAEuprEupr Noctuidae|TDGAB−1544Noctuidae|TDGAB−1654Noctuidae|TDGAB−0545 EuprEuprEupr Noctuidae|Lope11−0929Noctuidae|TDGAB−0095Noctuidae|TDGAB−0515 BombPhPacidaraNoctuidae|TDGAB−0275 ven Noctuidae|TDGAB−2202 Noctuidae|TDGAB−0687Noctuidae|TDGAB−0697Noctuidae|TDGAB−2087ctiinae|TDGAB−2063ctiinae|TDGAB−0924 Noctuidae|TDGAB−0570 Noctuidae|TDGAB−0445Noctuidae|TDGAB−1366Noctuidae|Lope11−0352ctiinae|TDGAB−2037ctiinae|TDGAB−2256ctiinae|TDGAB−2272 Soloella|Lope11−0529 Anomis|TDGAB−1836AnomisAnomis|Lope11−0102Anomis|TDGAB−0257ctiinae|Lope11−0286ctiinae|TDGAB−0297 ctiinae|TDGAB−2333flav Soloella|Lope11−0291 Anomis|Lope11−0552ArAr ctiinae|TDGAB−2141ctiinae|TDGAB−2345ctiinae|TDGAB−1078 Noctuidae|Lope11−0546Noctuidae|Lope11−0842Anapisa|TDGAB−0435Anapisa|Lope11−0832 ArArAr ctiinae|TDGAB−1079ctiinae|TDGAB−1279ctiinae|TDGAB−1777 Noctuidae|TDGAB−1316Noctuidae|TDGAB−0731 ArArAr ctiinae|TDGAB−2125ctiinae|TDGAB−2153ctiinae|TDGAB−2347 Noctuidae|Lope11−0145Noctuidae|TDGAB−0241 ArArAr ctiinae|Lope11−0042ctiinae|TDGAB−0180ctiinae|TDGAB−0752ctia|TDGAB−0880 Noctuidae|Lope11−0304Noctuidae|Lope11−0326Tuer ArArAr ctiinae|Lope11−0319ctiinae|TDGAB−0817ctiinae|TDGAB−0763 Tuer ArArAr ctiinae|TDGAB−0734ctiinae|TDGAB−0636ctiinae|TDGAB−0733 ArAr ArArArAr ctiinae|TDGAB−1606ctiinae|TDGAB−1697ctiinae|TDGAB−1716 hra|TDGAB−1680hra|TDGAB−1852 ArArAr ArArAr ctiinae|Lope11−0542ctiinae|TDGAB−2014 hra|TDGAB−1865hra|TDGAB−2016 ArArAr ctiinae|TDGAB−2007ctiinae|Lope11−0824 ArArAr aramelisa|TDGAB−0225ctiinae|TDGAB−0559ctiinae|TDGAB−2061ctiinae|TDGAB−2249 hra|Lope11−0002hra|Lope11−0029hra|Lope11−0030 ArAr ctiinae|TDGAB−0321ctiinae|Lope11−0333ta|TDGAB−0266ta|TDGAB−0605 ArArAr ctiinae|TDGAB−1667ctiinae|Lope11−0041ctiinae|Lope11−0310 hra|Lope11−0033hra|Lope11−0034hra|Lope11−0035 ArArAr ctiinae|TDGAB−0918ctiinae|TDGAB−1282ctiinae|TDGAB−2031 PArAr ctiinae|Lope11−0538ctiinae|TDGAB−0613 hra|Lope11−0525hra|Lope11−0527hra|TDGAB−0800 ArAr ctiinae|TDGAB−2427ctiinae|TDGAB−0739ctiinae|TDGAB−2057 ArArArAr ctiinae|Lope11−0535ctiinae|Lope11−0806 hra|TDGAB−1433hra|Lope11−0800 ArArAr ctiinae|TDGAB−0299ctiinae|TDGAB−0319 ArArRhipidar ArAr ctiinae|TDGAB−1284ctiinae|TDGAB−1564 ArArAr ArArAr ctiinae|TDGAB−0425ctiinae|TDGAB−0457ctiinae|TDGAB−0458 Balacra|TDGAB−0002Balacra|TDGAB−0008Balacra|Lope11−0008 ArAr ctiinae|TDGAB−0512ctiinae|TDGAB−2076ctiinae|TDGAB−0322 Balacra|Lope11−0038Balacra|Lope11−0037Balacra|Lope11−0801 ArAr ctiinae|TDGAB−0314ctiinae|TDGAB−0320ctiinae|TDGAB−0442 Balacra|TDGAB−2197Balacra|TDGAB−2351Balacra|TDGAB−0399 ArArAr ctiinae|TDGAB−0326ctiinae|TDGAB−2395ctiinae|TDGAB−2189 Balacra|TDGAB−1254Balacra|TDGAB−2089Balacra|TDGAB−2346Balacra|Lope11−0036 ArArAr ctiinae|Lope11−0316ctiinae|Lope11−0361ctiinae|TDGAB−0547 Balacra|Lope11−0039Balacra|Lope11−0040Balacra|Lope11−0802Balacra|TDGAB−2021 ArAr ctiinae|TDGAB−1215ctiinae|TDGAB−2213ctiinae|TDGAB−2390 BalacraBalacraBalacraBalacra pulc pulc pulcpulc ManMactiinae|TDGAB−0932ctiinae|TDGAB−1213 BalacraBalacraBalacra pulc pulcpulc ManManManctiinae|TDGAB−0305ctiinae|TDGAB−1000 BalacraBalacraBalacra pulc pulcpulc ManMan n BalacraBalacraBalacraBalacra pulc pulc pulcpulc TDGAB−1728 Man ulea|Lope11−0541 BalacraBalacra|Lope11−0150Balacra|Lope11−0353utomolis|TDGAB−0523ctiinae|Lope11−0523ctiinae|TDGAB−1252ctiinae|Lope11−0354 pulc ManMan ulea|TDGAB−0086ulea|Lope11−0378ulea|Lope11−0517 Balacra|TDGAB−1607Balacra|Lope11−0804Balacra|Lope11−0805ctiinae|Lope11−0540ctiinae|TDGAB−1742ctiinae|Lope11−0005 Man ulea|TDGAB−2261ulea|TDGAB−0677 AArAr ctiinae|TDGAB−1188ctiinae|TDGAB−2034ctiinae|Lope11−0064 ManMan ulea|TDGAB−1763ulea|TDGAB−2038ulea|TDGAB−2170 ArArAr ctiinae|Lope11−0288ctiinae|Lope11−0293ctiinae|Lope11−0532 ManMa ulea|TDGAB−1498ulea| ArArAr ctiinae|Lope11−0533ctiinae|Lope11−0537ctiinae|TDGAB−1446 ManMan ulea|TDGAB−0765ulea|TDGAB−0923ulea|TDGAB−1260 ArArAr ctiinae|TDGAB−1532ctiinae|Lope11−0807ctiinae|Lope11−0991 ManMan n ulea|TDGAB−0689ulea|TDGAB−0736ulea|TDGAB−0753 ArArAr ctiinae|TDGAB−1783ctiinae|TDGAB−0747ctiinae|TDGAB−1931 Man ulea|TDGAB−0931ulea|TDGAB−0310 ArArArAr ctiinae|TDGAB−0004ctiinae|TDGAB−0153ctiinae|TDGAB−1826 ManMan ulea|TDGAB−2201ulea|TDGAB−1673ulea|TDGAB−0276 ArArAr ctiinae|TDGAB−0795ctiinae|TDGAB−1412ctiinae|TDGAB−1848 MaMan ulea|TDGAB−1800ulea|TDGAB−2110 ArArAr ctiinae|TDGAB−1939ctiinae|TDGAB−0848ctiinae|TDGAB−0131 ManMa ulea|TDGAB−1639ulea|TDGAB−1649ulea|TDGAB−1756 ArArAr ctiinae|TDGAB−0147ctiinae|TDGAB−1371ctiinae|TDGAB−1485 Man ulea|TDGAB−0690ulea|TDGAB−0258ulea|TDGAB−1288 ArArAr ctiinae|TDGAB−1696ctiinae|TDGAB−1707ctiinae|TDGAB−1940 ManMannnnulea|TDGAB−0694ulea|TDGAB−0691 ArArAr ctiinae|TDGAB−1942ctiinae|TDGAB−1943ctiinae|TDGAB−1944 ManMa ulea|TDGAB−0809ulea|TDGAB−0775ulea|TDGAB−0743 ArArAr ctiinae|TDGAB−0005ctiinae|TDGAB−1785ctiinae|TDGAB−0149 ManMan ulea|TDGAB−0774ulea|TDGAB−1568ulea|TDGAB−1450 ArArAr ctiinae|TDGAB−0616ctiinae|TDGAB−1846ctiinae|TDGAB−1941 ManMannulea|TDGAB−1356ulea|TDGAB−1634ulea|TDGAB−0345 ArArAr ctiinae|TDGAB−0007ctiinae|TDGAB−0151ctiinae|TDGAB−1805 ArMaMan ulea|TDGAB−0740ulea|TDGAB−0791ulea|TDGAB−0922 ArArArAr ctiinae|TDGAB−1935ctiinae|TDGAB−1945 ArAr ulea|TDGAB−0873ulea|TDGAB−1377ulea|TDGAB−0693 ArAr Ar ctiinae|TDGAB−2352ctiinae|TDGAB−2409nn ulea|TDGAB−0692ulea|TDGAB−0745 ArNotodontidae|TDGAB−0906Notodontidae|TDGAB−1107hira goodii|TDGAB−1825era|TDGAB−0998era|TDGAB−0065 ArAr ctiinae|TDGAB−2332ctiinae|TDGAB−1266ctiinae|TDGAB−1500ulea|TDGAB−0264ulea|TDGAB−0424ulea|TDGAB−0342 Notodontidae|TDGAB−0921Notodontidae|TDGAB−0996Notodontidae|TDGAB−1088Notodontidae|TDGAB−0943era|TDGAB−1684era|Lope11−0346 Ar ctiinae|TDGAB−2356ctiinae|TDGAB−1611 Notodontidae|TDGAB−1083Notodontidae|TDGAB−1110Notodontidae|Lope11−0638ymantriinae|TDGAB−0919ymantriinae|TDGAB−1289ctiinae|Lope11−0814era|Lope11−0644 ArAr ctiinae|TDGAB−2171ctiinae|TDGAB−2239ctiinae|TDGAB−0327 LLPyralidae|Lope11−0639ymantriinae|TDGABb−318orata|TDGAB−1151orata|TDGAB−1253 Ar ctiinae|TDGAB−2431ctiinae|TDGAB−0440 LArLymantriinae|TDGAB−1012 ArAr ctiinae|TDGAB−2420ctiinae|TDGAB−2108ctiinae|TDGAB−0928 DasycNoctuidae|TDGAB−1961Soloe|TDGAB−0669 ArAr ctiinae|TDGAB−0324ctiinae|TDGAB−1054ctiinae|TDGAB−2426 Soloe|TDGAB−0624Soloe|TDGAB−0685Soloe|TDGAB−1787 Herminiinae|TDGAB−2065ArAr ctiinae|TDGAB−2265ctiinae|TDGAB−0270ctiinae|TDGAB−2403 Soloe|Lope11−0081Soloe|Lope11−0318Soloe|Lope11−0817Noctuidae|TDGAB−0066oma|TDGAB−0595 Lepidoptera|Lope11−0641Herminiinae|TDGAB−1312ArAr ctiinae|TDGAB−2078ctiinae|TDGAB−0972ctiinae|TDGAB−1074 Noctuidae|TDGAB−1563Noctuidae|TDGAB−1927Noctuidae|TDGAB−0110 LChiromacLepidoptera|TDGAB−1571Lepidoptera|TDGAB−1754Ar ctiinae|TDGAB−2077ctiinae|TDGAB−0449ctiinae|TDGAB−0300 Noctuidae|TDGAB−0668Noctuidae|TDGAB−1158Noctuidae|TDGAB−1330Nar ymantriinae|TDGAB−2388Caryctiinae|TDGAB−0323ctiinae|TDGAB−0325 NaromaNaroma signifsignif NaromaAnticarsiaoeda|TDGABb−321oeda signif caffra|Lope11−0715caffra|Lope11−0869irr AnticarsiaNotodontidae|TDGAB−0920Notodontidae|TDGAB−1070Notodontidae|TDGAB−1075 irr Cy atis|TDGAB−2015 OtrOtrLymantriinae|TDGAB−0330ymantriinae|TDGAB−0465ymantriinae|TDGAB−1130 Rhypopter CyCy hla|Lope11−0443 LNotodontidae|TDGAB−0283 Rhypopter CyCy ana|TDGAB−0189ana|TDGAB−0417ana|Lope11−0536 Notodontidae|TDGAB−0576Notodontidae|TDGAB−0768Notodontidae|Lope11−0590ymantriinae|TDGAB−1452ymantriinae|TDGAB−1002ymantriinae|TDGAB−1098hira|Lope11−0142hira|Lope11−0143 Rhypopter CyCy ana|TDGAB−2019ana|Lope11−0146ana|Lope11−0531 LLymantriinae|TDGAB−2135ymantriinae|Lope11−0631ymantriinae|TDGAB−1688 Rhypopter Ar CyCy ana|TDGAB−0560ana|TDGAB−2339ana|TDGAB−0981 LLymantriinae|TDGAB−0272ymantriinae|TDGAB−2013ymantriinae|TDGAB−2094 Rhypopter Noctuidae|TDGAB−0182Noctuidae|TDGAB−0387Noctuidae|TDGAB−2328Erebidae|TDGAB−0452Erebidae|TDGAB−2179CyCy ana|TDGAB−2174ana|TDGAB−2128ana|TDGAB−0517 LDasycymantriinae|TDGAB−0875ymantriinae|TDGAB−0375 ctiinae|Lope11−0803ana|Lope11−0379ana|TDGAB−0830 DasycL ymantriinae|TDGAB−0238ymantriinae|Lope11−0481ymantriinae|TDGAB−0947 StracenaRhypopterRhypopter yxvenosa|Lope11−0056yxErebidae|TDGAB−2093Erebidae|TDGAB−2275 UD003|Lope11−0811UD003|Lope11−0818ana|TDGAB−1773ana|TDGAB−1791 LLymantriinae|TDGAB−1053ymantriinae|TDGAB−0614ymantriinae|Lope11−0642 StracenaRhypopteryx UD001|Lope11−0633 UD003|Lope11−0786UD001|Lope11−0790 LLymantriinae|TDGAB−1914ymantriinae|TDGAB−0502ymantriinae|TDGAB−1177 StracenaRhypopter UD002|TDGAB−2334 LLymantriinae|TDGAB−0958ymantriinae|TDGAB−0863ymantriinae|TDGAB−1163 yx UD002|Lope11−0810UD002|Lope11−0812 LLaeliaymantriinae|TDGAB−0541ymantriinae|TDGAB−0938 UD001|TDGAB−2176 Lymantria v LLymantriinae|TDGAB−1313ymantriinae|TDGAB−1082ymantriinae|TDGAB−2067ymantriinae|TDGAB−1605 LymantriaLymantria vv Stracena|TDGAB−1768Stracena|Lope11−0349yx|TDGAB−1786yx|TDGAB−1905 LLymantriinae|TDGAB−1953ymantriinae|Lope11−0721ymantriinae|TDGAB−0154 LymantriaLLymantriinae|TDGAB−1623 v Stracena|TDGAB−2302Stracena|TDGAB−2114yx|TDGAB−0438yx|TDGAB−0499 LLymantriinae|Lope11−0147ymantriinae|Lope11−0845 LeucomaLymantriinae|TDGAB−0705ymantriinae|TDGAB−1421ymantriinae|TDGAB−1457 luteipes|Lope11−0635Leucoma|Lope11−0106Stracena|TDGAB−1141Stracena|TDGAB−2245yx|TDGAB−0331 LNotodontidae|TDGAB−1214Notodontidae|TDGAB−1038Notodontidae|TDGAB−2271 Notodontidae|TDGAB−1262Notodontidae|Lope11−0363Notodontidae|TDGAB−1590 Notodontidae|Lope11−0101Notodontidae|TDGAB−1831Notodontidae|Lope11−0357 acillans|TDGAB−1134acillans|TDGAB−1317acillans|TDGAB−1994 Notodontidae|TDGAB−1519Notodontidae|TDGAB−1451Notodontidae|TDGAB−1034 