Insecta: Lepidoptera)

Total Page:16

File Type:pdf, Size:1020Kb

Insecta: Lepidoptera) Biodiversity Data Journal 6: e22236 doi: 10.3897/BDJ.6.e22236 Taxonomic Paper A global checklist of the Bombycoidea (Insecta: Lepidoptera) Ian J Kitching‡, Rodolphe Rougerie§, Andreas Zwick |, Chris A Hamilton¶, Ryan A St Laurent¶, Stefan Naumann#, Liliana Ballesteros Mejia§,¤, Akito Y Kawahara¶ ‡ Natural History Museum, London, United Kingdom § Muséum national d’Histoire naturelle, Sorbonne Université, Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 – CNRS, MNHN, UPMC, EPHE, Paris, France | CSIRO - Australian National Insect Collection, Canberra, Australia ¶ Florida Museum of Natural History, University of Florida, Gainesville, United States of America # Hochkirchstrasse 71, Berlin, Germany ¤ CESAB, Centre de Synthèse et d'Analyse sur la Biodiversité, Aix-en-Provence, France Corresponding author: Ian J Kitching ([email protected]), Rodolphe Rougerie ([email protected]) Academic editor: Yasen Mutafchiev Received: 13 Nov 2017 | Accepted: 08 Feb 2018 | Published: 12 Feb 2018 Citation: Kitching I, Rougerie R, Zwick A, Hamilton C, St Laurent R, Naumann S, Ballesteros Mejia L, Kawahara A (2018) A global checklist of the Bombycoidea (Insecta: Lepidoptera). Biodiversity Data Journal 6: e22236. https://doi.org/10.3897/BDJ.6.e22236 ZooBank: urn:lsid:zoobank.org:pub:937DDBF7-10F3-4700-B188-227F33800216 Abstract Background Bombycoidea is an ecologically diverse and speciose superfamily of Lepidoptera. The superfamily includes many model organisms, but the taxonomy and classification of the superfamily has remained largely in disarray. Here we present a global checklist of Bombycoidea. Following Zwick (2008) and Zwick et al. (2011), ten families are recognized: Anthelidae, Apatelodidae, Bombycidae, Brahmaeidae, Carthaeidae, Endromidae, Eupterotidae, Phiditiidae, Saturniidae and Sphingidae. The former families Lemoniidae and Mirinidae are included within Brahmaeidae and Endromidae respectively. The former bombycid subfamilies Oberthueriinae and Prismostictinae are also treated as synonyms of Endromidae, and the former bombycine subfamilies Apatelodinae and Phitditiinae are treated as families. © Kitching I et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Kitching I et al New information This checklist represents the first effort to synthesize the current taxonomic treatment of the entire superfamily. It includes 12,159 names and references to their authors, and it accounts for the recent burst in species and subspecies descriptions within family Saturniidae (ca. 1,500 within the past 10 years) and to a lesser extent in Sphingidae (ca. 250 species over the same period). The changes to the higher classification of Saturniidae proposed by Nässig et al. (2015) are rejected as premature and unnecessary. The new tribes, subtribes and genera described by Cooper (2002) are here treated as junior synonyms. We also present a new higher classification of Sphingidae, based on Kawahara et al. (2009), Barber and Kawahara (2013) and a more recent phylogenomic study by Breinholt et al. (2017), as well as a reviewed genus and species level classification, as documented by Kitching (2018). Keywords Anthelidae, Apatelodidae, Bombycidae, Bombycoidea, Brahmaeidae, Carthaeidae, Classification, Endromidae, Eupterotidae, Phiditiidae, Saturniidae, Sphingidae Introduction Bombycoidea is one of the most charismatic and well-studied moth lineages. The superfamily is mosty diversified in the intertropical region of the globe and currently includes ten families and more than 500 genera (van Nieukerken et al. 2011). Bombycoidea includes many model organisms (e.g., Bombyx mori Linnaeus, 1758, Manduca sexta Linnaeus, 1763, Hyalophora cecropia Linnaeus, 1758) that serve pivotal roles in studies on genetics, physiology, and