<<

Characterization and comparison of poorly known communities through DNA barcoding in two Afrotropical environments Sylvain Delabye, Rodolphe Rougerie, Sandrine Bayendi, Myrianne Andeime-Eyene, Evgeny Zakharov, Jeremy Dewaard, Paul D.N. Hebert, Roger Kamgang, Philippe Le Gall, Carlos Lopez-Vaamonde, et al.

To cite this version:

Sylvain Delabye, Rodolphe Rougerie, Sandrine Bayendi, Myrianne Andeime-Eyene, Evgeny Zakharov, et al.. Characterization and comparison of poorly known moth communities through DNA barcoding in two Afrotropical environments. Genome, NRC Research Press, 2019, 62 (3), pp.96-107. ￿10.1139/gen- 2018-0063￿. ￿hal-02613945￿

HAL Id: hal-02613945 https://hal.archives-ouvertes.fr/hal-02613945 Submitted on 29 May 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Genome

Characterization and comparison of poorly known moth communities through DNA barcoding in two Afrotropical environments

Journal: Genome

Manuscript ID Draft

Manuscript Type: Article

Date Submitted by the Author: n/a

Complete List of Authors: Delabye, Sylvain; Faculty of Science, University of South Bohemia in České Budějovice, ; Biology Center, The Czech Academy of Science, Rougerie, Rodolphe;Draft Institut Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE Bayendi, Sandrine; Institut de recherches agronomiques et forestieres, IRAFCENAREST AndeimeEyene, Myrianne; Institut de recherches agronomiques et forestieres, IRAFCENAREST Ayala, Diego; International Centre for Medical Research, CIRMF Zakharov, Evgeny; Biodiversity Institute of Ontario, Centre for Biodiversity Genomics deWaard, Jeremy; Biodiversity Institute of Ontario, Centre for Biodiversity Genomics Hebert, Paul; Biodiversity Institute of Ontario, Centre for Biodiversity Genomics Kamgang, Roger; Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE UMR 247, IRD–CNRS–Université ParisSud) LeGall, Philippe; Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE UMR 247, IRD–CNRS–Université ParisSud) Lopez Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Mavoungou, JacquesFrançois; Institut de Recherches en Ecologie Tropicale (IRET–CENAREST); Faculté des Sciences, Université des Sciences et Techniques de Masuku, Département de Biologie Moulin, Nicolas; Nicolas Moulin Entomologiste Oslisly, Richard; Agence Nationale des Parcs Nationaux (ANPN); Laboratoire Patrimoines Locaux et Gouvernance (PALOC) UMR 208, IRD MNHN Rahola, Nil; International Centre for Medical Research, CIRMF Sebag, David; Normandie Université, UNIROUEN, UNICAEN, CNRS, M2C UMR 6143 ECOTROP, Team; ECOTROP consortium Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université PaulValéry Montpellier– EPHE),

https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 42 Genome

Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? :

Community ecology, DNA barcodes, , Tropical Africa, Keyword: Taxonomic deficit

Draft

https://mc06.manuscriptcentral.com/genome-pubs Genome Page 2 of 42

1 Characterization and comparison of poorly known moth communities through DNA

2 barcoding in two Afrotropical environments

3

4 Sylvain Delabye1,2*, Rodolphe Rougerie3*, Sandrine Bayendi4, Myrianne AndeimeEyene4,

5 Diego Ayala5, Evgeny V. Zakharov6, Jeremy R. deWaard6, Paul D.N. Hebert6, Roger

6 Kamgang7, Philippe Le Gall7, Carlos Lopez–Vaamonde8, JacquesFrançois Mavoungou9,10,

7 Ghislain Moussavou9, Nicolas Moulin11, Richard Oslisly12,13, Nil Rahola5, David Sebag14, the

8 ECOTROP team15, Thibaud Decaëns16

9 * Contributed equally to the paper

10 Addresses:

11 1 Faculty of Science, University of Draft South Bohemia in České Budějovice, Branišovská 31,

12 37005, České Budějovice, Czech Republic

13 2 Biology Center, The Czech Academy of Science, Branišovská 31, 37005, České Budějovice,

14 Czech Republic

15 3 Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle,

16 CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France.

17 4 Institut de Recherches Agronomique et Forestière (IRAF–CENAREST), Libreville, Gabon

18 5 International Centre for Medical Research (CIRMF), Franceville, Gabon

19 6 Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph,

20 Guelph, ON, Canada N1G 2W1

21 7 Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE UMR 247, IRD–CNRS–

22 Université ParisSud), Avenue de la Terrasse, Bâtiment 13, Boite Postale 1, 91198 Gif sur

23 Yvette, France

https://mc06.manuscriptcentral.com/genome-pubs 1 Page 3 of 42 Genome

24 8 Unité de Zoologie Forestière (URZF UR 633, INRAOrléans), 2163 Avenue de la Pomme

25 de Pin, CS 40001 Ardon, 45075 Orléans Cedex 2, France

26 9 Institut de Recherches en Ecologie Tropicale (IRET–CENAREST), Libreville, Gabon

27 10 Département de Biologie, Faculté des Sciences, Université des Sciences et Techniques de

28 Masuku, B.P 943, Franceville, Gabon

29 11 Nicolas Moulin Entomologiste, 82 route de l’Ecole, 76680 Montérolier, France

30 12 Agence Nationale des Parcs Nationaux (ANPN), Libreville, Gabon

31 13 Laboratoire Patrimoines Locaux et Gouvernance (PALOC) UMR 208, IRDMNHN, 57 rue

32 Cuvier Case Postale 26, 75231 Paris cedex 05, France 33 14 Normandie Université, UNIROUEN,Draft UNICAEN, CNRS, M2C UMR 6143, Place Emile 34 Blondel Bâtiment IRESE A, 76821 Mont Saint Aignan Cedex, France

35 15 A complete list of members of this team, and their affiliations, is given in SI Table 1.

36 16 Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de

37 Montpellier–Université PaulValéry Montpellier–EPHE), 1919 Route de Mende, F34293

38 Montpellier, France

https://mc06.manuscriptcentral.com/genome-pubs 2 Genome Page 4 of 42

39 Abstract

40 Biodiversity research in tropical ecosystems – popularized as the most biodiverse habitats on

41 Earth – often neglects invertebrates, yet representing the bulk of local species richness.

42 communities in particular remain strongly impeded by both Linnaean and Wallacean

43 shortfalls, and identifying species often remains a formidable challenge inhibiting the use of

44 these organisms as indicators for ecological and conservation studies.

45 Here we use DNA barcoding as an alternative to traditional taxonomic approach for

46 characterizing and comparing the diversity of moth communities in two different ecosystems

47 in Gabon. Though sampling remains very incomplete, as evidenced by the high proportion

48 (58%) of species represented by singletons, our results reveal an outstanding diversity. With 49 about 3500 specimens sequenced andDraft representing 1385 BINs (Barcode Index Numbers, used 50 as a proxy to species) in 23 families, the diversity of in the two sites sampled is higher

51 than the current number of species listed for the entire country. Both seasonal and spatial

52 turnovers are strikingly high (18.3% of BINs shared between seasons, and 13.3% between

53 sites), emphasizing the need to account for these when running regional surveys. Our results

54 also highlight the richness and singularity of savannah environments and emphasize the status

55 of Central African ecosystems as hotspots of biodiversity.