Leucoma|TDGAB−2295acillans|TDGAB−0175acillans|TDGAB−0479acillans|TDGAB−0829 Geometridae (220,540) Notodontidae|TDGAB−0861Notodontidae|TDGAB−0129Notodontidae|TDGAB−0117 Leucoma|TDGAB−2214Leucoma|TDGAB−0295 Notodontidae|TDGAB−1540Notodontidae|TDGAB−1572Notodontidae|TDGAB−1856Notodontidae|TDGAB−1857 Leucoma|TDGAB−2430Leucoma|TDGAB−0253Leucoma|TDGAB−0573 Notodontidae|TDGAB−1869Notodontidae|TDGAB−1923Notodontidae|Lope11−0103 Leucoma|TDGAB−1066Leucoma|TDGAB−1181Leucoma|TDGAB−2399 Notodontidae|Lope11−0158Notodontidae|Lope11−0303Notodontidae|Lope11−0329 Leucoma|TDGAB−0896Leucoma|TDGAB−0973 Notodontidae|Lope11−0556Notodontidae|Lope11−0559Notodontidae|Lope11−0717 Leucoma|TDGAB−2175Leucoma|TDGAB−2413Leucoma|TDGAB−0195 Notodontidae|Lope11−0085Notodontidae|TDGAB−1881Notodontidae|TDGAB−1861 Leucoma|TDGAB−0953Leucoma|TDGAB−2160Leucoma|TDGAB−0583 Notodontidae|TDGAB−1579Notodontidae|TDGAB−1520Notodontidae|TDGAB−1511 Leucoma|TDGAB−1067Leucoma|TDGAB−2340Leucoma|TDGAB−0877 Notodontidae|TDGAB−1489Notodontidae|TDGAB−1488Notodontidae|TDGAB−1513 Leucoma|TDGAB−2219Leucoma|TDGAB−0978Leucoma|TDGAB−1064 Notodontidae|TDGAB−1434Notodontidae|TDGAB−1521Notodontidae|TDGAB−1522Notodontidae|Lope11−0094 Leucoma|TDGAB−1150Leucoma|TDGAB−2292Leucoma|TDGAB−2173 Notodontidae|TDGAB−1468Notodontidae|TDGAB−0132Notodontidae|TDGAB−1562odonta|TDGAB−0377 Leucoma|TDGAB−2030Leucoma|TDGAB−2341Leucoma|TDGAB−0955 Notodontidae|Lope11−0099Notodontidae|Lope11−0183Notodontidae|Lope11−0312odonta|TDGAB−0379odonta|Lope11−0442 Dasyc Leucoma|TDGAB−1062Leucoma|TDGAB−1127 Notodontidae|Lope11−0825Notodontidae|Lope11−0839Notodontidae|TDGAB−1584Notodontidae|TDGAB−1664 Leucoma|TDGAB−0163Leucoma|TDGAB−0466Leucoma|TDGAB−1063 Notodontidae|TDGAB−1499Notodontidae|TDGAB−0082Notodontidae|Lope11−0946ymantriinae|TDGAB−1155ymantriinae|TDGAB−0453hira antica|TDGAB−2293 hirahira statheuta|TDGAB−2315statheuta|Lope11−0066Leucoma|TDGAB−1129Leucoma|TDGAB−1987Leucoma|TDGAB−0279 LLymantriinae|TDGAB−1299ymantriinae|TDGAB−0173ymantriinae|TDGAB−1031 Lymantriinae|TDGAB−2018Leucoma|TDGAB−0912Leucoma|TDGAB−1061Leucoma|TDGAB−1065 LLymantriinae|TDGAB−1637 Lymantriinae|TDGAB−2064ymantriinae|TDGAB−0350 DasycRahonaRahonaymantriinae|TDGAB−0485 macrmacr LLymantriinae|TDGAB−0245ymantriinae|TDGAB−0217ymantriinae|TDGAB−0184 LLymantriinae|TDGAB−2260ymantriinae|TDGAB−1008ymantriinae|TDGAB−1335hirahira|Lope11−0636 delicata|Lope11−0120 LLymantriinae|TDGAB−0420ymantriinae|TDGAB−0281 LLymantriinae|TDGAB−1889ymantriinae|TDGAB−2228ymantriinae|TDGAB−0463 Lymantriinae|TDGAB−0291ymantriinae|TDGAB−0514ymantriinae|TDGAB−0432 LDasycymantriinae|TDGAB−2042dara africana|TDGAB−1875africana|Lope11−0166 LLymantriinae|TDGAB−0561ymantriinae|TDGAB−0240ymantriinae|TDGAB−0251 DasycLymantriinae|TDGAB−0400ymantriinae|TDGAB−0489ymantriinae|TDGABb−340daradara africana|Lope11−0169africana|Lope11−0782africana|TDGAB−1436 LLymantriinae|TDGAB−0204ymantriinae|TDGAB−0426 LLymantriinae|TDGAB−0946ymantriinae|TDGAB−0826ymantriinae|TDGAB−1910dara africana|Lope11−0098africana|Lope11−0847 Lymantriinae|TDGAB−0448ymantriinae|TDGAB−0556ymantriinae|TDGAB−0218 LNeomaroctis|TDGAB−0759 LLymantriinae|TDGAB−0215ymantriinae|TDGAB−0242ymantriinae|TDGAB−0219 Neomaroctis|TDGAB−0801octis|TDGAB−1840octis|TDGAB−1949 Lymantriinae|TDGAB−0177ymantriinae|TDGAB−0216 NeomarEupr octis|TDGAB−1631octis|Lope11−0369octis UD006|Lope11−0148 Ar EuprEupr octisoctis|TDGAB−1793octis|TDGAB−1868 UD003|Lope11−0792 Ar ctiinae|Lope11−0809 EuprEupr octisoctis|TDGAB−0966octis|TDGAB−1970 UD002|Lope11−0171 Arctiinae|TDGAB−1774ctiinae|TDGAB−0659ctiinae|TDGAB−0102 Eupr octisoctis|TDGAB−0362octis|TDGAB−1004 UD008|Lope11−0821 Arctiinae|TDGAB−0606ctiinae|TDGAB−1348ctiinae|TDGAB−2220 Eupr octis|TDGAB−1234octisoctis|TDGAB−1222hira|Lope11−0180 UD001|Lope11−0124 Arctiinae|TDGAB−0916ctiinae|TDGAB−2052ctiinae|TDGAB−0312 Eupr octis|Lope11−0154hira|TDGAB−0152hira|TDGAB−1527hira|Lope11−0910 Arctiinae|TDGAB−2424ctiinae|TDGAB−2433ctiinae|TDGAB−1072 EuprDasyc hira|TDGAB−0490hira|TDGAB−0530hira UD001|Lope11−0558 Arctiinae|TDGAB−0316ctiinae|TDGAB−1547ctiinae|TDGAB−2391 Dasyc hira UD001|Lope11−0928 Arctiinae|TDGAB−2058ctiinae|TDGAB−1978ctiinae|TDGAB−1439 Lymantriinae (164,346) Dasycymantriinae|TDGAB−0372 Arctiinae|TDGAB−2263ctiinae|TDGAB−1627ctiinae|TDGAB−2367 DasycLymantriinae|TDGAB−0348ymantriinae|TDGAB−0886ymantriinae|TDGAB−1182 Arctiinae|TDGAB−1546ctiinae|TDGAB−0783 Lymantriinae|TDGAB−1195ymantriinae|TDGABb−365ymantriinae|TDGAB−0371 Arctiinae|TDGAB−2259ctiinae|TDGAB−1762ctiinae|TDGAB−0317 Lymantriinae|TDGABb−366ymantriinae|TDGAB−0847ymantriinae|Lope11−0046 Arctiinae|TDGAB−1416ctiinae|TDGAB−1567ctiinae|TDGAB−1218 Lymantriinae|Lope11−0331ymantriinae|TDGAB−0450ymantriinae|TDGAB−1256 Arctiinae|TDGAB−1357ctiinae|TDGAB−0306ctiinae|TDGAB−0664 LLymantriinae|TDGAB−1269ymantriinae|TDGAB−0494ymantriinae|TDGAB−0508 Arctiinae|TDGAB−1801ctiinae|TDGAB−2262 Lymantriinae|TDGAB−0527ymantriinae|TDGAB−2083ymantriinae|TDGAB−0874 Arctiinae|TDGAB−2325ctiinae|TDGAB−2378ctiinae|TDGAB−2411 Lymantriinae|TDGAB−0818ymantriinae|TDGAB−0842ymantriinae|TDGAB−1541 Arctiinae|TDGAB−2055ctiinae|TDGAB−2095ctiinae|TDGAB−2203 Lymantriinae|TDGAB−1591ymantriinae|TDGAB−1909ymantriinae|TDGAB−1238yria|TDGAB−0356 Arctiinae|TDGAB−2075ctiinae|TDGAB−2274ctiinae|TDGAB−2371 Lymantriinae|TDGAB−0951ymantriinae|TDGAB−1187ymantriinae|TDGAB−2140yria|TDGAB−1445yria|TDGAB−1701yria|TDGAB−0525 Arctiinae|TDGAB−0500ctiinae|TDGAB−0318ctiinae|TDGAB−0784 Lymantriinae|TDGAB−2082ymantriinae|TDGAB−1015ymantriinae|TDGAB−2161yria|TDGAB−1993yria ila|TDGAB−0358ila|TDGAB−1169 Arctiinae|TDGAB−2370ctiinae|TDGAB−2434ctiinae|Lope11−0516 LGriveaud yriayria|TDGAB−0359 ila|Lope11−0160ila|Lope11−0627 Arctiinae|TDGAB−1232ctiinae|TDGAB−1217 Griveaud yria|TDGAB−0813yria|TDGAB−0451yria|TDGAB−0341 Arctiinae|TDGAB−2366ctiinae|TDGAB−2381ctiinae|TDGAB−2309 Griveaud yria|TDGAB−1294yria|TDGAB−2118yria|TDGAB−2330 AmphipArctiinae|TDGAB−1085ctiinae|TDGAB−0456ctiinae|TDGAB−2365 Griveaud yria|TDGAB−2343yria|TDGAB−0248yria|TDGAB−1084 Noctuidae|Lope11−0487Noctuidae|TDGAB−2273Arctiinae|TDGAB−0742ctiinae|TDGAB−1219 Griveaud yria|TDGAB−1290yria|TDGAB−2158yria cangia|TDGAB−0936 Noctuidae|TDGAB−0672Noctuidae|TDGAB−1529Noctuidae|Lope11−0343yrinae|TDGAB−0207 Griveaud yria cangia|TDGAB−0355cangia|TDGAB−0513cangia|TDGAB−0539 Noctuidae|TDGAB−1599Noctuidae|Lope11−0367Noctuidae|Lope11−0480 Griveaud yria cangia|TDGAB−0881cangia|TDGAB−1382cangia|TDGAB−1392 Noctuidae|TDGAB−0446Noctuidae|TDGAB−2236 Noctuidae (224,397) Griveaud yria cangia|TDGAB−1393cangia|TDGAB−1759cangia|TDGAB−1883 Lepidoptera|TDGAB−0867ParNoctuidae|TDGAB−0209 Griveaud yria cangia|Lope11−0105cangia|Lope11−0620cangia|Lope11−0621 Noctuidae|TDGAB−0894Noctuidae|Lope11−0052Noctuidae|Lope11−0918dasena|TDGAB−0112 Griveaud yria cangia|Lope11−0630cangia|Lope11−0719 Noctuidae|TDGAB−0235Noctuidae|TDGAB−1046Noctuidae|TDGAB−2396 Griveaud Noctuidae|TDGAB−2237Noctuidae|TDGAB−2389Noctuidae|TDGAB−0591 GriveaudLymantriinae|TDGAB−0858ymantriinae|Lope11−0994 Noctuidae|TDGAB−0249Noctuidae|TDGAB−2152Noctuidae|TDGAB−2231 LNoctuidae|TDGAB−0411JanaNoctuidae|TDGAB−0262 gracilis|TDGABb−328 Epiphora rectifascia|TDGABb−274Noctuidae|TDGAB−2289Noctuidae|TDGAB−0544Noctuidae|TDGAB−0395 Noctuidae|TDGAB−1675Noctuidae|TDGAB−0580Noctuidae|TDGAB−1873 EpiphoraEpiphoraNotodontidae|TDGAB−1295Ar ploetzi|TDGABb−284ctiinae|TDGAB−1327albida|TDGABb−261 Notodontidae|Lope11−0785Notodontidae|TDGAB−1023Lasiocampidae|TDGAB−1179teri|TDGAB−1585teri|TDGAB−1657 Notodontidae|TDGAB−1267 Lasiocampidae|TDGAB−0105Lasiocampidae|TDGAB−1206Lasiocampidae|TDGAB−1659teri|TDGAB−0472teri|TDGAB−1139teri|TDGAB−1915 Geometridae|TDGAB−2066Lepidoptera|TDGAB−2054Crambidae|TDGAB−1814 Lasiocampidae|TDGAB−1662Lasiocampidae|TDGAB−1771Lasiocampidae|Lope11−0152 Orthogonioptilum|Lope11−0435thogonioptilum|Lope11−0897Lymantriinae|TDGAB−0929ymantriinae|TDGAB−1197 Epanaphe car OrOrthogonioptilum|TDGABb−0195thogonioptilum|Lope11−0893thogonioptilum|Lope11−0433 EpanapheEpanaphe|TDGAB−1820Epanaphe|TDGAB−1823 car Orthogonioptilum|Lope11−0429thogonioptilum|Lope11−0432thogonioptilum|Lope11−0434 Epanaphe|TDGAB−1926Epanaphe|TDGAB−1111Epanaphe|TDGAB−0714 OrOrthogonioptilum|TDGABb−228thogonioptilum|Lope11−0425thogonioptilum|Lope11−0426 Epanaphe|TDGAB−1795Epanaphe|TDGAB−0054Epanaphe|TDGAB−1986 Orthogonioptilum|TDGABb−0193thogonioptilum|TDGABb−0201thogonioptilum|TDGABb−0203 Epanaphe|TDGAB−1996Epanaphe|TDGAB−1236Epanaphe|TDGAB−2119Epanaphe|TDGAB−2296 Orthogonioptilum|TDGABb−0198thogonioptilum|TDGABb−0200thogonioptilum|TDGABb−0194 Epanaphe|TDGAB−2415ArTimana|TDGAB−0161ctiinae|Lope11−0315 Orthogonioptilum|TDGABb−0205thogonioptilum|TDGABb−0204thogonioptilum|TDGABb−0199 Timana|TDGAB−0833Geometridae|TDGAB−2185Geometridae|TDGAB−0658ylla|TDGABb−388 Orthogonioptilum|TDGABb−217thogonioptilum|TDGABb−216 Geometridae|TDGAB−2267Geometridae|TDGAB−0210Geometridae|TDGAB−1466Geometridae|Lope11−0321gus|TDGABb−390gus|TDGABb−391gus|TDGABb−392 Orthogonioptilum|TDGABb−225thogonioptilum|TDGABb−221thogonioptilum|TDGABb−220 Geometridae|Lope11−0489Noctuidae|TDGAB−2073Eudaemonia troglophgus|TDGABb−393gus|TDGABb−394 Orthogonioptilum|Lope11−0892thogonioptilum|Lope11−0430 Draft Eudaemonia aarrgiphontes|TDGABb−395giphontes|TDGABb−389giphontes|TDGABb−396 Orthogonioptilum|Lope11−0884thogonioptilum|Lope11−0885thogonioptilum|Lope11−0887 Eudaemonia argiphontes|TDGABb−397giphontes|TDGABb−398 OrOrthogonioptilum|Lope11−0436thogonioptilum|Lope11−0437 