development (see Roe et al. 2009). They are also economically important (e.g., pests, sericulture) and are frequently used as educational tools due to their large body size, attractiveness and ease of rearing in captivity (e.g., atlas moth, Attacus atlas (Linnaeus, 1758) and luna moth, Actias luna (Linnaeus, 1758)). Despite their central role in science and outreach, a comprehensive, vetted global checklist of Bombycoidea taxa is lacking, and the taxonomy of the group has been unstable. Existing taxonomic lists have focused on particular groups (e.g. Sphingidae, Kitching and Cadiou 2000), or faunas (e.g. Neotropical Bombycoidea, various authors in Heppner (1996)), but a comprehensive update of the entire superfamily is much needed. The morphology-based phylogenetic studies of Minet (1991) and Minet (1994) were seminal for the modern classification of Bombycoidea. Subsequent molecular studies proposed many new intrafamilial backbone phylogenies of Bombycoidea (e.g., Barber et al. 2015, Breinholt et al. 2017, Kawahara and Barber 2015, Kawahara et al. 2009, Regier et al. 2008a, Zwick 2008, Zwick et al. 2011) and the higher classification of the superfamily has changed significantly, but some parts remain inadequately resolved. At lower levels, there have been only a relatively small number of phylogenetic studies focusing on particular A global checklist of the Bombycoidea (Insecta: Lepidoptera) 3 genera (e.g., Ylla et al. 2005, Rubinoff and Le Roux 2008, Kawahara et al. 2013, Ponce et al. 2014, Rubinoff et al. 2017), while new species descriptions continue to accumulate at a very high pace. In particular, in the family Saturniidae nearly 150 species or subspecies have been described per year over the past 10 years on average, thus strongly affecting our current understanding of the diversity of these moths. Other families have received less attention from taxonomists, and can still be considered understudied with many new species awaiting discovery and/or description. Figure 1. Simplified family-level phylogeny from Zwick et al. (2011). White branch indicates the uncertain placement (i.e., relationship to other families) of the Bombycidae. The closely related family Lasiocampidae is used as an outgroup to root the tree. Photographs at tips are representatives of each family: Saturniidae - Argema mimosae (Boisduval, 1847); Bombycidae - Bombyx mandarina Moore, 1882; Sphingidae - Xylophanes tersa (Linnaeus, 1771); Phiditiidae - Phiditia Möschler, 1882 species; Carthaeidae - Carthaea saturnioides Walker, 1858; Anthelidae - Anthela Walker, 1855 species; Endromidae - Endromis versicolora (Linnaeus, 1758); Brahmaeidae - Brahmaea paukstadtorum Naumann & Brosch, 2005; Eupterotidae - Jana eurymas Herrich-Schäffer, 1854; Apatelodidae - Apatelodes torrefacta (Smith, J.E., 1797); Lasiocampidae - Lasiocampa terreni (Herrich-Schäffer, 1847). 4 Kitching I et al Here, we present a best estimate on the current state of the taxonomic diversity of Bombycoidea, based on the compilation of published nomenclatural acts as well as the consideration of recent phylogenetic work on the superfamily. We have constructed a comprehensive table of bombycoid taxa, including their synonyms, authors, and publication years. Much of this information is erroneous in the literature, and here we comprehensively clarify the taxonomy of the entire superfamily, although we also acknowledge that our checklist may still contain errors and will inevitably become outdated with the expected continued progress in the systematics of these moths. We also present a simplified higher-level phylogeny of Bombycoidea (Fig. 1) based on recent published studies that reflects the taxonomy presented here. Our checklist formally recognize 10 families, 520 genera, and 6,092 species. Materials and methods In this section we provide