56

57 Keywords: Community Ecology, DNA barcodes, Lepidoptera, Tropical Africa, Taxonomic

58 deficit

59

60

61

62

63

https://mc06.manuscriptcentral.com/genome-pubs 3 Page 5 of 42 Genome

64 Introduction

65 Tropical ecosystems host unrivalled species richness (Kier et al. 2005; Myers 1984; Myers et

66 al. 2000), a fact that has long captivated public attention and raised concerns about the way to

67 conserve this immense biodiversity (Wilson 1988). Understanding of tropical biodiversity has

68 historically been biased toward the largest organisms such as angiosperms and vertebrates

69 (May 2011), leaving considerable gaps in our knowledge of hyperdiverse groups of smaller

70 , especially . These organisms are nevertheless key to ecosystem

71 functioning (Erwin 1983; Zhang 2011) and the shortfalls in our taxonomic, biogeographic and

72 ecological knowledge are strong impediments against the integration of these organisms in

73 conservation and management strategies (Miller & Rogo 2002; Whittaker et al. 2005). 74 Because the few studies addressing Draft this topic predict high extinction numbers for 75 (Fonseca 2009; Stork & Habel 2013), it is urgent to lift “the curse of ignorance” (DinizFilho

76 et al. 2010) by developing multiscale studies on insect diversity that benefit from the

77 technological revolution of the ‘genomic era’ (Godfray 2006; Wilson 2003) and its recent

78 developments in biodiversity sciences (Hebert et al. 2003a).

79 The Afrotropical region is one of the Major Tropical Wilderness Areas on earth (Myers 1990;

80 Wilson 2002), i.e. a large and highly diverse area that has seen little impact from human

81 activities until recently (i.e. < 5 inhab km2 and > 75% of the original vegetation still present)

82 (Mittermeier et al. 1998). However, recent estimates indicate that annual net deforestation of

83 African tropical rainforests, although less dramatic than in Latin America or Southeast Asia,

84 approached 0.3 million ha/year for the 20002010 decade (Achard et al. 2014), which could

85 have led to dramatic biodiversity loss. As many as 100,000 insect species have been reported

86 from the area, but Miller and Rogo (2002) suggest that species richness could exceed 600,000

87 species. In Gabon, a centralAfrican country which is still covered by 80% of tropical

88 rainforests, insect inventories have only considered butterflies (vande Weghe 2010), a few

https://mc06.manuscriptcentral.com/genome-pubs 4 Genome Page 6 of 42

89 groups with limited number of species such as Mantodea (Roy 1973), Lucanidae (Maes &

90 Pauly 1998) or Apoidae (Pauly 1998), and groups with specific economical and/or

91 agronomical importance such as Pseudococcidea (Hemiptera) and their parasitoids

92 (Boussienguet et al. 1991). A few studies have also targeted terrestrial assemblages

93 along human disturbance gradients (Basset et al. 2004, 2008).

94 Several authors emphasized the potential of using highly diverse groups, such as Lepidoptera,

95 as environmental indicators (Axmacher et al. 2004a, 2004b; Beck et al. 2013; Kitching et al.

96 2000; Ricketts et al. 2001). They are indeed key herbivores and an important link within

97 foodwebs as prey or as hosts for parasitoids. Variation in the diversity and structure of

98 Lepidopteran communities is thus likely to be representative of changes at other trophic 99 levels. For instance, lepidopteran speciesDraft depend on their host plant species (or a few closely 100 related plants), and in turn play a fundamental role as pollinators; this connects them closely

101 to plant community structure and composition (Ehrlich & Raven 1964; Novotny et al. 2002b).

102 On the other hand, trophic cascades in food webs are likely to link both host plant and

103 primary consumer assemblages to associated higher trophic levels of predators and

104 parasitoids. Surprisingly however, only a few studies have examined this group in the

105 Afrotropics. The taxonomic deficit and the high number of species that occur in those

106 environments are certainly important causes for this deficit, because they impede reliable

107 inventories and the description of community patterns. In a recent study based on a substantial

108 sampling effort in Papua New Guinea (over 30,000 specimens collected over several years),

109 Ashton et al. (2014) found that no asymptote was reached by species accumulation curves.

110 These authors, however, also suggested that more limited sampling could be efficient in

111 highlighting differences in the diversity and composition of moth communities among distant

112 localities.

https://mc06.manuscriptcentral.com/genome-pubs 5 Page 7 of 42 Genome

113 In this study, we use DNA barcodes to document and compare communities of moths in two

114 differing ecosystems of Gabon. Several recent studies have demonstrated the effectiveness of

115 DNA barcoding – a tool for species identification based on a short standardized DNA

116 fragment (Hebert et al. 2003b) – in documenting species diversity of lepidopteran

117 communities in regions where species assemblages are very diverse and when many species

118 are undescribed (Janzen et al., 2009; Lamarre et al. 2016; Lees et al. 2014; Zenker et al.

119 2016). With this approach we aim at evaluating the sampling effort required to produce

120 relevant census of these communities, to document seasonal variation in community

121 composition, and if speciesturnover (βdiversity) as revealed from our data is reflecting

122 significant differences in richness and composition that can be linked to the different habitats

123 sampled. Finally, we discuss the contribution of our study to the current knowledge of moth

124 diversity in Gabon and in the AfrotropicalDraft region.

125 Material and Methods

126 Study sites

127 Moths were collected at two locations (named Lopé 2 and Ipassa research station) in the

128 province of OgoouéIvindo, in Gabon (Figures 1 and 2):

129 Lopé 2 site is situated in the northern part of Lopé National Park, about 12 km south from

130 Lopé village and the Dr. Alphonse Mackanga Missandzou Training Centre (CEDAMM,

131 Wildlife Conservation Society; coordinates: S0°13’9.699” / E11°35’5.6394”; altitude: 300m).

132 Vegetation comprises a mosaic of forest and shrub savannah (Figure 2A). Shrub savannah is

133 dominated by Poaceae and Cyperaceae like Anadelphia arrecta, Andropogon pseudapricus,

134 Schizachyrium platyphyllum, Hyparrhenia diplandra or Ctenium newtonii and by a shrub

135 layer with Crossopteryx febrifuga and Nauclea latifolia (White & Abernethy 1997). Forest

136 patches are mainly secondary to mature okoumé rainforests, the dominant forest type in

https://mc06.manuscriptcentral.com/genome-pubs 6 Genome Page 8 of 42

137 western Gabon, dominated by Aucoumea klaineana (“okoumé”), Lophira alata, Desbordesia

138 glaucescens, Scyphocephalium ochochoa, Dacryodes buttneri, Santiria trimera, Sindoropsis

139 le-testui and Uapaca guineensis (Ben Yahmed & Pourtier 2004; White & Abernethy 1997).

140 The Ipassa research station (Institut de Recherches en Ecologie Tropicale) is situated in the

141 northern part of Ivindo National Park, 12 km from the city of Makokou (coordinates:

142 N0°30’38.1456” / E12°48’1.2594”; altitude: 500m). The site is mainly surrounded by mature

143 GuineoCongolean rainforest showing both Atlantic and continental influences (Doumenge et

144 al. 2004; Nicolas 1977; White 1983), with Baphia leptobotrys and Millettia laurentii

145 dominating the tree cover, as well as Scorodophloeus zenkeri, Plagiostyles africana,

146 Dichostemma glaucescens, Santiria trimera, Polyalthia suaveolens and Poncovia pedicellaris 147 (Figure 2B). Draft 148 The two sites are 160 kilometers apart and share a similar seasonal cycle typical of the

149 equatorial transition zone, with short (JanuaryFebruary) and long (JuneSeptember) dry

150 seasons. The average monthly temperature is 24°C while mean annual precipitation is 1500

151 mm at Lopé and 1700 mm at Ipassa.