Eudaemonia ar Orthogonioptilum|Lope11−0682thogonioptilum|Lope11−0683thogonioptilum|Lope11−0684 EudaemoniaAurivillius aratus|TDGABb−275aratus|TDGABb−276 ar era|TDGABb−317 Orthogonioptilum|Lope11−0882thogonioptilum|Lope11−0883thogonioptilum|Lope11−0681 ADasycurivilliushira|Lope11−0133 triramis|TDGABb−277triramis|TDGABb−278 Orthogonioptilum|TDGABb−224thogonioptilum|Lope11−0685thogonioptilum|Lope11−0881 PselapheliaPseudantheraea gemmif discrepans|TDGABb−0187discrepans|TDGABb−0186discrepans|TDGABb−0184 OrOrthogonioptilum|TDGABb−0197thogonioptilum|TDGABb−223thogonioptilum|TDGABb−215 Pseudantheraeaunaea alinda|TDGABb−286tyrrhena|TDGABb−285 leopatra|TDGABb−287discrepans|TDGABb−0188discrepans|TDGABb−0185discrepans|TDGABb−0189 OrthogonioptilumOrthogonioptilum|TDGABb−0196thogonioptilum|TDGABb−222thogonioptilum|TDGABb−226 luminosum|Lope11−0875 PseudobPseudobunaea c OrthogonioptilumthogonioptilumOrthogonioptilum|TDGABb−218 luminosum|TDGABb−229luminosum|TDGABb−230luminosum|Lope11−0431 Athletes albicans|TDGABb−0182albicans|TDGABb−0180albicans|TDGABb−0181 OrOrthogonioptilumthogonioptilum luminosum|TDGABb−231 violascens|Lope11−0878 AthletesLobobunaea albicans|TDGABb−0183albicans|TDGABb−301 acetes|TDGABb−288acetes|TDGABb−289acetes|TDGABb−290 Orthogonioptilumthogonioptilum vestigiatum|TDGABb−262vestigiatum|TDGABb−264 violascens|TDGABb−219 Lobobunaea phaedusa|TDGABb−311phaedusa|TDGABb−308phaedusa|TDGABb−309 Orthogonioptilum vestigiatum|TDGABb−263 Lobobunaea phaedusa|TDGABb−310phaedusa|Lope11−0428acuta|TDGABb−307otes|TDGABb−304otes|TDGABb−305 CarnegiaCarnegia mirabilis|TDGABb−0206 mirabilis|TDGABb−212mirabilis|TDGABb−213 LobobLobobunaea erythrotes|TDGABb−306otes|TDGABb−302otes|TDGABb−303 MicragoneCarnegia neon mirabilis|TDGABb−211mirabilis|TDGABb−209 LobobunaeaLobobunaea erythrgoodii|Lope11−0680goodii|Lope11−0879 Micragoneagone neonubifneonubifubifera|Lope11−0686era|Lope11−0886 LobobNudaurelia jamesoni|TDGABb−300eblis|TDGABb−279lis|TDGABb−280lis|TDGABb−281 MicragoneMicragone neonubifera|TDGABb−248era|TDGABb−247era|TDGABb−249 Nudaurelia eblis|TDGABb−282lis|TDGABb−283 MicragoneMicragone neonubif agath era|TDGABb−244era|TDGABb−245era|TDGABb−246 Arctiinae (113,404) NudaureliaImbrasia er tli|TDGABb−254tli|TDGABb−255tli|TDGABb−257eb MicragoneMicragone agathylla|TDGABb−0191ylla|TDGABb−0192ylla|TDGABb−227 Imbrasia erlongicaudata|TDGABb−387epimethea|TDGABb−299 MicrMicragoneagone lichenodes|TDGABb−242henodes|TDGABb−243ylla|TDGABb−0190 Imbrasia epimethea|TDGABb−259epimethea|TDGABb−260epimethea|TDGABb−258epimethea|TDGABb−256 MicrDogoiaagone mgablichenodes|TDGAB−1751henodes|TDGAB−2429 sp. 1|TDGABb−2521|TDGABb−253 ImbrasiaNudaurelia epimethea|Lope11−0679 bouvieri|TDGABb−271bouvieri|TDGABb−272 DogoiaDogoia obscuripennis|TDGABb−233 mgab sp. 1|TDGABb−2511|TDGABb−250 NudaureliaBunaea alcinoe|Lope11−0678alcinoe|TDGABb−291alcinoe|TDGABb−292 bouvieri|TDGABb−273 Dogoia Goodiaobscuripennis|TDGABb−232 falcata|TDGABb−241 BunaeaNudaurelia alcinoe|Lope11−0867 amathusia|TDGABb−267amathusia|TDGABb−268 Goodia falcata|TDGABb−240falcata|TDGABb−239falcata|TDGABb−238 Nudaurelia amathusia|TDGABb−269dione|TDGABb−293anthinoides|TDGABb−270 GoodiaStenoglene|Lope11−0126Stenoglene|Lope11−0125 falcata|TDGABb−237 Nudaurelia dione|TDGABb−296dione|TDGABb−295dione|TDGABb−294 StenogleneStenogleneStenoglene maculifMGABsp3|TDGABb−315 fouassini|TDGAB−0891era|TDGABb−364 Notodontidae|TDGAB−2024Nudaurelia dione|Lope11−0980dione|TDGABb−298dione|TDGABb−297 StenogleneStenoglene bimaculatus|TDGABb−363 maculifera|TDGABb−336era|TDGABb−362 Lechriolepis|TDGAB−0336hriolepis|TDGAB−0536hriolepis|TDGAB−0506 AcrojanaEpijana MGABsp1|TDGABb−346Noctuidae|Lope11−0093 lanosa|TDGABb−319 Phalerinae|TDGAB−0036LeLecchriolepis|TDGABb−380hriolepis|TDGABb−379hriolepis|TDGAB−0504 Acrojana MGABsp1|TDGABb−343MGABsp2|TDGABb−324 Antheua|TDGAB−1866Antheua|TDGAB−1162Antheua|TDGAB−0839 Holocerina angulata|TDGABb−236angulata|TDGABb−235angulata|TDGABb−234 Antheua|TDGAB−0822Antheua|TDGAB−1890Antheua|TDGAB−1741 Dactyloceras lucina|TDGABb−386lucina|TDGABb−383lucina|TDGABb−384 Antheua|TDGAB−0890Antheua|Lope11−0520Antheua|TDGAB−1683 DactylocerasMicragoneylas virescens|Lope11−1002 joicelucina|TDGABb−385yi|TDGAB−1656 Notodontidae|TDGAB−0280Notodontidae|TDGAB−0354Antheua|Lope11−0854 LophostethusCephonodes dumolinii h congoicum|TDGABb−003 Notodontidae|TDGAB−1492Notodontidae|TDGAB−1483Notodontidae|TDGAB−0915 Lophostethus dumolinii congoicum|TDGABb−001congoicum|TDGABb−002Noctuidae|Lope11−0159Noctuidae|Lope11−0068Noctuidae|Lope11−0058hira|Lope11−0850 Notodontidae|TDGAB−0910Notodontidae|TDGAB−0908Notodontidae|TDGAB−0897Notodontidae|TDGAB−0589 ymantriinae|Lope11−0652Dasychira|TDGAB−0221 Notodontidae|Lope11−0797Notodontidae|TDGAB−0904Notodontidae|Lope11−0069 Lymantriinae|TDGAB−1902ymantriinae|TDGAB−1761 Notodontidae|TDGAB−2048Notodontidae|TDGNotodontidae|TDGAB−1156 Lymantriinae|TDGAB−0529ymantriinae|Lope11−0632ymantriinae|Lope11−0619 Notodontidae|TDGAB−1225Notodontidae|TDGAB−1191Notodontidae|TDGAB−0187AB−0857 Lymantriinae|TDGAB−1185ymantriinae|TDGAB−2211ymantriinae|TDGAB−0579 Notodontidae|TDGAB−0865Notodontidae|TDGAB−0934Notodontidae|TDGAB−2097 TemnoraLymantriinae|TDGAB−0884 scitula|Lope11−0995 Notodontidae|TDGAB−2286Notodontidae|TDGAB−0968Notodontidae|TDGAB−0394 Temnora scitula|Lope11−0909scitula|Lope11−0674scitula|Lope11−0675 Notodontidae|TDGAB−0533Notodontidae|TDGAB−1196Notodontidae|TDGAB−2308 TemnoraTemnora scitula|TDGABb−0136 scitula|Lope11−0424scitula|Lope11−0079 Notodontidae|Lope11−0798Notodontidae|TDGAB−2033Notodontidae|Lope11−0048Notodontidae|TDGAB−0840 Temnora scitula|Lope11−0921scitula|Lope11−0905 Notodontidae|TDGAB−0553Notodontidae|TDGABb−345Notodontidae|TDGAB−0850 Temnora scitula|Lope11−0700scitula|Lope11−0694scitula|Lope11−0676 Notodontidae|TDGAB−1370Notodontidae|Lope11−0877Notodontidae|Lope11−0011 TemnoraTemnora scitula|TDGABb−0138scitula|TDGABb−0139 scitula|Lope11−0423 Notodontidae|TDGAB−0524Notodontidae|TDGAB−0364Notodontidae|TDGAB−1666 TemnoraTemnora scitula|TDGABb−0132 scitula|Lope11−0697scitula|Lope11−0673 Notodontidae|Lope11−0123Notodontidae|TDGAB−1199Notodontidae|TDGAB−0838Notodontidae|TDGAB−0538 Temnora scitula|TDGABb−0135scitula|TDGABb−0134scitula|TDGABb−0133 Others (40,72) Notodontidae|TDGAB−0083Notodontidae|TDGAB−1506Notodontidae|TDGAB−1005 T Temnoraygoides|Lope11−0926 livida|TDGABb−033livida|TDGABb−032livida|Lope11−0709 Notodontidae|Lope11−0589Notodontidae|TDGAB−1210Notodontidae|Lope11−0490 Temnoraygoides|Lope11−0925 livida|TDGABb−031 ArErebinae|Lope11−0777ctiinae|Lope11−0819ctiinae|TDGAB−1221 TemnoraTemnora iap griseata|TDGABb−089griseata|Lope11−0902 Notodontidae|TDGAB−0273Notodontidae|TDGAB−1122Notodontidae|TDGAB−1091Notodontidae|TDGAB−1136 TTemnoraemnora griseata|TDGABb−0179 funebris|TDGABb−105funebris|Lope11−0418 Notodontidae|TDGAB−1035Notodontidae|TDGAB−1167Notodontidae|TDGAB−1147 Temnoraounensis|TDGABb−0131 funebris|TDGABb−104funebris|TDGABb−103funebris|Lope11−0411 Notodontidae|TDGAB−1332Notodontidae|TDGAB−1094Notodontidae|TDGAB−1171 TTemnora fumosa|TDGABb−096fumosa|TDGABb−094ulata|Lope11−0054 Notodontidae|Lope11−0077Notodontidae|TDGAB−1193Notodontidae|TDGAB−2134Notodontidae|TDGAB−1042 TemnoraTT emnoraTcameremnora spiritus|TDGABb−0148 eranga|TDGABb−0150ulata|TDGABb−111ulata|TDGABb−110 Notodontidae|TDGAB−0574Notodontidae|TDGAB−0286Notodontidae|TDGAB−0107 Temnora crenulata|TDGABb−109ulata|TDGABb−108ulata|TDGABb−106 Notodontidae|TDGAB−1472Notodontidae|Lope11−0163Notodontidae|Lope11−0161 AtemnoraTemnora westermannii|TDGABb−090 crenulata|TDGABb−107 Notodontidae|Lope11−0104Notodontidae|TDGAB−0091Notodontidae|TDGAB−1658 Temnoraon cren megaera|Lope11−0967megaera|Lope11−0864 Notodontidae|TDGAB−1020Notodontidae|TDGAB−0344Notodontidae|TDGAB−1003 EuchlorEuchlor on megaera|Lope11−0385megaera|Lope11−0383megaera|Lope11−0381 Notodontidae|TDGAB−1153Notodontidae|TDGAB−1036Notodontidae|TDGAB−1024Notodontidae|TDGAB−1164 Euchloronon megaera|TDGABb−0166megaera|TDGABb−0165 megaera|TDGABb−013 Notodontidae|TDGAB−1896Notodontidae|TDGAB−0870Notodontidae|TDGAB−1320 EuchlorEuchlorhloronon megaera|TDGABb−0164 megaera|TDGABb−014megaera|TDGABb−015di|TDGABb−063di|TDGABb−061 Notodontidae|TDGAB−2086Notodontidae|TDGAB−1748Notodontidae|TDGAB−0836 EuchlorEucEuchlor on megaera|Lope11−0865megaera|Lope11−0688tha|Lope11−0413tha|Lope11−0396di|TDGABb−062 Notodontidae|TDGAB−1435Notodontidae|Lope11−0596Notodontidae|TDGAB−2071 EuchlorEuchlorEuchlor tha|TDGABb−073tha|TDGABb−054tha|Lope11−0394 Notodontidae|TDGAB−0363Notodontidae|TDGAB−0136Notodontidae|TDGAB−1007Notodontidae|Lope11−0170 CentroctenaoctenaTheretra rutherforruther jugurfortha|TDGABb−053tha|TDGABb−074tha|TDGABb−052 Notodontidae|TDGAB−2327Notodontidae|TDGAB−2028Notodontidae|TDGAB−1384 Centr Theretra jugur Cossidae (11,19) Notodontidae|TDGAB−0357Notodontidae|Lope11−0935Notodontidae|TDGAB−1028Notodontidae|TDGAB−0333 Theretra jugurosae|Lope11−0856 Notodontidae (104,272) Notodontidae|TDGAB−1720Notodontidae|TDGAB−1303Notodontidae|TDGAB−0937 TheretraNephele jugurfunebris|TDGABb−060funebris|Lope11−0894osae|TDGABb−043osae|Lope11−0414osae|Lope11−0405 Notodontidae|TDGAB−0526Notodontidae|TDGAB−0771Notodontidae|TDGAB−2040Notodontidae|TDGAB−0462 NepheleNepheleNephele funebris|TDGABb−0154 funebris|TDGABb−056 rosae|TDGABb−044osae|TDGABb−045 Notodontidae|TDGAB−0389Notodontidae|TDGAB−0582Notodontidae|TDGAB−0989 NepheleNephele funebris|TDGABb−0153 