a list of conventions and abbreviations used, as well as a brief account of the main resources used to compile this checklist for each of the ten families treated. Conventions and abbreviations This Checklist uses the original orthography of all taxon names and does not apply gender agreement (Sommerer 2002). The following abbreviations and terms are used in the Checklist: Code: the Fourth Edition of the International Code of Zoological Nomenclature (1999). comb. nov.: an new combination of a species into a genus. comb. rev.: a revived combination of a species into a genus. "Comb. rev." is often misinterpreted as meaning a "revised" combination. However, the term refers specifically to the reinstatement of a previous combination (i.e., a revival, "reviviscens"), not a revised combination, which is a more general concept. incertae sedis: of uncertain taxonomic position. incorrect original spelling: an original spelling of a name that is deemed incorrect under Articles 32.4 and 32.5 of the Code. infrasubspecific: a name that ranks lower than a subspecies; such names are not regulated by the Code. junior homonym: of two homonyms, the later established, or in the case of simultaneous establishment the one not given precedence under article 24 of the Code. A global checklist of the Bombycoidea (Insecta: Lepidoptera) 5 nomen dubium: a name of unknown or doubtful application. nomen novum (new replacement name): a name expressly established to replace an already established name, most commonly a junior homonym. nomen nudum: a name that, if published before 1931, fails to conform to Article 12 of the Code; or, if published after 1930, fails to conform to Article 13 of the Code; an unavailable name, with no type specimen. nomen oblitum: applied after 1 January 2000 to a name,
Recommended publications
  • Moths Light a Way? by John Pickering, Tori Staples and Rebecca Walcott
    SOUTHERN LEPIDOPTERISTS NEWS VOLUME 38 NO4. (2016), PG. 331 SAVE ALL SPECIES – MOTHS LIGHT A WAY? BY JOHN PICKERING, TORI STAPLES AND REBECCA WALCOTT Abstract -- What would it take to save all species from snakes, and stinging insects, they pose no health risk. extinction? A new initiative, Save all species, plans to Moths are an exceedingly species-rich group, for which answer this question and provide the tools we need to do the diversity at a terrestrial site will typically exceed any so by 2050. Here we consider the merits and problems other taxon except for beetles. Because moth larvae are associated with inventorying moths to help decide which restricted in their diet to specific host taxa, differences in terrestrial areas to protect. We compare the the assemblages of resident moth species could reflect scientifically-described moth fauna of the British Isles differences across sites in plants and other hosts. If which, with 2,441 species, is taxonomically complete, that’s true, we may be able to use moth inventories as with 11,806 described species from North America north efficient proxies to compare surrounding plant of Mexico, the fauna of which is not fully described. As communities. a percentage of the described moth fauna, there are fewer “macro” moths (Geometroidea, Drepanoidea, Inventorying moths presents challenges, notably, Noctuoidea, Bombycoidea, Lasiocampidae) in the sampling smaller species, describing thousands of British Isles (34.9%) than those known for the United species new to science, and identifying specimens States and Canada (46.1%). We present data on 1,254 accurately. Our experience is that we can identify 99% species for an intensively-studied site in Clarke County, of moths from digital images to species, species-groups, Georgia and consider whether species in the British Isles which contain species of similar appearance, or are generally smaller than ones in Georgia.