152 Moth sampling

153 Sampling was conducted at both sites in November 2009 and at Lopé 2 in FebruaryMarch

154 2011 during a field class organized in the Lopé National Park (ECOTROP field class

155 http://www.ecotrop.com/ECOTROP). We used a standard light trap technique consisting of a

156 250W UV (mercury vapor) bulb placed 45 meters above the ground to attract insects

157 (Figures 2A and 2C). Two low voltage lamps (80W) were positioned on both sides of a

158 vertical white sheet positioned below the UV bulb. Specimens were collected during dark

159 moon phases from dusk to dawn (6pm to 6am, local time) in order to collect species with

160 varying flight times (Lamarre et al. 2015). Overall, four collecting nights were carried out in

https://mc06.manuscriptcentral.com/genome-pubs 7 Page 9 of 42 Genome

161 each site in 2009 (10th to 14th of November at Lopé 2 and 14th to 18th of November at

162 Ipassa), and three additional nights at the end of the short dry season at Lopé 2 in 2011 (27th

163 February, 1st and 4th March). Our sampling design was therefore relevant to compare observed

164 communities between sites from the samples collected during the rainy season in 2009, and to

165 investigate seasonal turnover at Lopé 2.

166 Our study focuses on Macroheterocera, i.e. macromoths whose wingspan were >1 cm (Figure

167 2D). Each night and in all families of Macroheterocera, we sampled as many species as could

168 be distinguished morphologically when collecting. Specimens were killed using a cyanide jar

169 or by an injection of ammonia into the thorax for larger species. Moths were placed in

170 glassine envelopes marked with a code unique to each sampling event. Specimens were 171 subsequently sorted into morphospecies,Draft i.e. groups of specimens that were readily 172 distinguishable from their external morphology. A maximum of four specimens per

173 morphospecies and per collecting night were selected for molecular analyses. Specimens are

174 currently deposited in the Museum national d’Histoire Naturelle in Paris, where they are

175 available for further taxonomic study.

176 DNA barcoding and taxonomic assignments

177 A small piece of tissue (generally a complete leg or its tarsus for the largest species) was

178 sampled for each specimen selected in the field (Figure 2D). DNA extraction was carried out

179 at the Canadian Centre for DNA Barcoding (CCDB) at the University of Guelph following a

180 standard automated protocol (Ivanova et al. 2006; Hajibabaei et al. 2005). Tissue lysis

181 occurred in 50µl of lysis buffer and proteinase K [0.02 mg/µL] incubated at 56ºC overnight.

182 A 658 bp segment of the 5’ region of the COI mitochondrial gene used as a standard DNA

183 barcode was amplified through PCR using the primer pair LepF1/LepR1 (Hebert et al. 2004).

184 Samples failing to amplify after this first PCR pass were reprocessed using the primer sets

185 LepF1/MLepR1 and MLepF1/LepR1 that target 307 bp and 407 bp overlapping fragments,

https://mc06.manuscriptcentral.com/genome-pubs 8 Genome Page 10 of 42

186 respectively (Hajibabaei et al. 2006). A standard PCR reaction protocol was used for all PCR

187 amplifications and products were checked on a 2% Egel 96 Agarose (Invitrogen). Unpurified

188 PCR amplicons were sequenced in both directions using the same primers as those used for

189 the initial amplification, and following standard CCDB protocols (http://ccdb.ca/resources/)

190 (Hajibabaei et al. 2005). Trimming of primers, sequence editing and contig assembly were

191 carried out at CCDB using CodonCode software (CodonCode Corporation, Centerville, MA,

192 USA). All sequences were aligned and inspected for frameshifts and stop codons for removal

193 of editing errors and possible pseudogenes, and then uploaded in the Barcode of Life Data

194 systems (BOLD, Ratnasingham & Hebert 2007). All records – including specimen and

195 sequence data – can be accessed publicly in BOLD and GenBank, and were assembled within

196 BOLD dataset DSLOPELEP1. Draft 197 Species assignments of specimens using morphology, either as named species through formal

198 identification or as provisionally delineated morphospecies, could not be achieved for all the

199 specimens, because of the lack of taxonomic expertise for many of the moths collected and

200 because processing the large number of specimens (spreading of wings and often genitalic

201 dissections) was intractable. Because morphospecies are unreliable for a thorough assessment

202 of observed species diversity (Zenker et al. 2016), we used DNA barcodes to delineate

203 molecular taxonomic units (MOTUs) as a proxy for species. More specifically, we used

204 Barcode Index Numbers (BINs) derived from the automated MOTU delineation tool

205 implemented in BOLD (Ratnasingham & Hebert 2013), and which have already been used to

206 consistently approximate species in Lepidoptera (Hausmann et al. 2013; Kekkonen & Hebert

207 2014). In two families, Saturniidae and Sphingidae, species were carefully identified (by RR

208 and TD) on the basis of morphology and the results were used to test their correspondence

209 with BINs.

https://mc06.manuscriptcentral.com/genome-pubs 9 Page 11 of 42 Genome

210 For most specimens, we were able to provide a familylevel identification based on their

211 general morphology during tissue sampling, or, subsequently using DNA barcode results

212 coupled with the BOLD identification tool as well as the topology of the NJ tree. For this

213 second approach, the richness of the BOLD DNA barcode library, with records for more than

214 100,000 species of Lepidoptera – proved very useful using a simple query for best close

215 matches in the database. Instead of applying a (necessarily subjective) threshold to generate

216 family (or occasionally subfamily and ) assignment, we verified the proposed

217 assignments by comparing images and, where relevant, by examining the specimens and

218 confirming the proposed taxon on the basis of its morphology.

219 Community data analyses 220 The αdiversity at each site wasDraft assessed by plotting rarefaction curves and their 221 extrapolations for both species richness and sample coverage, using specimen numbers as a

222 measure of sampling intensity. These analyses were carried out using the iNEXT package

223 (Hsieh et al. 2014) for R 3.0.2 (R Development Core Team 2004). We then used the Vegan

224 package (Oksanen et al. 2013) to calculate several diversity indices: observed richness

225 (defined as the total number of observed BINs at a given sampling site or on a given date),

226 Chao1, ACE and second order jacknife diversity estimators, and Fisher αdiversity index. We

227 also used iNEXT to calculate the number of species observed given a constant level of

228 sampling coverage, and Vegan for the estimation of species richness rarefied to a constant

229 level of sampling intensity (i.e. a constant number of specimens collected). We finally used

230 fisherfit, prestonfit and prestondistr functions of Vegan to plot rankabundance diagrams and

231 fit Fisher's logseries, Preston's lognormal and truncated lognormal models to abundance data

232 for each sampling site.

https://mc06.manuscriptcentral.com/genome-pubs 10 Genome Page 12 of 42

233 To assess βdiversity among sampling sites (for samples collected in 2009) and seasons (in

234 Lopé 2 site only), we calculated an average Sørensen’s index of dissimilarity using the

235 package Vegan (Oksanen et al. 2013):

236 βBC = (b+c)/(2 a + b + c)

237 where a is the number of species (here BINs) shared between two sites B and C, and b and c

238 are the numbers of unique BINs for sites B and C.

239 We used the betapart package to decompose βdiversity into two components (Baselga 2010):

240 nestedness (i.e. when the composition of communities with a smaller species number is a

241 subset of a richer community) which reflects nonrandom processes of species loss, and

242 spatial turnover which results from species replacement as a consequence of environmental 243 sorting or spatial and historical constraintsDraft (Qian et al. 2005; Ulrich et al. 2009; Wright & 244 Reeves 1992). Analyses of βdiversity were carried out with and without singletons (i.e. BINs

245 represented by a single specimen in the dataset), as their inclusion can lead to overestimation

246 of βdiversity.