osae|TDGABb−0159osae|TDGABb−0160r era|Lope11−0714era|Lope11−0402 Notodontidae|TDGAB−2146Notodontidae|TDGAB−0592Notodontidae|TDGAB−0403 Nephele r era|TDGABb−051era|TDGABb−050 Notodontidae|TDGAB−1307Notodontidae|TDGAB−1095Notodontidae|TDGAB−2282 Nephele r Notodontidae|TDGAB−0954Notodontidae|TDGAB−0501Notodontidae|TDGAB−0969Notodontidae|TDGAB−2422 Nephele accentif Eupterotidae (15,40) Notodontidae|TDGAB−0269Notodontidae|TDGAB−0827Notodontidae|TDGAB−2130 NepheleNephele accentif maculosa|Lope11−0701 Notodontidae|TDGAB−1811Notodontidae|TDGAB−1058Notodontidae|TDGAB−0976 Nephele maculosa|Lope11−0692maculosa|Lope11−0690maculosa|Lope11−0412alens|Lope11−0422 Notodontidae|TDGAB−1102Notodontidae|TDGAB−1172Notodontidae|TDGAB−1174 Nephele maculosa|Lope11−0407maculosa|Lope11−0393alens|TDGABb−0174alens|TDGABb−022alens|Lope11−0403 Notodontidae|TDGAB−0488Notodontidae|TDGAB−0803Notodontidae|TDGAB−1033 Nephele maculosa|TDGABb−085maculosa|TDGABb−084maculosa|TDGABb−057alens|TDGABb−023alens|TDGABb−024tita|Lope11−0406tita|Lope11−0399 Notodontidae|TDGAB−0254Notodontidae|TDGAB−0239Notodontidae|TDGAB−0284Notodontidae|TDGAB−0334 NepheleNephele maculosa|TDGABb−0161 maculosa|TDGABb−055 Notodontidae|TDGAB−1928Notodontidae|TDGAB−1999Notodontidae|TDGAB−1918 Nephele aequivaequiv Notodontidae|TDGAB−0994Notodontidae|TDGAB−0995Notodontidae|Lope11−0557Notodontidae|Lope11−0182 NepheleNepheleNepheleNephele aequiv aequivaequi bipar comma|Lope11−0395v Notodontidae|Lope11−0045Notodontidae|TDGAB−1050Notodontidae|TDGAB−0888 HippotionBasiothia celerio|Lope11−0895medea|Lope11−0703 Limacodidae (30,59) Notodontidae|Lope11−0622Notodontidae|TDGAB−2306Notodontidae|TDGAB−1021Notodontidae|TDGAB−0213 BasiothiaHippotion medea|TDGABb−0144medea|TDGABb−0145 gracilis|Lope11−0862 Notodontidae|TDGAB−0971Notodontidae|Lope11−0931Notodontidae|TDGAB−1794Notodontidae|TDGAB−2162 HippotionHippotion gracilis|Lope11−0401gracilis|Lope11−0691 eson|Lope11−0702eson|Lope11−0693eson|Lope11−0400 Notodontidae|TDGAB−1300Notodontidae|TDGAB−1981Notodontidae|TDGAB−1608 HippotionHippotion eson|TDGABb−028eson|TDGABb−029eson|Lope11−0699 ParajanaLimacodidae|TDGAB−1760Limacodidae|TDGAB−1676Notodontidae|Lope11−0944 gab Hippotion eson|Lope11−0696eson|Lope11−0388eson|Lope11−0689 Tor HippotionDaphnis osiris|TDGABb−016 nerii|Lope11−0857opos|Lope11−0968 Limacodidae|Lope11−0444Tortricidae|TDGAB−0307tricidae|TDGAB−2270tricidae|TDGAB−2072 TheretraDaphnis orpheus|TDGABb−113opos|TDGABb−0147 nerii|TDGABb−011nerii|Lope11−0698 Notodontidae|TDGAB−1405Notodontidae|TDGAB−0138Notodontidae|TDGAB−1917Notodontidae|TDGAB−0837tricidae|TDGAB−2375tricidae|TDGAB−2241 HippotionDaphnisDaphnisDaphnis balsaminae|TDGABb−018 nerii|TDGABb−0155 nerii|TDGABb−010nerii|Lope11−0404 LNotodontidae|TDGAB−2026unica|Lope11−0978 Daphnisontia atrhholzi|TDGABb−093hholzi|TDGABb−092hholzi|TDGABb−091 nerii|TDGABb−012 Lepidoptera|TDGAB−1465Lepidoptera|TDGAB−0704Lymantriinae|Lope11−0833ymantriinae|Lope11−0076ymantriinae|Lope11−0073 olvuli|Lope11−0671olvuli|Lope11−0670olvuli|Lope11−0398 Tineidae|TDGAB−1974Tineidae|TDGAB−1573Geometridae|Lope11−0553 AcherontiaAcher atr olvuli|TDGABb−0118olvuli|Lope11−0669 PsyPsyc CoeloniaCoeloniaPoliana fulvinotata|TDGABb−0168 fulvinotata|TDGABb−046fulvinotata|TDGABb−047 buc olvuli|TDGABb−0119olvuli|TDGABb−0120 Psyc hidae|Lope11−0317 PolianaAgrius convbuc Saturniidae (43,177) Cossidae|TDGAB−1973Cossidae|TDGAB−0460Psycchidae|Lope11−0189hidae|TDGAB−1808hidae|Lope11−0640 Agriusthographus|Lope11−0896 conv Zygaenidae|TDGAB−2380Lepidoptera|TDGAB−1813Eriocottidae|TDGAB−1958Eriocottidae|TDGAB−1954hidae|Lope11−0927hidae|TDGAB−1592hidae|Lope11−0625 AgriusAgrius thographus|TDGABb−0173thographus|TDGABb−0170convthographus|TDGABb−039 conv Limacodidae|TDGAB−1843Limacodidae|TDGAB−1779Limacodidae|TDGAB−1071 chusAgrius orthographus|TDGABb−0172 convthographus|TDGABb−038thographus|Lope11−0704dii|TDGABb−0130dii|TDGABb−0129teri|Lope11−0866teri|Lope11−0707 Limacodidae|TDGAB−1406Limacodidae|TDGAB−0135Limacodidae|TDGAB−0993 hus or thographus|TDGABb−0171thographus|TDGABb−037teri|TDGABb−065teri|TDGABb−064teri|TDGABb−066 Limacodidae|Lope11−0582Limacodidae|Lope11−0355Limacodidae|TDGAB−2157Limacodidae|TDGAB−2023 ypty hus thihongae|TDGABb−0143cula|Lope11−0710cula|TDGAB−1824 Lasiocampidae (101,242) PLimacodidae|TDGAB−0821Limacodidae|TDGAB−0725 Pol chushus husor thihongae|TDGABb−0142thihongae|TDGABb−0141 bernar cula|Lope11−0397cula|Lope11−0706cula|Lope11−0420 PLimacodidae|TDGAB−2350Limacodidae|TDGAB−2349arasa|TDGAB−0760 PolyptycPolyptychusPolyptychus or or cula|Lope11−0416cula|Lope11−0391 PParasa|TDGAB−2414arasa|TDGAB−0819 PolyptychusPolyptychusPolyptychusPolyptycypty or oror PParasa|TDGAB−0391arasa|TDGAB−0277arasa|TDGAB−0194 PolyptychusPolPolyptycPolyptycPolyptychus or car PParasa|TDGAB−2149arasa|TDGAB−2022arasa|TDGAB−0887 PolyptychusPolyptychus bernar car uloti|Lope11−0880uloti|Lope11−0409ga|Lope11−0668ga|TDGABb−069ga|Lope11−0384 Limacodidae|TDGAB−0816Limacodidae|TDGAB−0770Parasa|TDGAB−2419arasa|TDGAB−2358arasa|TDGAB−2326 hushushus hollandi|Lope11−0389trisecta|TDGABb−080 trisecta|TDGABb−079andosa|Lope11−0427ga|TDGABb−068ga|TDGABb−067us|Lope11−0712 PLimacodidae|TDGABb−367Limacodidae|TDGAB−2428Limacodidae|TDGAB−2006 Polyptychus huspauper andosa|TDGABb−0152andosa|TDGABb−0151nus|Lope11−0711us|Lope11−0419us|Lope11−0415 PParasa|TDGAB−2122arasa|TDGAB−1632arasa|TDGAB−0329 Polyptychus pauper uri us|Lope11−0386 Crambidae (52,109) PParasa|TDGAB−2324arasa|TDGAB−0454arasa|TDGAB−2101 PolyptychusPolyptychusPolyptycPolyptyc pauperpauper us|TDGABb−0122us|TDGABb−0121us|TDGABb−0124 Limacodinae|TDGAB−1258Parasa|Lope11−0320arasa|TDGAB−1920arasa|TDGAB−1904 PolyptycPolyptyc nus|TDGABb−0123 Limacodinae|TDGAB−1752Limacodinae|TDGAB−2154Limacodinae|TDGAB−2222Limacodinae|TDGAB−1278 PolyptychusPolyptyc chus herb murinuri Limacodidae|TDGAB−2163Limacodidae|TDGAB−0712Limacodinae|Lope11−0585Limacodinae|Lope11−0295 Polyptychus nigripla osea|Lope11−0705 Limacodidae|TDGAB−1979Limacodidae|TDGAB−1614Limacodidae|TDGAB−1512 PolyptychusPolyptychusypty husnigripla m spurrelli|Lope11−0708osea|Lope11−0666osea|Lope11−0382osea|Lope11−0410 Limacodidae|TDGAB−1220Limacodidae|Lope11−0370Limacodidae|Lope11−0362 PolyptychusPolPolyptychushus nigripla spurrelli|TDGABb−0117murinspurrelli|TDGABb−0116 Cossidae|TDGABb−316Limacodidae|TDGAB−1879Limacodidae|TDGAB−1700Psyc Polyptychushushushus spurrelli|TDGABb−0115murinspurrelli|TDGABb−0114 spurrelli|Lope11−0417 Cossidae|TDGAB−2323Cossidae|TDGAB−1351Cossidae|TDGAB−0939 PolyptychusPolyptychus murinmurin Cossidae|Lope11−0993Cossidae|Lope11−0949Cossidae|Lope11−0855Cossidae|Lope11−0313hidae|Lope11−0578 PolyptychusRufoclanis m r Drepanidae|TDGABb−320Drepanidae|TDGAB−2098Lepidoptera|TDGAB−1922 NeopolyptycRufoclanislanislanis virescens|TDGABb−0157 virescens|TDGABb−077 r eldti|TDGABb−009eldti|TDGABb−008eldti|TDGABb−007 Erebinae (72,193) Sphingidae (66,267) Drepanidae|TDGAB−0505Drepanidae|Lope11−0075Drepanidae|TDGAB−2320Drepanidae|TDGAB−0844 NeopolyptycNeopolyptyclanislanislanislanis virescens|TDGABb−0156 virescens|TDGABb−075virescens|TDGABb−076 admatha|TDGABb−071 OpisthodontiaOpisthodontia superba|Lope11−0185superba|Lope11−0184superba|TDGAB−1418 NeopolyptycNeopolyptyclanislanis occidentalis|TDGABb−072 admatha|TDGABb−070 Lecithoceridae|Lope11−0336Lecithoceridae|TDGAB−1570Drepanidae|TDGAB−1200Opisthodontia superba|Lope11−0560 ChlorocChloroc Noctuidae|TDGAB−1976Noctuidae|TDGAB−1963Noctuidae|TDGAB−1331Lecithoceridae|Lope11−0647 ChlorocChlorocymatodesAndriasa contraria|TDGAB−1838 lemairei|TDGABb−017weni|Lope11−0859 StracenaStracena ee PseudocAndriasaxiphia contraria|TDGAB−1132 mpassa|Lope11−0901mpassa|Lope11−0860weni|Lope11−0667 Pyralidae (70,172) StracenaStracena ee Pseudoc xiphiaxiphia mpassa|TDGABb−036 mpassa|Lope11−0888ormosa|TDGABb−082thueri|TDGABb−088thueri|Lope11−0858 Stracena|TDGAB−0415Stracena e xiphiaxiphiaxiphia mpassa|TDGABb−0176 mpassa|Lope11−0861mpassa|Lope11−0408ormosa|TDGABb−081thueri|TDGABb−087thueri|TDGABb−086 Stracena|TDGAB−1992Stracena|TDGAB−2123Stracena|TDGAB−1068Stracena|TDGAB−1052 OplercrcPhyllolanislanisxiphia rhadamistus|TDGABb−099rhadamistus|TDGABb−098xiphia mpassa|TDGABb−0175 mpassa|TDGABb−035mpassa|TDGABb−034thueri|Lope11−0672 StracenaStracena|TDGAB−2218 pr Falcatula cPhylloPhyllo xiphia mpassa|Lope11−0863 Noctuidae|TDGAB−0421Stracena pr ximia|TDGAB−0186 AcanthosphinxAcanthosphinxPhylloPhylloPhyllo guessfguessguessff Noctuidae|TDGAB−2045Noctuidae|TDGAB−0940Noctuidae|TDGAB−0206ximia|TDGAB−0588ximia|TDGAB−0540ximia|TDGAB−2217 PhylloPhylloPhylloxiphia o Noctuidae|TDGAB−0483Noctuidae|TDGAB−0101Noctuidae|TDGAB−2090ximia|TDGAB−2401ximia|TDGAB−2363ximia|TDGAB−1991 Phyllo ganii|Lope11−0390ganii|Lope11−0387 Noctuidae|Lope11−0132Noctuidae|TDGAB−0778Noctuidae|Lope11−0167Noctuidae|TDGAB−0999ximia|TDGAB−2412 Phylloxiphiaoxiphia ober f ganii|TDGABb−0163ganii|TDGABb−027ganii|TDGABb−025 Noctuidae|TDGAB−0142Noctuidae|Lope11−0348Noctuidae|Lope11−0138 Phylloxiphiayll xiphia f illustris|TDGABb−102illustris|Lope11−0713ganii|TDGABb−0162ganii|TDGABb−026 Noctuidae|TDGAB−1145Noctuidae|TDGAB−1833Noctuidae|TDGAB−1154 Phylloxiphiaxiphia ober illustris|TDGABb−101illustris|TDGABb−100 Noctuidae|Lope11−0091Noctuidae|TDGAB−1635Noctuidae|TDGAB−0949Noctuidae|TDGAB−2226omelaena|Lope11−0009omelaena|TDGAB−1379omelaena|TDGAB−2393 PhPhylloxiphia ober Noctuidae|Lope11−0823Noctuidae|Lope11−0602Noctuidae|Lope11−0311omelaena|Lope11−0061 