    [Show full text]
  • Modular Structure, Sequence Diversification and Appropriate
    www.nature.com/scientificreports OPEN Modular structure, sequence diversifcation and appropriate nomenclature of seroins produced Received: 17 July 2018 Accepted: 14 February 2019 in the silk glands of Lepidoptera Published: xx xx xxxx Lucie Kucerova1, Michal Zurovec 1,2, Barbara Kludkiewicz1, Miluse Hradilova3, Hynek Strnad3 & Frantisek Sehnal1,2 Seroins are small lepidopteran silk proteins known to possess antimicrobial activities. Several seroin paralogs and isoforms were identifed in studied lepidopteran species and their classifcation required detailed phylogenetic analysis based on complete and verifed cDNA sequences. We sequenced silk gland-specifc cDNA libraries from ten species and identifed 52 novel seroin cDNAs. The results of this targeted research, combined with data retrieved from available databases, form a dataset representing the major clades of Lepidoptera. The analysis of deduced seroin proteins distinguished three seroin classes (sn1-sn3), which are composed of modules: A (includes the signal peptide), B (rich in charged amino acids) and C (highly variable linker containing proline). The similarities within and between the classes were 31–50% and 22.5–25%, respectively. All species express one, and in exceptional cases two, genes per class, and alternative splicing further enhances seroin diversity. Seroins occur in long versions with the full set of modules (AB1C1B2C2B3) and/or in short versions that lack parts or the entire B and C modules. The classes and the modular structure of seroins probably evolved prior to the split between Trichoptera and Lepidoptera. The diversity of seroins is refected in proposed nomenclature. Te silk spun by caterpillars is a composite material based on two protein agglomerates that have been known for centuries as fbroin and sericin.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Butterflies and Moths of Gwinnett County, Georgia, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Preliminary Studies of the Biodiversity in Garay Cue
    ISSN 2313-0504 1(11)2014 PARAGUAY BIODIVERSITY PARAGUAY BIODIVERSITÄT Lasionota dispar (Kerremans, 1903) foto: U. Drechsel Asunción, Agosto 2014 Paraguay Biodiversidad 1(11) 51-60 Asunción, Agosto 2014 Preliminary studies of the Biodiversity in Garay Cue “Reserva Natural Privada Cerrados del Tagatiya” Ulf Drechsel* Abstract: Impressions during four short visits in recent years in the "Reserva Natural Privada Cerrados del Tagatiya " in the Estancia Garay Cué are represented by photographic documentation. Resumen: Impresiones durante cuatro visitas cortas en los últimos años en la " Reserva Natural Privada Cerrados del Tagatiya " en la Estancia Garay Cué están representados por una documentación fotográfica. Zusammenfassung: Eindruecke von vier Kurzbesuchen in den letzten Jahren in der “Reserva Natural Privada Cerrados del Tagatiya” in der Estancia Garay Cué werden durch fotographische Dokumentation dargestellt. Key words: Paraguay, Garay Cue, biodiversity In the northeast of the Department of Concepción in the eastern region of Paraguay is located the Estancia Garay Cué with an area of about 18,800 ha, of which form about 5,200 ha the " Reserva Natural Privada Cerrados del Tagatiya", a nature reserve under private management. The estancia is located between two national parks, the "Parque Nacional Paso Bravo" in the Northeast and the "Parque Nacional Serrania de San Luis" in the West and include semi-deciduous forests, gallery forests and various types of Cerrado. During four short visits from December 2012 to June 2013 could be obtained first impressions of the existing biodiversity and photos of plants and animals were made. Special attention was paid to the most neglected invertebrate fauna, as this is the main part of biodiversity with thousands of species, many of them still unknown to science.