247 Results

248 Species richness at the regional scale

249 We obtained 3494 (97.7%) sequences from the 3576 specimens selected for DNA barcoding.

250 These sequences included representatives of 1385 BINs representing 23 families of

251 Lepidoptera (Table 1) and only 6 specimens (6 BINs) could not be identified to family level.

252 Noctuidae, and Geometridae represented about one third of the BINs and sampled

253 individuals, whereas 10 other families were each represented by less than 10 specimens. More

254 than half of the BINs (786 in total, 57%) were represented by a single individual in our data

255 set (i.e. singleton).

https://mc06.manuscriptcentral.com/genome-pubs 11 Page 13 of 42 Genome

256 Morphological examination of specimens in the families Saturniidae (177) and Sphingidae

257 (267), led to the distinction of 42 and 63 species, respectively, of which only two (in family

258 Saturniidae) could not be identified to species and were given a provisional name

259 (Orthogonioptilum mgab_RR01 and Dogoia mgab_RR01). The correspondence between

260 morphologically assigned species and BINs was nearly perfect: 42 species versus 43 BINs in

261 Saturniidae (98%) and 63 versus 66 in Sphingidae (95%) (see DNA barcode NJ trees in SI

262 Figures 1 and 2). In other families, 112 species (representing 121 BINs) were formally

263 identified by taxonomic experts (see acknowledgments) or through DNA barcode matches in

264 BOLD. Overall, with Saturniidae and Sphingidae included, these species represent about 16%

265 of all BINs (230/1385). 266 Comparison between the number of DraftBINs observed in our study and the list of recognized 267 species and subspecies for Gabon, as derived from the AfroMoths online database (De Prins

268 & De Prins 2017), revealed the strong taxonomic deficit that characterizes moth diversity in

269 the Afrotropics. Afromoths is based on the survey of 7355 published sources for the whole

270 Afrotropical region (as of August 8th, 2017) and the authors’ own studies. It lists 1,301 moth

271 species and subspecies for Gabon, belonging to 36 families. Our survey (Figure 4), limited to

272 macromoths collected during only 11 nights at two sites, revealed 1385 BINs in just 25

273 families. Three families (Bombycidae, , and Lecithoceridae) detected in our

274 study lack published records for Gabon in the AfroMoths database. For 10 of the 22 other

275 families, the number of BINs recorded in our study exceeded the number of known species

276 (Table 1). Large differences were observed for Cossidae (1 species in AfroMoths versus 11

277 BINs), Crambidae (9 vs. 52), Erebidae (309 vs. 369), Geometridae (184 vs. 220),

278 Lasiocampidae (68 vs. 101), Noctuidae (71 vs. 224), and Pyralidae (6 vs. 70), which may

279 represent the most understudied families or those yet incompletely surveyed in the AfroMoths

280 database.

https://mc06.manuscriptcentral.com/genome-pubs 12 Genome Page 14 of 42

281 In the few families that are wellstudied for this region, we collected approximately half the

282 known number of species (48.2%, sd=6.9, N=4 – including Saturniidae (43 BINS vs. 110

283 species listed in AfroMoths, 39%), Eupterotidae (15 vs. 32, 47%), Sphingidae (66 vs. 124,

284 53%) and Lasiocampidae (101 vs. 188 as listed by P. Basquin, personal communication,

285 54%).

286 Species richness and diversity patterns between sampling sites

287 Our survey revealed a total of 823 BINs (1604 specimens analyzed) and 782 BINs (1890

288 specimens analyzed) in the Ipassa and Lopé 2 sites, respectively (Table 1). Sampling resulted

289 in a high proportion of singletons at both sites (64% in Ipassa, 59% in Lopé 2; 57% when

290 combining both sites), and the distributions of BIN abundance are a strong fit to a logseries

291 model (SI Figure 3). While observedDraft richness was similar between the sites, we collected

292 fewer BINs in Lopé 2, despite collecting three additional nights in this site during the dry

293 season.

294 For comparison of the two sites, we only considered specimens collected during the wet

295 season when sampling efforts were identical. The four collecting nights at each site resulted in

296 the capture of 1604 and 1110 specimens, which belonged to 823 and 481 BINs for Ipassa and

297 Lopé 2, respectively (Table 2). Richness estimators indicate that species richness ranged

298 between 1250 and 1850 species at Ipassa and between 700 and 1200 species at Lopé 2.

299 Rarefaction curves clearly show a higher richness in Ipassa (Figure 5a), while sampling

300 coverage rate was slightly higher at Lopé 2 (73% versus 68% at Ipassa) (Table 2, Figures 4b

301 and 4c). Overall, the moth communities at both sites showed a similar relative abundance of

302 the different families, both in terms of specimen numbers and BINs, although observed

303 richness in the most diverse families was consistently higher in Ipassa, with the exception of

304 Crambidae and Pyralidae, which had more BINs at Lopé 2 (Table 1).

https://mc06.manuscriptcentral.com/genome-pubs 13 Page 15 of 42 Genome

305 Comparison of BINs collected during the wet season at Lopé 2 and Ipassa revealed only 158

306 BINs shared by the two sites, 13.8% of the total number analyzed. Sørensen’s index of β

307 diversity calculated between the two sites was 0.76 for the whole dataset and 0.42 after

308 singletons were removed (Table 3). In both cases, βdiversity was mainly explained by spatial

309 turnover (71.0% and 67.6%, respectively) and to a lesser extent by nestedness (29.0% and

310 32.4%).

311 Seasonal changes in moth assemblages at Lopé 2

312 We generated DNA barcodes for 1110 and 780 specimens from Lopé 2 during the rainy and

313 the dry seasons, respectively. Observed richness during the wet season was slightly higher

314 (478 BINs versus 441 BINs during the dry season), but this trend was reversed after rarefying 315 richness to a constant sampling effortDraft or a constant sampling coverage. Rarefaction curves 316 and diversity estimators were also quite similar, the later ranging between 650 and 1100 for

317 both seasons (Figure 5).

318 During the dry season, we collected moths belonging to 17 families versus 21 families during

319 the wet season. Seven families were not shared between the two sampling seasons, but all

320 were represented by few BINs (maximum 2) and individuals (maximum 2), excepting one

321 BIN in the family Thyrididae for which 18 specimens were collected in the wet season.

322 Overall, the diversity for each family was similar for the two sampling periods (Table 1) with

323 a few exceptions: the Crambidae (31 vs. 16 BINs), Pyralidae (37 vs. 18), and Saturniidae (31

324 vs. 9), which were all more diverse during the wet season, and the Sphingidae (40 vs. 28) that

325 was more diverse during the dry season. Out of a total of 782 BINs, 144 (i.e. 18.5%) were

326 found during both the rainy and the dry seasons. Sørensen’s index of dissimilarity between

327 seasons was 0.69, largely explained by temporal turnover (95.4%), but it dropped to 0.23 and

328 was evenly explained by turnover and nestedness after removing singletons from the data set

329 (Table 3).

https://mc06.manuscriptcentral.com/genome-pubs 14 Genome Page 16 of 42

330 Discussion

331 DNA barcodes for the study of moth diversity in the tropics

332 Of the 25 moth families identified among more than 3500 collected specimens, three (namely

333 Bombycidae, Brahmaeidae and Lecithoceridae) have no record from Gabon in the AfroMoths

334 database (De Prins & De Prins 2017) and ten have a number of BINs equal or higher than the

335 number of species currently reported therein. Overall, we documented 1385 specieslevel

336 molecular units (BINs), a number slightly higher than the 1301 species listed for the country

337 in AfroMoths. Considering the relatively shallow geographical range and temporal extent of

338 our study, this result highlights the weakness of the current knowledge of moth diversity in

339 the Afrotropics, despite the remarkable efforts by De Prins & De Prins (2017) to synthesize 340 and centralize this knowledge in theDraft AfroMoths database. Our results clearly highlight the 341 value of DNA barcoding for producing a rapid and accurate census of moth diversity in a

342 poorly studied tropical region. Because this approach facilitates comparisons between

343 sampling campaigns through barcode matches (as exemplified here between sites, but it can

344 also be applied between countries as currently in progress with a similar campaign in Central

345 African Republic), its systematic implementation would represent a powerful mean to address

346 both the Linnean and Wallacean shortfalls (Lomolino 2004), i.e. the inadequacies in

347 taxonomic and distributional knowledge that characterise most invertebrate taxa in poorly

348 studied regions such as the Congo basin (Whittaker et al. 2005).