RhadinopasaPhylloxiphiaPhyllo oberhornimani|Lope11−0890 rthesarPorthesarPo Noctuidae|TDGAB−1257 RhadinopasaRhadinopasaPhylloPhylloPlatysphinx hornimani|TDGABb−005hornimani|TDGABb−006hornimani|Lope11−0392Spilomelinae|TDGAB−0738 vicaria|TDGABb−021vicaria|TDGABb−020 Noctuidae|Lope11−0846Noctuidae|Lope11−0358Porthesar RhadinopasaPlatysphinx hornimani|TDGABb−004 vicaria|TDGABb−019 Crambidae|TDGAB−1391ThCrambidae|TDGAB−1338 XanthopanLasiocampidae|Lope11−0948Lasiocampidae|Lope11−0930 mor Crambidae|TDGAB−0720Crambidae|TDGAB−1851Crambidae|TDGAB−0676 XanthopanXanthopanLasiocampidae|TDGAB−1893Lasiocampidae|Lope11−0940Lasiocampidae|Lope11−0924 mor mormor Crambidae|Lope11−0006Crambidae|TDGAB−1788Crambidae|TDGAB−1462Crambidae|TDGAB−0665yrididae|TDGAB−0208 XanthopanXanthopanLasiocampidae|Lope11−0720Lasiocampidae|TDGAB−0728Lasiocampidae|TDGAB−1395 mor mor Crambidae|TDGAB−0701Crambidae|TDGAB−0619Crambidae|TDGAB−0087Crambidae|Lope11−0007 Lasiocampidae|TDGAB−1454Lasiocampidae|TDGAB−1702Lasiocampidae|TDGAB−1948 Crambidae|Lope11−0555Crambidae|TDGAB−1950Crambidae|TDGAB−1625Crambidae|TDGAB−0754oa|Lope11−0350oa|Lope11−0297oa UD001|Lope11−0371 Lasiocampidae|Lope11−0186Lasiocampidae|Lope11−0576Lasiocampidae|Lope11−0577 MarucaCrambidae|Lope11−0831 vitrata|TDGAB−0609vitrata|TDGAB−0860oa|Lope11−0634 Lasiocampidae|Lope11−0791Lasiocampidae|Lope11−0294Lasiocampidae|Lope11−0174Leptometa|Lope11−0788Leptometa|TDGAB−1026Leptometa|TDGABb−314 Crambidae|TDGAB−1842Maruca vitrata|TDGAB−2369vitrata|TDGAB−1375 Lasiocampidae|TDGAB−1727Lasiocampidae|TDGAB−1576Leptometa|Lope11−0188Leptometa|TDGAB−1855Leptometa|TDGAB−1735 PleuroptyPleuroptyPleurCrambidae|TDGAB−2392 Lasiocampidae|TDGAB−0143Lasiocampidae|TDGAB−1523Leptometa|TDGAB−1650Leptometa|TDGAB−1448Leptometa|TDGAB−1019 PleuroptyPleuroptyPleuropty Leptometa|TDGAB−0340 PleuroptyPleuroptyPleuroptyPleuropty oplakaeis|TDGABb−329oplakaeis|TDGAB−1776 PleuroptyPleuPleuroptyPleur opt orficulatus|TDGAB−0366oplakaeis|TDGAB−0134 Crambidae|TDGAB−1919Crambidae|TDGAB−0024Pleur Lasiocampidae|Lope11−0574Lasiocampidae|TDGAB−2238Lasiocampidae|TDGAB−0554 CadarenaCadarenaCrambidae|TDGAB−2284 sin sin y Lasiocampidae|TDGAB−0402Gastr ha|TDGABb−313 Crambidae|TDGAB−1841Crambidae|TDGAB−0641Crambidae|TDGAB−2069roptyopt a|TDGAB−0681a|TDGAB−0652 Gastr StemorrhagStemorrhagCrambidae|Lope11−0082Crambidae|TDGAB−0022opt a|TDGAB−1413a|TDGAB−1469a|TDGAB−1437 Lasiocampidae|TDGAB−1655Lasiocampidae|TDGAB−1478 SyllepteProphantisStemorrhag c smaraa|TDGAB−0767a|TDGAB−0769a|TDGAB−1368 Lasiocampidae|TDGAB−1409Lasiocampidae|TDGAB−1207Lasiocampidae|Lope11−0908 Crambidae|TDGAB−2385Crambidae|Lope11−0548Syllepte c ya|TDGAB−0653a|TDGAB−0688a|TDGAB−0727 Lasiocampidae|Lope11−0071Lasiocampidae|Lope11−0583Lasiocampidae|TDGAB−1886yx|TDGAB−1359yx|TDGAB−0585 Crambidae|TDGAB−0698Crambidae|TDGAB−0661Crambidae|Lope11−0549y a|TDGAB−1602a|TDGAB−1542a|TDGAB−0103 Lasiocampidae|TDGAB−1646Lasiocampidae|TDGAB−1423Lasiocampidae|TDGAB−0017 Crambidae|TDGAB−1227Crambidae|TDGAB−0309DolicharCrambidae|TDGAB−2322a|Lope11−0551 Lasiocampidae|TDGAB−0003Lasiocampidae|TDGAB−2129Lasiocampidae|Lope11−0575Gonometa|TDGABb−376 Crambidae|Lope11−0830Crambidae|TDGAB−0643Crambidae|Lope11−0829Crambidae|Lope11−0547 Lasiocampidae|TDGAB−0380GonopacGonometa|TDGABb−375Gonometa|TDGABb−374Gonometa|TDGAB−0893 Crambidae|TDGAB−0732Crambidae|TDGAB−0623Crambidae|TDGAB−1347 Gastroplakaeis f Lasiocampidae|Lope11−0573Lasiocampidae|TDGAB−1746 Crambidae|TDGAB−1706Crambidae|TDGAB−1507Crambidae|TDGAB−1354 Lasiocampidae|TDGAB−0373Lasiocampidae|TDGAB−0370 Crambidae|Lope11−0835Crambidae|TDGAB−1203Crambidae|TDGAB−1722uata|TDGAB−2376uata|TDGAB−1598uata|TDGAB−0776 Mallocampa audea|TDGAB−0532oplakaeis|Lope11−0452oplakaeis|TDGAB−1895oplakaeis|TDGAB−1030 Spilomelinae|TDGAB−1730Spilomelinae|TDGAB−1609Spilomelinae|TDGAB−0062lementsi|TDGAB−1630lementsi|TDGAB−0647es sericea|TDGAB−1044 Lasiocampidae|TDGABb−339oplakaeis|TDGAB−0970oplakaeis|TDGAB−0192 Crambidae|TDGAB−2167Crambidae|TDGAB−1997Crambidae|TDGAB−1781Agathodes|TDGAB−0797eses sericea|TDGAB−1686sericea|TDGAB−0889 Lasiocampidae|TDGAB−0903Lasiocampidae|TDGAB−0353Lasiocampidae|TDGABb−341Gonobomboplakaeis|TDGAB−1027oplakaeis|TDGAB−2159oplakaeis|TDGAB−1161 PPCrambidae|Lope11−0545thria|Lope11−0373 Lasiocampidae|TDGAB−1173oplakaeis|TDGAB−1620 PPP alpitaalpita bonjongalis|TDGAB−0026bonjongalis|TDGAB−0030 Gastr Crambidae|Lope11−0550Crambidae|Lope11−0063PP alpitaalpitaalpita bonjongalis|TDGAB−0748 bonjongalis|TDGAB−0100bonjongalis|TDGAB−0025 GastrGastr ParParCrambidae|TDGAB−1724alpitaalpita bonjongalis|TDGAB−1844bonjongalis|TDGAB−1613 GastrGastr Pyralidae|TDGAB−1967Pyralidae|TDGAB−1965Pyralidae|TDGAB−1899Pyralidae|TDGAB−1420 gdina|TDGAB−1425 GastrLasiocampidae|TDGAB−1698 Pyralidae|Lope11−0322Pyralidae|TDGAB−0695Pyralidae|TDGAB−1969 Lasiocampidae|TDGAB−0944Lasiocampidae|TDGAB−1336Lasiocampidae|TDGAB−1877 Pyralidae|TDGAB−1509Pyralidae|TDGAB−0709Pyralidae|TDGAB−0303Pyralidae|TDGAB−1812domima|Lope11−0853domima|TDGAB−0686 Lasiocampidae|TDGAB−1880Lasiocampidae|Lope11−0078Lasiocampidae|TDGAB−1438 Pyralidae|TDGAB−0261Pyralidae|TDGAB−1184Pyralidae|Lope11−0840Pyralidae|TDGAB−1955 Lasiocampidae|TDGABb−382Lasiocampidae|TDGABb−381Lasiocampidae|Lope11−0939 Pyralidae|TDGAB−2316Pyralidae|TDGAB−1711Pyralidae|TDGAB−0751Pyralidae|TDGAB−1202 Lasiocampidae|TDGAB−0365Lasiocampidae|Lope11−0584Lasiocampidae|TDGAB−0072 Pyralidae|TDGAB−1689Pyralidae|TDGAB−0719Pyralidae|TDGAB−0437 Lasiocampidae|TDGAB−0950Lasiocampidae|Lope11−0581 Pyralidae|TDGAB−0126Pyralidae|TDGAB−1894Pyralidae|TDGAB−1495Pyralidae|TDGAB−1769 Lasiocampidae|Lope11−0580Lasiocampidae|Lope11−0562Lasiocampidae|TDGAB−1975 Pyralidae|TDGAB−0615Pyralidae|TDGAB−1415Pyralidae|TDGAB−1575 Lasiocampidae|Lope11−0933Lasiocampidae|Lope11−0339Lasiocampidae|Lope11−0923 Pyralidae|Lope11−0022Pyralidae|TDGAB−0144Pyralidae|TDGAB−1712 Lasiocampidae|TDGAB−1678Lasiocampidae|TDGAB−2407 Pyralidae|TDGAB−1076Pyralidae|TDGAB−1009Pyralidae|TDGAB−0992Pyralidae|Lope11−0595 Lasiocampidae|TDGAB−2206Lasiocampidae|TDGAB−2085 Pyralidae|TDGAB−2421GalleriaPyralidae|Lope11−0543 mellonella|Lope11−0651 Lasiocampidae|TDGAB−0232Lasiocampidae|TDGAB−2406Lasiocampidae|TDGAB−2212 Pyralidae|Lope11−0332Pyralidae|TDGAB−1726Pyralidae|TDGAB−0474Pyralidae|TDGAB−0146 Lasiocampidae|TDGAB−0282Lasiocampidae|Lope11−0012Lasiocampidae|TDGAB−2242 Pyralidae|TDGAB−1710Pyralidae|TDGAB−0710Pyralidae|TDGAB−0679Pyralidae|TDGAB−0473 Lasiocampidae|TDGAB−1204Lasiocampidae|TDGAB−0853Lasiocampidae|TDGAB−0531 Pyralidae|TDGAB−1447Pyralidae|Lope11−0330Pyralidae|TDGAB−0948 Lasiocampidae|TDGAB−0962Lasiocampidae|TDGAB−0338 Pyralidae|TDGAB−1301Pyralidae|TDGAB−1530Pyralidae|TDGAB−1480Pyralidae|TDGAB−1796 Lasiocampidae|Lope11−0889Lasiocampidae|TDGABb−347Lasiocampidae|Lope11−0141ypasa|Lope11−0900 Pyralidae|TDGAB−2133Pyralidae|TDGAB−1101Pyralidae|TDGAB−0188 Lasiocampidae|Lope11−0074Lasiocampidae|TDGAB−1694ypasa|Lope11−0187ypasa|TDGAB−1699ypasa|Lope11−0567 Pyralidae|TDGAB−1663Pyralidae|TDGAB−0703Pyralidae|TDGAB−1430Pyralidae|TDGAB−1799 Lasiocampidae|Lope11−0914Lasiocampidae|Lope11−0084Lasiocampidae|Lope11−0121Stoermeriana|TDGAB−1322ypasa|TDGAB−1352ypasa|TDGAB−1365 Pyralidae|TDGAB−1862Pyralidae|TDGAB−1802Pyralidae|TDGAB−1496 Lasiocampidae|Lope11−0044Lasiocampidae|Lope11−0446ypasa|TDGAB−1383ypasa|TDGAB−1463ypasa|TDGAB−1907 Pyralidae|TDGAB−1304Pyralidae|TDGAB−1980Pyralidae|TDGAB−1545Pyralidae|TDGAB−1871 Lasiocampidae|Lope11−0834Lasiocampidae|Lope11−0827ypasa|TDGABb−325ypasa|Lope11−0438ypasa|Lope11−0453 Pyralidae|TDGAB−0684Pyralidae|TDGAB−0073Pyralidae|TDGAB−1647 Lasiocampidae|TDGAB−2372Lasiocampidae|TDGAB−1670Pach ypasa|Lope11−0563ypasa|Lope11−0568ypasa|Lope11−0571 Pyralidae|TDGAB−1440Pyralidae|TDGAB−1441Pyralidae|TDGAB−0068Pyralidae|Lope11−0374 Lasiocampidae|TDGAB−1593Lasiocampidae|TDGAB−2178Lasiocampidae|TDGAB−1060PachPachPach ypasa|Lope11−0898ypasa|TDGAB−0222 Pyralidae|TDGAB−0115Pyralidae|TDGAB−0116Pyralidae|TDGAB−0122 Lasiocampidae|TDGAB−0750Lasiocampidae|TDGAB−1011Lasiocampidae|Lope11−0351PachPach Pyralidae|TDGAB−1341Pyralidae|TDGAB−2049Pyralidae|TDGAB−1192Pyralidae|TDGAB−1789 Lasiocampidae|TDGAB−1337Lasiocampidae|TDGAB−1189PachPachPach Pyralidae|TDGAB−2008Pyralidae|TDGAB−0534Pyralidae|TDGAB−1988 Lasiocampidae|TDGAB−0578Lasiocampidae|TDGAB−1039PachPachPach Pyralidae|TDGAB−1797Pyralidae|TDGAB−0124Pyralidae|TDGAB−2194Pyralidae|TDGAB−2166 PachPachPach Pyralidae|TDGAB−1043Pyralidae|TDGAB−0546Pyralidae|TDGAB−1998 PachPach Pyralidae|TDGAB−0099Pyralidae|TDGAB−0084Pyralidae|Lope11−0328Pyralidae|TDGAB−2132 Pyralidae|TDGAB−1660Pyralidae|TDGAB−0792Pyralidae|TDGAB−1951Pyralidae|TDGAB−0119 Pyralidae|Lope11−0617Pyralidae|TDGAB−2250Pyralidae|TDGAB−2079Pyralidae|TDGAB−1952 Pyralidae|TDGAB−2251Pyralidae|TDGAB−1309Pyralidae|TDGAB−0467Pyralidae|TDGAB−0471 Pyralidae|TDGAB−2047Pyralidae|TDGAB−2050Pyralidae|TDGAB−2051Pyralidae|TDGAB−2143 Lasiocampidae|Lope11−0572Lasiocampidae|Lope11−0569 Pyralidae|TDGAB−0706Pyralidae|TDGAB−1037Pyralidae|TDGAB−1959 Lasiocampidae|TDGAB−1753Lasiocampidae|TDGABb−078 Pyralidae|TDGAB−1569Pyralidae|TDGAB−0198Pyralidae|TDGAB−0495Pyralidae|TDGAB−0656 Lasiocampidae|TDGABb−373Lasiocampidae|TDGAB−1367Lasiocampidae|TDGABb−372 Pyralidae|TDGAB−0311Pyralidae|TDGAB−0302Pyralidae|TDGAB−2432Pyralidae|TDGAB−2379 Lasiocampidae|Lope11−0439Lasiocampidae|TDGAB−2115Lasiocampidae|Lope11−0899 Pyralidae|TDGAB−2059Pyralidae|TDGAB−0551Pyralidae|TDGAB−0550Pyralidae|TDGAB−0549 