    [Show full text]
  • Lepidoptera, Endromidae) in China
    A peer-reviewed open-access journal ZooKeys 127: 29–42 (2011)The genusAndraca (Lepidoptera, Endromidae) in China... 29 doi: 10.3897/zookeys.127.928 RESEARCH artICLE www.zookeys.org Launched to accelerate biodiversity research The genus Andraca (Lepidoptera, Endromidae) in China with descriptions of a new species Xing Wang1,†, Ling Zeng2,‡, Min Wang2,§ 1 Department of Entomology, South China Agricultural University, Guangzhou, Guangdong 510640, P.R. China. Present address: Institute of Entomology, College of Biosafety Science and Technology, Hunan Agricul- tural University, Changsha 410128 Hunan, China; and Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha 410128, Hunan, China 2 Department of Entomology, South China Agricultural University, Guangzhou, Guangdong 510640, P.R. China † urn:lsid:zoobank.org:author:F8727887-0014-42D4-BA68-21B3009E8C7F ‡ urn:lsid:zoobank.org:author:7981BF0E-D1F8-43CA-A505-72DBBA140023 § urn:lsid:zoobank.org:author:D683614E-1F58-4CA8-9D80-B23BD41947A2 Corresponding author: Ling Zeng ([email protected]) Academic editor: N. Wahlberg | Received 21 January 2011 | Accepted 15 August 2011 | Published 8 September 2011 urn:lsid:zoobank.org:pub:33D4BBFB-4B7D-4BBC-B34C-17D2E7F99F67 Citation: Wang X, Zeng L, Wang M (2011) The genus Andraca (Lepidoptera, Endromidae) in China with descriptions of a new species. ZooKeys 127: 29–42. doi: 10.3897/zookeys.127.928 Abstract The six species of the genus Andraca Walker hitherto known from China are reviewed, and a new species, A. gongshanensis, sp. n., described from Yunnan Province, China. Adults and male genitalia of all exam- ined species are illustrated, together with a distributional map. A key to all seven Chinese Andraca species is provided.
    [Show full text]
  • ILLUSTRATIONS of MOTHS in TAIWAN, 1-5 by B. S. Chang
    142 BOOK REVIEW TROPICAL LEPIDOPTERJ Tropical Lepidoptera, 4(2): 142 BOOK REVIEW ILLUSTRATIONS OF MOTHS IN TAIWAN, 1-5 by B. S. Chang Vol. 1: Sphingidae, Ratardidae. Epipyropidae, Drepanidae, Cyclidiidae, Thyatiridae, Epicopeiidae, Callidulidae. Lasiocampidae. EupterotidJ Bombycidae, Brahmaeidae, Agaristidae [Noctuidae, part]. 242 pp, 271 col. fig., col. cover. 1989. (paper only) Vol. 2: Arctiidae, Hypsidae [Noctuidae, part], Limacodidae, Notodontidae. 310 pp, 356 col. fig., col. cover. 1989. Vol. 3: Geometridae [1]. Oenochrominae, Geometrinae, Sterrhinae, Larentiinae. 350 pp, 405 col. fig., col. cover. 1989. Vol. 4: Geometridae [2]. Ennominae. 480 pp, 684 col. fig., col. cover. 1990. Vol. 5: Noctuidae [1]. 366 pp. 572 col. fig., col. cover. 1991. (paper only) 1989-91. Taiwan Museum, Taipei. All are 21 x 18.5 cm. (elongate) In Chinese; Latin names. Price for each is S35.00 paper, S42.00 cloth. Available from Flora & Fauna Books, P. O. Box 15718, Gainesville, FL 32604 (plus S2 shipping each, or 55 per set). This series of small, full-color books is the result of a lifetime of with 706 species illustrated out of the 791 recorded for Taiwan. TlJ collecting by retired Taiwan high school teacher B. S. Chang. Until color figures are all excellent but many of the wing venation drawing 1991, 5 volumes were completed, but the second part of the Noctuidae are very faintly reproduced in the books. has unfortunately been halted by the untimely death of the author. It is Overall, the books are one of the unique treatments of Lepidoptera ii not known if a manuscript is available for the eventual completion of the world.