349 In our study, the large number of BINs without taxonomic assignation at species level (1155

350 out of 1385) corresponds both to already known species not yet documented in the BOLD

351 libraries and to species that are new to science. The number and proportion of the later

352 remains unclear and further study by expert taxonomists of the specimens collected is needed,

353 as well as continued efforts to populate DNA barcode reference libraries. In addition, the

354 inflation of species numbers in many families may reflect an incomplete census of Gabonese

https://mc06.manuscriptcentral.com/genome-pubs 15 Page 17 of 42 Genome

355 records in past studies, a considerable task initiated in the Afromoths database, but certainly

356 suffering from the absence of recent dedicated efforts to synthesize Lepidopteran diversity

357 data for this country. The bombycid Amusaron kolga (Druce, 1887) and brahmaeid

358 Dactyloceras lucina (Drury, 1782) for instance represent new records for their respective

359 families in Gabon, but are species known to occur in neighbouring countries of the Congo

360 basin (De Prins & De Prins 2017). In Lasiocampidae the number of species listed in

361 AfroMoths (68) is identical to the number of species reported from an independent literature

362 survey by a specialist of this family on the African continent (P. Basquin, personal

363 communication). Furthermore, this same taxonomic authority (unpublished results) has

364 recorded approximately 188 Gabonese lasiocampid species in natural history collections

365 worldwide, which clearly demonstrates how insufficient the published data are for this family

366 at the regional scale and is consistent Draftwith the number of BINs (101) reported in our study.

367 Molecular data can reveal cases of cryptic species, i.e. species that cannot be distinguished

368 from morphological characters, or that present subtle morphological and/or ecological traits

369 previously ascribed to intraspecific variation or thought to be insignificant for specieslevel

370 recognition (Janzen et al. 2009; Janzen et al. 2013; Rougerie et al. 2014). In our study, such

371 discrepancies between morphologically identified and molecular species were found in four

372 cases within Saturniidae and Sphingidae, corresponding to supposedly morphological well

373 defined species that appeared to be split into two or three distinct BINs. This is also likely to

374 be the case in more speciose and less studied families such as Erebidae, Geometridae and

375 Noctuidae, leading to an increase of species numbers in these groups compared to available

376 checklists that are only based on morphologically recognized species.

377 Moth diversity at Ivindo and Lopé National Parks

378 Among the 1385 BINs found in our samples, 796 (i.e. 58% of the total) were represented by a

379 single specimen, which is a high singleton proportion compared to the average of 32% found

https://mc06.manuscriptcentral.com/genome-pubs 16 Genome Page 18 of 42

380 by Coddington et al. (2009) in a review of tropical arthropod studies. There are little or no

381 biological explanations for the high proportion of rare species usually found in tropical insect

382 surveys (Novotný & Basset 2000). Rather, this pattern can be attributed to undersampling of

383 highly diverse communities (Coddington et al. 2009), suggesting that caution should be taken

384 when interpreting the observed patterns of community composition and structure. It also

385 suggests that the estimates of species richness derived from our results probably represent a

386 low estimation of the actual diversity of these ecosystems. Both rarefaction curves and

387 sampling coverage indices (Figure 5, Table 2) support this idea, suggesting that at least twice

388 the number of collected species may occur in the study area.

389 We found only a few studies that assessed moth local richness in tropical rainforest or 390 savannah ecosystems and that can beDraft readily compared with our own results. Ashton et al. 391 (2014) sampled 791 to 2795 species and produced Chao1 estimates ranging from 1478 to

392 3666 among three rainforest locations in Malaysia. In Costa Rica, Janzen et al. (2009)

393 published a census of 2349 species using a DNA barcodebased assessment of macromoth

394 assemblages in the Area de Conservación Guanacaste. On the other hand, Hawes et al. (2009)

395 reported 98 species of Arctiinae (Erebidae), 43 of Saturniidae and 5 of Sphingidae in a

396 primary forest area of Brazilian Amazonia, which is well below our findings in the present

397 study. Variations in the number of species observed among studies are however difficult to

398 interpret, because they can both reflect real differences in species diversity, but can also be

399 biased by differences in sampling efforts and/or sampling performed in different seasons. In

400 fact, the moth sampling by Ashton et al. (2014) and Hawes et al. (2009) was done through

401 264 and 30 collecting nights per study site, respectively, while the survey of Janzen et al.

402 (2009) was conducted over decades and involved additional sampling methods (in particular,

403 the mass rearing of caterpillars). Comparing the results obtained in different studies and with

404 different sampling intensity requires standardization through rarefaction procedure (Gotelli &

https://mc06.manuscriptcentral.com/genome-pubs 17 Page 19 of 42 Genome

405 Colwell 2001). Applying this approach to the data from Ashton et al. (2014) produces a result

406 different from what can be directly deduced from observed richness (Nakamura A., Ashton

407 L.A., Kitching. R.L., personal communication). For instance, species numbers in their

408 Malaysian sites ranged from 290 to 475 after standardization to a constant sampling effort of

409 1000 individuals, and between 100 to 270 at a constant sampling coverage of 50%, which was

410 lower to what we found in our two study sites (Table 2). This suggests that Central African

411 rainforests may represent an important hotspot for moth diversity.

412 Variation in moth diversity and composition among study sites

413 Our analyses of moth assemblages during the rainy season in the rainforest of Ipassa and the

414 savannah/forest landscape of Lopé 2 unveiled significant differences in both species diversity 415 and composition. As expected fromDraft differences in vegetation coverage, the observed and 416 estimated richness were both higher in Ipassa. Plant diversity is indeed higher in the rainforest

417 landscape of Ipassa than in the shrubland savannahs and peaty marshes that dominate the

418 landscapes of the northern part of Lopé National Park (White & Abernethy 1997). In addition,

419 despite presenting a comparable structure, forests at Ipassa are more humid and present

420 higher tree diversity when compared with the gallery forests of Lopé 2. These features

421 presumably offer a broader diversity of ecological niches in terms of trophic resources and

422 microhabitats, in particular via the important diversity of epiphytes and lianas (Ben Yahmed

423 & Pourtier 2004).

424 Difference in species assemblage composition among sites was high, with only 13.3% of

425 BINs found in both. This high βdiversity was mainly attributed to spatial turnover, meaning

426 that undersampling may only weakly account for this variation. This is in contrast with other

427 studies that reported relatively low βdiversity of insect herbivores in comparable tropical

428 rainforest habitats (Basset et al. 2012; Novotny et al. 2007). This also concords with other

429 studies having reported high species turnovers among sites as long as these comprised enough

https://mc06.manuscriptcentral.com/genome-pubs 18 Genome Page 20 of 42

430 variability in vegetation types (Beck & Chey 2007; Ødegaard 2006). In fact, contrasted

431 composition of dominant forest tree species among our study sites may have selected for

432 different assemblages of herbivorous species, as leafchewing insects are usually specialized

433 on a single genus of host plants (Novotny et al. 2002a, 2002b). Similarly, the presence of

434 herbaceous ecosystems and secondary forests at Lopé 2 may have also driven the presence of

435 specific species assemblages associated with these open habitats. The high diversity of

436 Crambidae and Pyralidae observed at this site compared to Ipassa could for instance be linked

437 to species preferences within these groups for herbaceous hostplants (Kitching et al. 2000).