Lasiocampidae|Lope11−0564Lasiocampidae|Lope11−0448 Pyralidae|TDGAB−2246Pyralidae|TDGAB−2240Pyralidae|TDGAB−2156Pyralidae|TDGAB−2070 Lasiocampidae|TDGAB−1692Lasiocampidae|TDGAB−1487Lasiocampidae|TDGAB−0019 Pyralidae|Lope11−0372Pyralidae|Lope11−0356Pyralidae|TDGAB−2418Pyralidae|TDGAB−2254 Pyralidae|TDGAB−0233Pyralidae|Lope11−0822Pyralidae|TDGAB−0607Pyralidae|Lope11−0309 Lasiocampidae|Lope11−0659 Pyralidae|TDGAB−1790Pyralidae|TDGAB−1272Pyralidae|TDGAB−1166Pyralidae|TDGAB−0267 ypasaLasiocampidae|TDGAB−1884Lasiocampidae|TDGAB−0543Lasiocampidae|Lope11−0451 rectilineata|Lope11−0799 Pyralidae|TDGAB−0675Pyralidae|TDGAB−0133Pyralidae|TDGAB−1443Pyralidae|TDGAB−0108 ypasaypasaLasiocampidae|TDGABb−323 Lasiocampidae|TDGAB−0960 rectilineata|Lope11−0579rectilineata|TDGAB−0729Thetidia|TDGAB−0680 Pyralidae|TDGAB−1853Pyralidae|TDGAB−1624Pyralidae|TDGAB−1497 ypasaLasiocampidae|TDGAB−0376 Lasiocampidae|TDGAB−1834rectilineata|TDGAB−0482 Pyralidae|TDGAB−0716Pyralidae|TDGAB−1679Pyralidae|TDGAB−1329Pyralidae|TDGAB−1543 Lasiocampidae|TDGAB−0367Lasiocampidae|TDGAB−0167Lasiocampidae|Lope11−0566Zamarada|TDGAB−2232 Pyralidae|Lope11−0656Pyralidae|Lope11−0626Pyralidae|Lope11−0306 Lasiocampidae|Lope11−0565Lasiocampidae|Lope11−0049ymantriinae|TDGAB−1105ymantriinae|TDGAB−0862 Pyralidae|Lope11−0375Pyralidae|Lope11−0947Pyralidae|TDGAB−2224Pyralidae|Lope11−0820 Lasiocampidae|TDGAB−0608Lasiocampidae|TDGAB−2404ymantriinae|TDGAB−0193 Pyralidae|TDGAB−1560Pyralidae|TDGAB−1360Pyralidae|TDGAB−1622Pyralidae|TDGAB−1073 LLL Epiplema|TDGAB−0063Pyralidae|Lope11−0950Pyralidae|TDGAB−1619 PachPach Lasiocampidae|TDGAB−0223Lasiocampidae|TDGAB−1194Lasiocampidae|TDGAB−0352Lasiocampidae|TDGAB−1175 PachPach osa|TDGAB−1484 Lasiocampidae|Lope11−0561Lasiocampidae|TDGAB−1143Lasiocampidae|TDGAB−0868 osa|TDGAB−0419 SomatinaAnisoLasiocampidae|Lope11−0570Lasiocampidae|Lope11−0177 c Lasiocampidae|TDGAB−2361 Geometridae|TDGAB−0296ScopulaIdaea pulveraria|TDGAB−1792 lactaria|TDGAB−1964 Lasiocampidae|TDGAB−1241 AmusaronRacinoa|TDGAB−1261Geometridae|TDGAB−2223Geometridae|TDGAB−1235 k Lasiocampidae|Lope11−0653Lasiocampidae|Lope11−0062Lasiocampidae|Lope11−0050Zamarada|Lope11−0796Zamarada|TDGAB−1108 Geometridae|TDGAB−1340TorEnnominae|TDGAB−1641Ennominae|TDGAB−1140 LomadontaLomadonta obscura|Lope11−0943obscura|Lope11−0070Lasiocampidae|TDGABb−344Zamarada|Lope11−0115Zamarada|TDGAB−2304 Zeuctoboarmia|TDGAB−1124Zeuctoboarmia|TDGAB−1001Geometridae|TDGAB−0864Geometridae|TDGAB−0455 LomadontaLomadonta obscura|Lope11−0837Lasiocampidae|TDGABb−331obscura|Lope11−0314Lasiocampidae|TDGABb−330Zamarada|TDGAB−0671Zamarada|TDGAB−1956 Zeuctoboarmia|TDGAB−0157Zeuctoboarmia|TDGAB−0815Zeuctoboarmia|TDGAB−1113 LomadontaLomadonta obscura|TDGAB−1767obscura|TDGAB−1490Lasiocampidae|TDGABb−354Lasiocampidae|TDGABb−353Zamarada|TDGAB−1906Zamarada|TDGAB−2408Zamarada|TDGAB−1270 Zeuctoboarmia|TDGAB−0406Geometridae|TDGAB−0224Zeuctoboarmia|TDGAB−1286Zeuctoboarmia|TDGAB−0824 Lasiocampidae|TDGABb−352Lasiocampidae|TDGABb−351Zamarada|TDGAB−1291Zamarada|TDGAB−2084oborata|Lope11−0345oborata|Lope11−0127 Geometridae|TDGAB−0067Zeuctoboarmia|TDGAB−2165Geometridae|TDGAB−0823Zeuctoboarmia|TDGAB−0492 Lasiocampidae|TDGABb−350Lasiocampidae|TDGAB−1410Zamarada|TDGAB−0651Zamarada|TDGAB−2195oborata|TDGAB−0079oborata|TDGAB−0023oborata|Lope11−0003 Zeuctoboarmia|TDGAB−0600Zeuctoboarmia|TDGAB−0410Geometridae|Lope11−0305 Lasiocampidae|TDGABb−335Lasiocampidae|TDGAB−1839Zamarada|TDGAB−0428oborata|TDGAB−0029oborata|Lope11−0119 Zeuctoboarmia|TDGAB−1381Zeuctoboarmia|TDGAB−0805Zeuctoboarmia|TDGAB−0789Zeuctoboarmia|TDGAB−0640tricidae|Lope11−0646 Lasiocampidae|TDGAB−1743Lasiocampidae|TDGAB−1411Zamarada|TDGAB−1470oborata|TDGAB−0628oborata|TDGAB−0644 Zeuctoboarmia|TDGAB−2285Zeuctoboarmia|TDGAB−1860Zeuctoboarmia|TDGAB−1617 des diplosticta|TDGAB−0090 Lasiocampidae|TDGAB−1615Lasiocampidae|TDGAB−1404oborata|TDGAB−0041oborata|TDGAB−2268 Zeuctoboarmia|Lope11−0065Zeuctoboarmia|Lope11−0019Zeuctoboarmia|Lope11−0010Zeuctoboarmia|TDGAB−2425 oborata|TDGAB−0470oborata|TDGAB−2193 Zeuctoboarmia|Lope11−0780Zeuctoboarmia|Lope11−0763Zeuctoboarmia|Lope11−0116Zeuctoboarmia|Lope11−0113 CleoraZeuctoboarmia|Lope11−0795Zeuctoboarmia|Lope11−0794Zeuctoboarmia|Lope11−0783 r CleoraCleoraCleoraCleora r r r r CleoraCleoraCleoraCleora darg darg r r Cleora|TDGAB−1449Cleora|TDGAB−1709Cleora radula leptopasta|TDGAB−1721 Zamarada|Lope11−0365Zamarada|TDGAB−0229 Cleora|TDGAB−2313Cleora|TDGAB−0787Cleora|TDGAB−0088Cleora|TDGAB−1900 Zamarada|Lope11−0131Zamarada|TDGAB−2287 Cleora|TDGAB−0773Cleora|TDGAB−0050Cleora|TDGAB−0042 Zamarada|Lope11−0128Zamarada|TDGAB−2314 Cleora|TDGAB−1479Cleora|TDGAB−2338Cleora|TDGAB−2137Cleora|TDGAB−0723 Zamarada|TDGAB−2168 Cleora|TDGAB−1226Cleora|TDGAB−1551Cleora|TDGAB−1112Cleora|TDGAB−0788 Zamarada|TDGAB−0625Zamarada|TDGAB−2100 Cleora|TDGAB−0781Cleora|TDGAB−0620Cleora|TDGAB−0945 Zamarada|TDGAB−2209Zamarada|TDGAB−2182 Cleora|TDGAB−2186Cleora|TDGAB−1858Cleora|TDGAB−0749Cleora|TDGAB−0796 ha Zamarada|TDGAB−1491Zamarada|TDGAB−2188 Cleora|Lope11−0838Cleora|Lope11−0499Cleora|Lope11−0114Cleora|TDGAB−1460 Zamarada|TDGAB−1574 Cleora|TDGAB−2088Cleora|TDGAB−1146Cleora|TDGAB−0604Cleora|TDGAB−2039 Zamarada|TDGAB−1229Zamarada|Lope11−0772 CleoraCleoraCleora oculata|TDGAB−1268 oculata|TDGAB−1106 oculata|TDGAB−0667 Zamarada|TDGAB−2096Zamarada|TDGAB−1245 CleoraCleoraCleora oculata|TDGAB−2104 oculata|TDGAB−2229 oculata|TDGAB−1467 Zamarada|TDGAB−1442Zamarada|Lope11−0477 CleoraCleoraCleoraCleora oculata|TDGAB−2177 oculata|TDGAB−2150 oculata|TDGAB−0804 oculata|TDGAB−1504 Zamarada|TDGAB−0228 Cleora|TDGAB−1887Cleora|TDGAB−0165Cleora oculata|Lope11−0764 olga|TDGABb−334 Zamarada dolor Zamarada|TDGAB−2410Zamarada|TDGAB−2319 CleoraCleoraCleora|Lope11−0769Cleora|Lope11−0762 boets boetscc l Zamarada dolor Zamarada|TDGAB−2247 CleoraCleoraCleoraCleora boetsc boetsc boetsc boetsc yboeata|TDGAB−0631 Zamarada|TDGAB−2187Zamarada|TDGAB−2169 CleoraCleoraCleoraCleora boets boets boets boetscccc Zamarada|TDGAB−1277Zamarada|Lope11−0511 Geometridae|TDGAB−0977ChiasmiaCleoraCleora boets albivia|TDGAB−0436boetscc Zamarada|TDGAB−1531 Geometridae|TDGAB−2164Geometridae|TDGAB−2091Geometridae|TDGAB−2216Geometridae|TDGAB−2111 Zamarada|TDGAB−1481 AcrAcrGeometridae|Lope11−0501Geometridae|TDGAB−2318 ostella|TDGAB−0634ostella|TDGAB−0078 Zamarada|TDGAB−0055Zamarada|TDGAB−0059 Geometridae|TDGAB−0212AcrAcr ostella|TDGAB−1431ostella|Lope11−0095 Zamarada|TDGAB−1822Zamarada|Lope11−0476 Geometridae|TDGAB−0185Geometridae|TDGAB−2288Geometridae|TDGAB−1747Geometridae|TDGAB−0287 ostella|Lope11−0509ostella|TDGAB−1474 Geometridae|TDGAB−0263Geometridae|TDGAB−2301Geometridae|TDGAB−2269Geometridae|TDGAB−0469 ostella|Lope11−0539 Zamarada|TDGAB−1962Zamarada|TDGAB−1502 Geometridae|TDGAB−0413Geometridae|TDGAB−1315Geometridae|TDGAB−1251 Zamarada corr Zamarada|Lope11−0514 DorGeometridae|TDGAB−2092Geometridae|TDGAB−2387Geometridae|TDGAB−2227 Zamarada corr Geometridae|Lope11−0844Cleora|Lope11−0761Geometridae|Lope11−0134Geometridae|TDGAB−1099 Geometridae|TDGAB−2383Geometridae|TDGAB−1328Comibaena|TDGAB−1916 Zamarada corr Geometridae|TDGAB−2281Geometridae|TDGAB−2205Geometridae|TDGAB−0491Geometridae|TDGAB−1118 Zamarada corr Geometridae|Lope11−0507Geometridae|Lope11−0506Geometridae|TDGAB−2266 Zamarada corr Geometridae|TDGAB−1275Geometridae|TDGAB−0190Geometridae|TDGAB−2290 Geometridae|TDGAB−0593Geometridae|TDGAB−0518Geometridae|TDGAB−2303 Zamarada corr Geometridae|TDGAB−0412Geometridae|TDGAB−0271Geometridae|TDGAB−0202 Zamarada corr Geometridae|TDGAB−0498Geometridae|TDGAB−0974Geometridae|TDGAB−0484 EulEulGeometridae|TDGAB−1283Geometridae|TDGAB−2312 Zamarada corr EulEulEul EulEul Zamarada corr GongropterGeometridae|TDGAB−1806Geometridae|TDGAB−1766Geometridae|TDGAB−0786 Gongropter yrididae|TDGAB−0178 Geometridae|TDGAB−0414Geometridae|TDGAB−0268GongropterGongr ostatheusis|TDGAB−2355 Zamarada corr Geometridae|TDGAB−2102Geometridae|Lope11−0491Geometridae|Lope11−0492Geometridae|TDGAB−0565 ostatheusis|Lope11−0779 yrididae|TDGAB−2180 Buzura|TDGAB−0385Geometridae|TDGAB−2329Geometridae|TDGAB−2300 ostatheusis|Lope11−0781ostatheusis|TDGAB−0638 Buzura|TDGAB−0568 Zamarada corr Biston|Lope11−0494Biston|Lope11−0493Buzura|Lope11−0112 Biston|Lope11−0051Biston|Lope11−0067Biston|Lope11−0109Biston|Lope11−0110 Zamarada corr Biston|TDGAB−1456Biston|TDGAB−1501Biston|Lope11−0028 Geometridae|TDGAB−2253 Biston|TDGAB−0130B Biston|Lope11−0503Biston|Lope11−0111 Zamarada corr Geometridae|TDGAB−2041 Biston|TDGAB−1176Biston|Lope11−0778Biston|Lope11−0504 G G G ei|TDGAB−0075 hidae|TDGAB−1010 G G Geometridae|TDGAB−0433Geometridae|TDGAB−1287Geometridae|TDGAB−1280Crambidae|Lope11−0826 Zeuctoboarmia|TDGAB−1323 Zeuctoboarmia|TDGAB−0650 Zeuctoboarmia|TDGAB−0481 ei|TDGAB−2359 Geometridae|TDGAB−0315Crambidae|TDGAB−1612Crambidae|TDGAB−1427Pyralidae|Lope11−0605Pyralidae|TDGAB−1827Pyralidae|Lope11−0122erinae|Lope11−0687erinae|Lope11−0449 sifulcrum|TDGAB−2147 Crambidae|TDGAB−0794erinae|TDGABb−332 9870− 6 5500− 9580− 73 90 2 8 339 2490− iB 1 458 Geometridae|TDGAB−1503 276 932 5360− 7 23 Geometridae|TDGAB−2243Crambidae|TDGAB−0785Crambidae|TDGAB−0461Th Pyralidae|TDGAB−1369yrididae|TDGAB−0475 2460− 7 3480− Geometridae|TDGAB−1705Th z eG Geometridae|TDGAB−0496 siB ycia|TDGAB−1514ycia|TDGAB−0708ycia|TDGAB−0123 Geometridae|TDGAB−2199Geometridae|TDGAB−1297Naprepa|TDGAB−0374 ycia|TDGAB−1778ycia|TDGAB−1775ycia|TDGAB−0118ycia|TDGAB−0097 1 050− 11 47 11 922−