    [Show full text]
  • Acoustic Communication in the Nocturnal Lepidoptera
    Chapter 6 Acoustic Communication in the Nocturnal Lepidoptera Michael D. Greenfield Abstract Pair formation in moths typically involves pheromones, but some pyra- loid and noctuoid species use sound in mating communication. The signals are generally ultrasound, broadcast by males, and function in courtship. Long-range advertisement songs also occur which exhibit high convergence with commu- nication in other acoustic species such as orthopterans and anurans. Tympanal hearing with sensitivity to ultrasound in the context of bat avoidance behavior is widespread in the Lepidoptera, and phylogenetic inference indicates that such perception preceded the evolution of song. This sequence suggests that male song originated via the sensory bias mechanism, but the trajectory by which ances- tral defensive behavior in females—negative responses to bat echolocation sig- nals—may have evolved toward positive responses to male song remains unclear. Analyses of various species offer some insight to this improbable transition, and to the general process by which signals may evolve via the sensory bias mechanism. 6.1 Introduction The acoustic world of Lepidoptera remained for humans largely unknown, and this for good reason: It takes place mostly in the middle- to high-ultrasound fre- quency range, well beyond our sensitivity range. Thus, the discovery and detailed study of acoustically communicating moths came about only with the use of electronic instruments sensitive to these sound frequencies. Such equipment was invented following the 1930s, and instruments that could be readily applied in the field were only available since the 1980s. But the application of such equipment M. D. Greenfield (*) Institut de recherche sur la biologie de l’insecte (IRBI), CNRS UMR 7261, Parc de Grandmont, Université François Rabelais de Tours, 37200 Tours, France e-mail: [email protected] B.
    [Show full text]
  • The Mcguire Center for Lepidoptera and Biodiversity
    Supplemental Information All specimens used within this study are housed in: the McGuire Center for Lepidoptera and Biodiversity (MGCL) at the Florida Museum of Natural History, Gainesville, USA (FLMNH); the University of Maryland, College Park, USA (UMD); the Muséum national d’Histoire naturelle in Paris, France (MNHN); and the Australian National Insect Collection in Canberra, Australia (ANIC). Methods DNA extraction protocol of dried museum specimens (detailed instructions) Prior to tissue sampling, dried (pinned or papered) specimens were assigned MGCL barcodes, photographed, and their labels digitized. Abdomens were then removed using sterile forceps, cleaned with 100% ethanol between each sample, and the remaining specimens were returned to their respective trays within the MGCL collections. Abdomens were placed in 1.5 mL microcentrifuge tubes with the apex of the abdomen in the conical end of the tube. For larger abdomens, 5 mL microcentrifuge tubes or larger were utilized. A solution of proteinase K (Qiagen Cat #19133) and genomic lysis buffer (OmniPrep Genomic DNA Extraction Kit) in a 1:50 ratio was added to each abdomen containing tube, sufficient to cover the abdomen (typically either 300 µL or 500 µL) - similar to the concept used in Hundsdoerfer & Kitching (1). Ratios of 1:10 and 1:25 were utilized for low quality or rare specimens. Low quality specimens were defined as having little visible tissue inside of the abdomen, mold/fungi growth, or smell of bacterial decay. Samples were incubated overnight (12-18 hours) in a dry air oven at 56°C. Importantly, we also adjusted the ratio depending on the tissue type, i.e., increasing the ratio for particularly large or egg-containing abdomens.