438 Even if additional sampling is necessary to confirm this finding, these preliminary results

439 suggest that landscapes dominated by a savannahforest patchwork may host substantial levels 440 of herbivore insect diversity with a highDraft compositional specificity at species level compared 441 to typical tropical rainforests. This argues in favor of a better consideration of savannah

442 ecosystems in both global estimates and conservation strategies of insect biodiversity.

443 Seasonal variation of moth assemblages

444 At Lopé 2 we found little difference in species richness of moth assemblages collected during

445 the rainy and the dry seasons. In contrast, BINs compositions clearly differed from one season

446 to the other, with only 18.3% of the BINs collected being observed in both seasons, and this

447 temporal βdiversity being clearly explained by seasonal turnover rather than by nestedness

448 (Table 3). Composition may simply be influenced by the level of vegetation development

449 during the seasonal cycle, which is well known to influence the phenology of lepidopteran

450 species, or by different climatic preferences linked to the feeding and/or reproductive activity

451 of the moths.

452 From a methodological point of view, these results highlight the importance of standardizing

453 the period of sampling to provide fully comparable results among different localities. They

https://mc06.manuscriptcentral.com/genome-pubs 19 Page 21 of 42 Genome

454 also suggest the need of sampling different seasons to obtain a reliable inventory of species at

455 a given study site, as the assemblages observed at the rainy season (the usually preferred

456 period for moth collecting) clearly do not provide a representative overview of the actual

457 species composition of the focal community.

458 Conclusion

459 Our study highlights the usefulness of utilizing DNA barcodes for performing rapid analyses

460 of taxonomic diversity and composition of moth assemblages in poorly studied areas. It also

461 stresses the need to accelerate biodiversity inventories in those areas that have been

462 insufficiently explored regarding moths and other poorly studied invertebrates. Central Africa

463 clearly is one of those areas and our results represent the first robust assessment of moth 464 diversity in Gabonese forests and savannahs,Draft highlighting a strongly understudied fauna. The 465 material collected and the DNA barcode library released with this study are thus important

466 contributions and we expect that they will serve the development of knowledge on the

467 diversity and distribution of African moths. In general, studies combining molecular data and

468 traditional taxonomic expertise are critically needed to better document invertebrate

469 communities in tropical areas, especially in the regions where anthropogenic pressures are

470 high and where species extinctions remain unaccounted for because species simply remain

471 undocumented.

472 Acknowledgements

473 Fieldwork was supported by grants from the University of Rouen, SCALE Research

474 Federation, French Embassy at Libreville (“Service de Coopération et d’Action Culturelle”)

475 and IRD (“Action Thématique Structurante” call). Logistical support was provided by ANPN,

476 the National Agency for National Parks (Libreville, Gabon), WCS (Libreville, Gabon) and

477 CEDAMM (National Park, Lopé, Gabon), Research Station on Gorilla and Chimpanzee

https://mc06.manuscriptcentral.com/genome-pubs 20 Genome Page 22 of 42

478 (SEGC, Gabon), as well as “Agence des Universités Francophones” and the numerical

479 campus of Libreville. Sequencing costs were covered by grants to PDNH from Genome

480 Canada and from the Ontario Ministry of Research, Innovation and Science. Patrick Basquin

481 (for Lasiocampidae) and Ugo Dall Asta (for Lymantriinae) provided taxonomic assistance.

482 We also thank the institutions that made this project possible: CENAREST for research

483 authorizations, IRET and IRAF (Libreville, Gabon), Science University of Massuku

484 (Franceville, Gabon (Libreville, Gabon), CIRMF (Franceville, Gabon), University O. Bongo

485 (Libreville, Gabon), and University of Douala (Cameroun).

486 References

487 Achart, F., Beuchle, R., Mayaux, P., Stibig, H.J., Bodart, C., Brink, A., Carboni, S., Desclee, 488 B., Donnay, F., Eva, H.D, Lupi,Draft A., Rasi, R., Seliger, R., and Simonetti, D. 2014. 489 Determination of tropical deforestation rates and related carbon losses from 1990 to

490 2010. Global Change Biology 20: 25402554.

491 Ashton, L., Barlow, H.S., Nakamura, A., and Kitching, R.L. 2014. Diversity in tropical

492 ecosystems: the species richness and turnover of moths in Malaysian rainforests.

493 Insect Conservation and Diversity 8(2): 132–142.

494 Axmacher, J.C., Holtmann, G., Scheuermann, L., Brehm, G., MüllerHohenstein, K., and

495 Fiedler, K. 2004a. Diversity of geometrid moths (Lepidoptera: Geometridae) along an

496 Afrotropical elevational rainforest transect. Diversity and Distributions 10: 293302.

497 Axmacher, J.C., Tünte, H., Schrumpf, M., MüllerHohenstein, K., Lyaruu, H.V.M., and

498 Fiedler, K. 2004b. Diverging diversity patterns of vascular plants and geometrid moths

499 during forest regeneration on Mt Kilimanjaro, Tanzania. Journal of Biogeography 31:

500 895–904.

https://mc06.manuscriptcentral.com/genome-pubs 21 Page 23 of 42 Genome

501 Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity.

502 Global Ecology and Biogeography 19: 134143.

503 Basset, Y., Cizek, L., Cuenoud, P., Didham, R.K., Guilhaumon, F., Missa, O., Novotny, V.,

504 Odegaard, F., Roslin, T., Schmidl, J., Tishechkin, A.K., Winchester, N.N., Roubik,

505 D.W., Aberlenc, H.P., Bail, J., Barrios, H., Bridle, J.R., CastanoMeneses, G.,

506 Corbara, B., Curletti, G., da Rocha, W.D., de Bakker, D., Delabie, J.H.C., Dejean, A.,

507 Fagan, L.L., Floren, A., Kitching, R.L., Medianero, E., Miller, S.E., de Oliveira, E.G.,

508 Orivel, J., Pollet, M., Rapp, M., Ribeiro, S.P., Roisin, Y., Schmidt, J.B., Sorensen, L.,

509 and Leponce, M. 2012. Arthropod Diversity in a Tropical Forest. Science 338(6113):

510 14811484. doi: 10.1126/science.1226727. 511 Basset, Y., Mavoungou, J.F., Mikissa,Draft J.B., Missa, O., Miller, S.E., Kitching, R.L., and 512 Alonso, A. 2004. Discriminatory power of different arthropod data sets for the

513 biological monitoring of anthropogenic disturbance in tropical forests. Biodiversity

514 and Conservation 13: 709732.

515 Basset, Y., Missa, O., Alonso, A., Miller, S.E., Curletti, G., De Meyer, M., Eardley, C.,

516 Lewis, O.T., Mansell, M.W., Novotny, V., and Wagner, T. 2008. Changes in

517 arthropod assemblages along a wide gradient of disturbance in Gabon. Conservation

518 Biology 22: 15521563.

519 Beck, J., BallesterosMejia, L., Nagel, P., and Kitching, I.J. 2013. Online solutions and the

520 “Wallacean shortfall”: what does GBIF contribute to our knowledge of species’

521 ranges? Diversity and Distributions 19: 10431050.

522 Beck, J., and Chey, V.K.J. 2007. Betadiversity of geometrid moths from northern Borneo:

523 effects of habitat, time and space. Journal of Ecology 76: 230237.