oeG oeo oe Cossidae|Lope11−0907 tsiB Crambidae|Lope11−0327 70− 1 11 Crambidae|TDGAB−0094Th Marmax|TDGAB−1671 4 Marmax|TDGAB−1616 moeG moeG moeGm Marmax|TDGAB−0737 moeG Geometridae|Lope11−0479Psyc Marmax|TDGAB−0660Marmax|TDGAB−0654Marmax|TDGAB−0648 0− 0− 1 0− 1 1 1 Marmax|TDGAB−0077Marmax|TDGAB−0016 1 0− Anaphe panda|TDGAB−0542Zeu Marmax|TDGAB−0015Marmax|TDGAB−0013 tcueZ Lepidoptera|TDGAB−2056ZeuzZeuz Marmax|TDGAB−0139Marmax|TDGAB−0106 opte Marmax|TDGAB−0096Marmax|TDGAB−0081 otcueZ eme − emoe − e − − Marmax|TDGAB−0678 − − Opisthodontia|TDGAB−2003 Marmax|TDGAB−0014 e Opisthodontia|TDGAB−0762Notodontidae|TDGAB−2368 Marmax|TDGAB−0744Marmax|TDGAB−0052 |notsi|not T

Pycnostega fumosa|TDGAB−1505Notodontidae|TDGAB−1086 11epoL| 1 b 11epoL|aimraobotcueZ 11 ymantriinae|Lope11−0013 11epoL|a 11epoL|aimraobotcueZ Pycnostega fumosa|TDGAB−1116Lasiocampidae|TDGAB−0997Metarbelinae|TDGAB−1374 11epoL|aimraobotcueZ te Metarbelinae|Lope11−0299 BAGDT|aimraobot BAGDT|aimraobotcueZ BAGDT|aimraobotcueZ BAGDT|aimraobotcueZ BAGDT|aimrao BAGDT|aimraobotc B BAG BAGDT BAGDT|aimraobotcueZ Metarbelinae|TDGAB−0292 BAGDT|aimraobotcueZ BAGDT|aimraobotcueZ BAGD hi|TDGAB−2148hi|TDGAB−0755 rtemrtrtemoeG hi|Lope11−0767 rtrt hi|Lope11−0773 Metarbelinae|TDGAB−1549Metarbelinae|TDGAB−0721 hi|TDGAB−0735hi|TDGAB−2233hi|TDGAB−0557 L 1epoL|a hi|TDGAB−0925 hi|Lope11−0934hi|TDGAB−0674hi|TDGAB−0477hi|Lope11−0512 i i