    [Show full text]
  • Report-VIC-Croajingolong National Park-Appendix A
    Croajingolong National Park, Victoria, 2016 Appendix A: Fauna species lists Family Species Common name Mammals Acrobatidae Acrobates pygmaeus Feathertail Glider Balaenopteriae Megaptera novaeangliae # ~ Humpback Whale Burramyidae Cercartetus nanus ~ Eastern Pygmy Possum Canidae Vulpes vulpes ^ Fox Cervidae Cervus unicolor ^ Sambar Deer Dasyuridae Antechinus agilis Agile Antechinus Dasyuridae Antechinus mimetes Dusky Antechinus Dasyuridae Sminthopsis leucopus White-footed Dunnart Felidae Felis catus ^ Cat Leporidae Oryctolagus cuniculus ^ Rabbit Macropodidae Macropus giganteus Eastern Grey Kangaroo Macropodidae Macropus rufogriseus Red Necked Wallaby Macropodidae Wallabia bicolor Swamp Wallaby Miniopteridae Miniopterus schreibersii oceanensis ~ Eastern Bent-wing Bat Muridae Hydromys chrysogaster Water Rat Muridae Mus musculus ^ House Mouse Muridae Rattus fuscipes Bush Rat Muridae Rattus lutreolus Swamp Rat Otariidae Arctocephalus pusillus doriferus ~ Australian Fur-seal Otariidae Arctocephalus forsteri ~ New Zealand Fur Seal Peramelidae Isoodon obesulus Southern Brown Bandicoot Peramelidae Perameles nasuta Long-nosed Bandicoot Petauridae Petaurus australis Yellow Bellied Glider Petauridae Petaurus breviceps Sugar Glider Phalangeridae Trichosurus cunninghami Mountain Brushtail Possum Phalangeridae Trichosurus vulpecula Common Brushtail Possum Phascolarctidae Phascolarctos cinereus Koala Potoroidae Potorous sp. # ~ Long-nosed or Long-footed Potoroo Pseudocheiridae Petauroides volans Greater Glider Pseudocheiridae Pseudocheirus peregrinus
    [Show full text]
  • Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometro
    Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, & Noctuoidea) Biodiversity Inventory of the University of Florida Natural Area Teaching Lab Hugo L. Kons Jr. Last Update: June 2001 Abstract A systematic check list of 489 species of Lepidoptera collected in the University of Florida Natural Area Teaching Lab is presented, including 464 species in the superfamilies Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, and Noctuoidea. Taxa recorded in Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, and Thyrididae are also included. Moth taxa were collected at ultraviolet lights, bait, introduced Bahiagrass (Paspalum notatum), and by netting specimens. A list of taxa recorded feeding on P. notatum is presented. Introduction The University of Florida Natural Area Teaching Laboratory (NATL) contains 40 acres of natural habitats maintained for scientific research, conservation, and teaching purposes. Habitat types present include hammock, upland pine, disturbed open field, cat tail marsh, and shallow pond. An active management plan has been developed for this area, including prescribed burning to restore the upland pine community and establishment of plots to study succession (http://csssrvr.entnem.ufl.edu/~walker/natl.htm). The site is a popular collecting locality for student and scientific collections. The author has done extensive collecting and field work at NATL, and two previous reports have resulted from this work, including: a biodiversity inventory of the butterflies (Lepidoptera: Hesperioidea & Papilionoidea) of NATL (Kons 1999), and an ecological study of Hermeuptychia hermes (F.) and Megisto cymela (Cram.) in NATL habitats (Kons 1998). Other workers have posted NATL check lists for Ichneumonidae, Sphecidae, Tettigoniidae, and Gryllidae (http://csssrvr.entnem.ufl.edu/~walker/insect.htm).
    [Show full text]
  • Traditional Consumption of and Rearing Edible Insects in Africa, Asia and Europe
    Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 Traditional consumption of and rearing edible insects in Africa, Asia and Europe Dele Raheem, Conrado Carrascosa, Oluwatoyin Bolanle Oluwole, Maaike Nieuwland, Ariana Saraiva, Rafael Millán & António Raposo To cite this article: Dele Raheem, Conrado Carrascosa, Oluwatoyin Bolanle Oluwole, Maaike Nieuwland, Ariana Saraiva, Rafael Millán & António Raposo (2018): Traditional consumption of and rearing edible insects in Africa, Asia and Europe, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2018.1440191 To link to this article: https://doi.org/10.1080/10408398.2018.1440191 Accepted author version posted online: 15 Feb 2018. Published online: 15 Mar 2018. Submit your article to this journal Article views: 90 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2018.1440191 Traditional consumption of and rearing edible insects in Africa, Asia and Europe Dele Raheema,b, Conrado Carrascosac, Oluwatoyin Bolanle Oluwoled, Maaike Nieuwlande, Ariana Saraivaf, Rafael Millanc, and Antonio Raposog aDepartment for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; bFaculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam;
    [Show full text]