524 Ben Yahmed, D., and Pourtier, R. 2004. Atlas du Gabon. Editions J.A., Paris, France.

https://mc06.manuscriptcentral.com/genome-pubs 22 Genome Page 24 of 42

525 Boussienguet, J., Neuenschwander, P., and Herren, H.R. 1991. Essais de lutte biologique

526 contre la Cochenille du manioc au Gabon: I. — Établissement, dispersion du parasite

527 exotique Epidinocarsis lopezi [Hym.: Encyrtidae] et déplacement compétitif des

528 parasites indigènes. Entomophaga 36: 455469.

529 Coddington, J.A., Agnarsson, I., Miller, J.A., Kuntner, M., and Hormiga, G. 2009.

530 Undersampling bias: the null hypothesis for singleton species in tropical arthropod

531 surveys. Journal of Animal Ecology 78: 573584.

532 De Prins J, De Prins W (2017) Afromoths, online database of Afrotropical moth species

533 (Lepidoptera). World Wide Web electronic publication (www.afromoths.net)

534 [accessed on Aug. 8th, 2017]

535 DinizFilho, J.A.F., de Marco Jr, P., andDraft Hawkins, B.A. 2010. Defying the curse of ignorance: 536 perspectives in insect macroecology and conservation biogeography. Insect

537 Conservation and Diversity 3: 172179.

538 Doumenge, C., Issembé, Y., Mertens, B., and Trébuchon, J.F. 2004. Amélioration de la

539 connaissance et de la cartographie des formations végétales du parc national de

540 l’Ivindo (Gabon). Rapport de mission d’expertise CIFOR/IRETCENAREST/CIRAD.

541 Ehrlich, P.R., and Raven, P.H. 1964. Butterflies and plants A study in coevolution.

542 Evolution 18(4): 586608.

543 Erwin, T.L. 1983. Tropical forest canopies: the last biotic frontier. Bulletin of the Ecological

544 Society of America 29: 1420.

545 Fonseca, C.R. 2009. The silent mass extinction of insect herbivores in biodiversity hotspots.

546 Conservation Biology 23(6): 15071515.

547 Godfray, H.C.J. 2006. To boldly sequence. Trends in Ecology & Evolution 21: 603–604.

https://mc06.manuscriptcentral.com/genome-pubs 23 Page 25 of 42 Genome

548 Gotelli, N.J., and Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the

549 measurement and comparison of species richness. Ecology Letters 4(4): 379391. doi:

550 10.1046/j.14610248.2001.00230.x.

551 Hajibabaei, M., deWaard, J.R., Ivanova, N.V., Ratnasingham, S., Dooh, R.T., Kirk, S.L.,

552 Mackie, P.M., and Hebert, P.D.N. 2005. Critical factors for assembling a high volume

553 of DNA barcodes. Philosophical Transactions of the Royal Society B: Biological

554 Sciences 360: 19591967.

555 Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., and Hebert, P.D.N. 2006. DNA

556 barcodes distinguish species of tropical Lepidoptera. Proceedings of the National

557 Academy of Sciences of the United States of America 103: 968971.

558 Hausmann, A., Godfray, H.C.J., Huemer,Draft P., Mutanen, M., Rougerie, R., van Nieukerken, 559 E.J., Ratnasingham, S., and Hebert, P.D.N. 2013. Genetic patterns in European

560 geometrid moths revealed by the barcode index number (BIN) system. PLoS ONE 8:

561 e84518.

562 Hawes, J., Motta, C.d.S., Overal, W.L., Barlow, J., Gardner, T.A., and Peres, C.A. 2009.

563 Diversity and composition of Amazonian moths in primary, secondary and plantation

564 forests. Journal of Tropical Ecology 25: 281300. doi: 10.1017/s0266467409006038.

565 Hebert, P.D.N., Cywinska, A., Ball, S.L., and deWaard, J.R. 2003a. Biological identifications

566 through DNA barcodes. Proceedings of the Royal Society of London. Series B:

567 Biological Sciences 270: 313321.

568 Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., and Hallwachs, W. 2004. Ten

569 species in one: DNA barcoding reveals cryptic species in the neotropical skipper

570 butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of

571 the United States of America 101: 14812–14817.

https://mc06.manuscriptcentral.com/genome-pubs 24 Genome Page 26 of 42

572 Hebert, P.D.N., Ratnasingham, S., and deWaard, J.R. 2003b. Barcoding animal life:

573 cytochrome c oxidase subunit 1 divergences among closely related species.

574 Proceedings of the Royal Society of London. Series B: Biological Sciences 270: S96–

575 S99.

576 Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., and Francis, C.M. 2004. Identification of birds

577 through DNA barcodes. PLoS Biology 2: e312.

578 Hsieh, T.C., Ma, K.H., and Chao, A. 2014. iNEXT: An R package for interpolation and

579 extrapolation in measuring species diversity.

580 Ivanova, N.V., deWaard, J.R., and Hebert, P.D.N. 2006. An inexpensive, automationfriendly

581 protocol for recovering highquality DNA. Molecular Ecology Notes 6: 998–1002.

582 Janzen, D.H., Hallwachs, W., Blandin,Draft P., Burns, J.M., Cadiou, J.M., Chacon, I., Dapkey, T.,

583 Deans, A.R., Epstein, M.E., Espinoza, B., Franclemont, J.G., Haber, W.A., Hajibabaei,

584 M., Hall, J.P.W., Hebert, P.D.N., Gauld, I.D., Harvey, D.J., Hausmann, A., Kitching,

585 I.J., Lafontaine, D., Landry, J.F., Lemaire, C., Miller, J.Y., Miller, J.S., Miller, L.,

586 Miller, S.E., Montero, J., Munroe, E., Green, S.R., Ratnasingham, S., Rawlins, J.E.,

587 Robbins, R.K., Rodriguez, J.J., Rougerie, R., Sharkey, M.J., Smith, M.A., Solis, M.A.,

588 Sullivan, J.B., Thiaucourt, P., Wahl, D.B., Weller, S.J., Whitfield, J.B., Willmott,

589 K.R., Wood, D.M., Woodley, N.E., and Wilson, J.J. 2009. Integration of DNA

590 barcoding into an ongoing inventory of complex tropical biodiversity. Molecular

591 Ecology Resources 9: 1–26.

592 Janzen, D.H., Hallwachs, W., Harvey, D., K., D., Rougerie, R., Hajibabaei, M., Smith, M.A.,

593 Chacon, I., Espinoza, B., Sullivan, B., Decaëns, T., Herbin, D., Chavarria, L.F.,

594 Franco, R., Cambronero, H., Rios, S., Quesada, F., Pereira, G., Vargas, J., Guadamuz,

595 A., Espinoza, R., Hernandez, J., Rios, L., Cantillano, E., Moraga, R., Moraga, C.,

https://mc06.manuscriptcentral.com/genome-pubs 25 Page 27 of 42 Genome

596 Rios, P., Rios, M., Calero, R., Martinez, D., Briceño, D., Carmona, M., Apu, E.,

597 Aragon, K., Umaña, C., Perez, J., Cordoba, A., Umaña, P., Sihezar, G., Espinoza, O.,

598 Cano, C., Araya, E., Garcia, D., Ramirez, H., Pereira, M., Cortez, J., Pereira, M., and

599 Hebert, P.D.N. 2013. What happens to the traditional taxonomy when a wellknown

600 tropical saturniid moth fauna is DNA barcoded? Invertebrate Systematics 26: 478–

601 505.