irtemoeG

AGDT|aimraobotcueZ dirtemoeG

dirtemoeG dirtemoeG epoL|aimr Pitthea|TDGAB−1810 r Pitthea|TDGAB−1708Pitthea|TDGAB−0128Pitthea|TDGAB−0031 Pitthea|TDGAB−0127 adirt yx|TDGAB−0255 Pitthea|TDGAB−1045Pitthea|TDGAB−0869 yx|TDGAB−2336yx|TDGAB−0170yx|TDGAB−0618 Geometridae|Lope11−0870 Mixocera|Lope11−0996 Geometridae|Lope11−0344 Mixocera|Lope11−0484 AGD Geodena|Lope11−0816Geodena|Lope11−0107 AGDT|nots ea

ea dirte m o e G

hia|Lope11−0014 DT| B |eadi |eadiB BAGDT |e a dirte m o e G

11epoL|no

T|ead imrao T|aimraobotcueZ T|T|e a dirte m o e G Ennominae|TDGAB−1524Ennominae|TDGAB−0879 T|ead 5% a |aimraob

D T|e a dirte m D DT|eaD T|e a dirte m o e G DD T|e a dirte m o e PhialaPhiala MGABsp1|Lope11−0732 MGABsp1|Lope11−0731 eugma|Lope11−0027 aim eugma|TDGAB−0434 |aimraobo| Phiala MGABsp1|TDGAB−1930 aimraobotcue Phiala MGABsp1|TDGAB−1867 i 0− Phiala MGABsp1|TDGAB−1850 imraobotcueZ Phiala MGABsp1|TDGAB−1835 T PhialaPhialaPhiala MGABsp1|TDGAB−1765 MGABsp1|TDGAB−1750 MGABsp1|TDGAB−1731 Geometridae|Lope11−0992 GDT|eadir G PhialaPhiala MGABsp1|TDGAB−1717 MGABsp1|TDGAB−0799 Geometridae|Lope11−0793Geometridae|Lope11−0483 tor se d o n d oro h C Phiala MGABsp1|TDGAB−0790 6 60− Phiala MGABsp1|TDGAB−0627 Geometridae|TDGAB−2384 hora|TDGABb−349hora|TDGAB−0898hora|TDGAB−0602 Phiala MGABsp1|TDGAB−0621 Geometridae|TDGAB−0260Geometridae|TDGAB−1603 hora|TDGAB−0230hora|TDGAB−0231hora|TDGAB−0478 PhialaPhiala MGABsp1|TDGAB−0056 MGABsp1|TDGAB−0018 Geometridae|TDGAB−0777Geometridae|Lope11−0016Geometridae|TDGAB−0885 hora|TDGAB−1126 h PhialaPhiala MGABsp1|TDGAB−0011 MGABsp1|TDGAB−0010 Geometridae|TDGAB−1144Geometridae|TDGAB−0699 mrao Phiala MGABsp1|TDGAB−0610 Pingasa|Lope11−0766Pingasa|TDGAB−2305 Pingasa|Lope11−0496 A G D3 T|eadirte m oe G Phiala MGABsp2|TDGABb−358 Pingasa|TDGAB−0191 A G D T|ea dirte m o e PhialaPhiala MGABsp2|TDGABb−356 MGABsp2|TDGABb−355 ymayma fusca|TDGAB−1872 fusca|TDGAB−0757 Pingasa|TDGAB−2344Pingasa|TDGAB−0596Pingasa|TDGAB−2099 AGD Phiala MGABsp2|TDGAB−1744 ymayma fusca|TDGAB−0662 fusca|TDGAB−0617 Pingasa|TDGAB−0384 raobotcueZ Phiala MGABsp2|TDGABb−357 Pingasa|TDGAB−0632Pingasa|TDGAB−0535 leora|TDGAB−0343leora|TDGAB−0252 p o L|ai m ra o b otc u e Z Antharmostes|Lope11−0775Geometridae|TDGAB−0439Geometridae|Lope11−0021Geometridae|TDGAB−1157Geometridae|Lope11−0813 Antharmostes|Lope11−0485Geometridae|TDGAB−0265Geometridae|Lope11−0497 6470− Antharmostes|Lope11−0025 3 Antharmostes|TDGAB−2294Geometridae|TDGAB−2181 787030 BAGDT| Geometridae|TDGAB−1265Geometridae|Lope11−0815 BAGDT|eBAGDTBAG Antharmostes|TDGAB−2183 BAGDTBBAGBAGDT|eadi A G D T|eadirte m oe G Antharmostes|Lope11−0765 B Geometridae|Lope11−0478 BAGB BAGDT|ead BAGDTBBABAG A G D T|e a dirte aobotcueZ BBABAGBAGD A G D T|ea dirt Antharmostes|TDGAB−1816Antharmostes|TDGAB−1123Geometridae|TDGAB−2307Geometridae|Lope11−0020Geometridae|TDGAB−2235Lophostola|TDGAB−2204 BAGDT|eaBB B A A G G D D T|eadirte T|eadirte m m oe oe G G Geometridae|TDGAB−2192Geometridae|Lope11−0482 Biston|TDGAB−1159Biston|TDGAB−1149 Biston|TDGAB−1137Biston|TDGAB−1121Biston|TDGAB−1022 Geometridae|TDGAB−1310 Biston|TDGAB−1017Biston|TDGAB−0983Biston|TDGAB−0935 Biston|TDGAB−0423Biston|TDGAB−0220 Geometridae|TDGAB−0991Geometridae|TDGAB−1526Geometridae|TDGAB−2348 hiahia palliata|TDGAB−0493 palliata|TDGAB−0074 Biston|TDGAB−0214Biston|TDGAB−0166 AGDT Cleora|TDGAB−1638

− − Geometrinae|TDGAB−0700 − − − − − − − − − Geometridae|TDGAB−1426Geometridae|TDGAB−0381Geometridae|TDGAB−1274Geometridae|Lope11−0017 − Geometridae|Lope11−0015Geometridae|TDGAB−2200 Geometridae|TDGAB−1056Geometridae|TDGAB−1651 B BAGD Androz Geometridae|TDGAB−2234Geometridae|TDGAB−1259 b 11e 0 1 1 0− Androz 0−0 2− botcu 2−0−1 Geometridae|TDGAB−2184 1 0− Thalassodes|Lope11−0026Thalassodes|Lope11−0024Thalassodes|Lope11−0023

Thalassodes|TDGAB−1131 otcueZ − 1 1 1 1 115 1 5 Geometridae|TDGAB−1473Geometridae|Lope11−0941 0 Geometridae|Lope11−0495Geometridae|Lope11−0287 otcueZ Lophorrhac Geometridae|Lope11−0144Geometridae|TDGAB−1237 Geometridae|TDGAB−2172Geometridae|TDGAB−0247Geometridae|TDGAB−1104Geometridae|Lope11−0360 ColocColoc 280−

0 580− 950 MiantocMiantocMiantocMiantoc 5 050− MiantocMiantocMiantoc Ennominae|TDGAB−1089 Ennominae|TDGAB−0597Ennominae|TDGAB−0205Ennominae|TDGAB−0957

Geometridae|TDGAB−1092 cueZ Geometridae|TDGAB−2112Geometridae|TDGAB−0058Geometridae|TDGAB−0926 Geometridae|TDGAB−1135 BAGDT|i8 70− 4850− Sphingomima|TDGABb−377Sphingomima|TDGAB−0814 Geometridae|TDGAB−0988Geometridae|TDGAB−0980 27283040400840 Sphingomima|TDGAB−2382 6302−64295 Sphingomima|TDGAB−0386 1 9670672 Geometridae|TDGAB−2291 26 7650 Geometridae|TDGAB−2402 55929331 Sphingomima|TDGAB−0383 4 00203 Sphingomima|TDGAB−0841 Geometridae|TDGAB−2337Geometridae|TDGAB−2335Geometridae|Lope11−0498 7732−1 7 Sphingomima|TDGAB−1160 Geometridae|TDGAB−0846Geometridae|TDGAB−1115Geometridae|TDGAB−1100Geometridae|TDGAB−0587Geometridae|Lope11−0488 Geometridae|TDGAB−1069Geometridae|TDGAB−0820 Prasinoc hora venerata|TDGAB−1120 Geometridae|TDGAB−1048Geometridae|TDGAB−0566 Prasinoc leoraleora indivisa|TDGAB−0392 indivisa|TDGAB−0196 Geometridae|TDGAB−1296Geometridae|TDGAB−0961Geometridae|TDGAB−1090 u PrasinocPrasinoc horahora interrupta|Lope11−0771 interrupta|Lope11−0770 Geometridae|TDGAB−1211

eZ eZ 86

266930−

Zeuctoboarmia|Lope11−0508Zeuctoboarmia|Lope11−0500

Z Zeuctoboarmia|TDGAB−0905 Zeuctoboarmia|TDGAB−2198

Lophorrhac

Lophorrhac 7220−

Megadrepana cinerea|Lope11−0047 ColocColoc MegadrepanaMegadrepanaMegadrepanaMegadrepana cinerea|TDGABb−378 cinerea|TDGAB−2357 cinerea|TDGAB−2142 cinerea|TDGAB−1817

Miantoc https://mc06.manuscriptcentral.com/genome-pubsMiantocMiantoc Page 45 of 45 Genome

Noctuidae Geometridae Notodontidae Sphingidae Lymantriinae Saturniidae Arctiinae Lasiocampidae Other_Erebidae Erebinae Pyralidae Crambidae Thyrididae Draft Limacodidae Nolidae Eupterotidae Cossidae Drepanidae Zygaenidae Psychidae Tortricidae Euteliidae Tineidae Lecithoceridae Eriocottidae Number of species in AfroMoths Bombycidae Number of BINs observed Uraniidae Brahmaeidae

0 50 100 150 200 https://mc06.manuscriptcentral.com/genome-pubs Number of BINs/species # of BINs 0 200 400 Genome600 800 1000 1200 Page 46 of 45 0 1000 # of individuals A 2000 3000 Lopé DS Lopé WS Lopé Ipassa

Sample coverage 0.0 0.2 0.4 0.6 0.8 0

1000 Draft # of individuals B 2000 3000

# of BINs 0 200 400 600 800 1000 1200 0.0 0.2 Sample coverage 0.4 C 0.6 0.8 https://mc06.manuscriptcentral.com/genome-pubs