602 Kekkonen, M., and Hebert, P.D.N. 2014. DNA barcodebased delineation of putative species:

603 efficient start for taxonomic workflows. Molecular Ecology Resources 4(4): 706715.

604 Kier, G., Mutke, J., Dinerstein, E., Ricketts, T.H., Küper, W., Kreft, H., and Barthlott, W.

605 2005. Global patterns of plant diversity and floristic knowledge. Journal of 606 Biogeography 32: 1107–1116.Draft 607 Kitching, R.l., Orr, A.G., Thalib, L., Mitchell, H., Hopkins, M.S., and Graham, A.W. 2000.

608 Moth assemblages as indicators of environmental quality in remnants of upland

609 Australian rain forest. Journal of Applied Ecology 37: 284297.

610 Lamarre, G., Mendoza, I., Rougerie, R., Decaëns, T., Hérault, B., and Bénéluz, F. 2015. Stay

611 out (almost) all night: contrasting responses in flight activity among tropical moth

612 assemblages. Neotropical Entomology 44: 109115.

613 Lamarre, G.P.A., Decaëns, T., Rougerie, R., Barbut, J., deWaard, J.R., Hebert, P.D.N.,

614 Herbin, D., Laguerre, M., Thiaucourt, P., and Martins Bonifacio, M. 2016. An

615 integrative taxonomy approach unveils unknown and threatened moth species in

616 Amazonian rainforest fragments. Insect Conservation and Diversity 9(5): 475479.

617 doi: 10.1111/icad.12187.

618 Lees, D.C., Kahawara, A.Y., Rougerie, R., Kawakita, A., Bouteleux, O., De Prins, J., and

619 LopezVaamonde, C. 2013. DNA barcoding reveals a largely unknown fauna of

https://mc06.manuscriptcentral.com/genome-pubs 26 Genome Page 28 of 42

620 Gracillariidae leafmining moths in the Neotropics. Molecular Ecology Resources

621 14(2): 286–296.

622 Lomolino, M.V. 2004. Conservation biogeography. In Frontiers of biogeography: new

623 directions in the geography of nature. Edited by M.V. Lomolino and L.R. Heaney.

624 Sinauer Associates, Sunderland, Massachusetts. pp. 293–296.

625 Maes, J.M., and Pauly, A. 1998. Lucanidae (Coleoptera) du Gabon. Bulletin et Annales de la

626 Société Royale Belge d’Entomologie 134: 279285.

627 May, R.M. 2011. Why worry about how many species and their loss? PLoS Biology 9(8):

628 e1001130.

629 Miller, S.E., and Rogo, L. 2002. Challenges and opportunities in understanding and utilisation

630 of African insect diversity. CimbebesiaDraft 17: 197218.

631 Mittermeier, R.A., Myers, N., Thomsen, J.B., Da Fonseca, G.A.B., and Olivieri, S. 1998.

632 Biodiversity hotspots and major tropical wilderness areas: approaches to setting

633 conservation priorities. Conservation Biology 12: 516520.

634 Myers, N. 1984. The primary source: tropical forests and our future. W.W. Norton, New

635 York.

636 Myers, N. 1990. The biodiversity challenge: expanded hotspots analysis. Environmentalist

637 10: 243256.

638 Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., and Kent, J. 2000.

639 Biodiversity hotspots for conservation priorities. Nature 403: 853858.

640 Nicolas, P. 1977. Contribution à l’étude phytogéographique de la forêt du Gabon. Université

641 de Paris I.

https://mc06.manuscriptcentral.com/genome-pubs 27 Page 29 of 42 Genome

642 Novotný, V., and Basset, Y. 2000. Rare species in communities of tropical insect herbivores:

643 pondering the mystery of singletons. Oikos 89: 564572.

644 Novotny, V., Basset, Y., Miller, S.E., Drozd, P., and Cizek, L. 2002a. Host specialization of

645 leafchewing insects in a New Guinea rainforest. Journal of Animal Ecology 71: 400

646 412.

647 Novotny, V., Basset, Y., Miller, S.E., Weiblen, G.D., Bremer, B., Cizek, L., and Drozd, P.

648 2002b. Low host specificity of herbivorous insects in a tropical forest. Nature

649 416(6883): 841844. doi: 10.1038/416841a.

650 Novotny, V., Miller, S.E., Hulcr, J., Drew, R.A.I., Basset, Y., Janda, M., Setliff, G.P.,

651 Darrow, K., Stewart, A.J.A., Auga, J., Isua, B., Molem, K., Manumbor, M., Tamtiai, 652 E., Mogia, M., and Weiblen, G.D.Draft 2007. Low beta diversity of herbivorous insects in 653 tropical forests. Nature 448: 692697.

654 Ødegaard, F. 2006. Host specificity, alpha and betadiversity of phytophagous beetles in two

655 tropical forests in Panama. Biodiversity Conservation 15: 83105.

656 Oksanen, J., Blanchet, F.G., Kindt, R., Oksanen, M.J., and Suggests, M. 2013. Package

657 “vegan.” Community ecology package. R package version 2.010.

658 Pauly, A. 1998. Hymenoptera Apoidea from Gabon. Annales Musee Royal de l’Afrique

659 Centrale Sciences Zoologiques (Belgium) 282: 1–121.

660 Qian, H., Ricklefs, R.E., and White, P.S. 2005. Beta diversity of angiosperms in temperate

661 floras of eastern Asia and eastern North America. Ecology Letters 8: 1522.

662 R Development Core Team. 2004. R: a language and environment for statistical computing. R

663 Foundation for Statistical Computing, Vienna, Austria.

https://mc06.manuscriptcentral.com/genome-pubs 28 Genome Page 30 of 42

664 Ratnasingham, S., and Hebert, P.D.N. 2007. BOLD: The Barcode of Life Data System

665 (http://www.barcodinglife.org). Molecular Ecology Notes 7: 355364.

666 Ratnasingham, S., and Hebert, P.D.N. 2013. A DNAbased registry for all animal species: the

667 barcode index number (BIN) system. PLoS ONE 8: e66213.

668 Ricketts, T.H., Daily, G.C., Ehrlich, P.R., and Fay, J.P. 2001. Countryside biogeography of

669 moths in a fragmented landscape: biodiversity in native and agricultural habitats.

670 Conservation Biology 15: 378388.

671 Rougerie, R., Kitching, I.J., Haxaire, J., Miller, S.E., Hausmann, A., and Hebert, P.D.N. 2014.

672 Australian Sphingidae – DNA Barcodes challenge current species boundaries and

673 distributions. PLoS ONE 9(7): e101108.

674 Roy, R. 1973. Premier inventaire des Draftmantes du Gabon. Biologia Gabonica 8: 235–290.

675 Stork, N.E., and Habel, J.C. 2013. Can biodiversity hotspots protect more than tropical forest

676 plants and vertebrates? Journal of Biogeography 41: 421428.

677 Ulrich, W., AlmeidaNeto, M., and Gotelli, N.J. 2009. A consumer’s guide to nestedness

678 analysis. Oikos 118: 317.

679 Vande Weghe, J.P. 2010. Papillons du Gabon. Wildlife Conservation Society, Libreville.

680 White, F. 1983. The vegetation of Africa: a descriptive memoir to accompany the

681 Unesco/AETFAT/UNSO vegetation map of Africa. Unesco/AETFAT/UNSO. pp. 356.

682 White, L.J.T., and Abernethy, K.A. 1997. A guide to the vegetation of the Lopé Reserve,

683 Gabon. Wildlife Conservation Society, New York.

684 Whittaker, R.J., Araújo, M.B., Jepson, P., Ladle, R.J., Watson, J.E.M., and Willis, K.J. 2005a.

685 Conservation biogeography: assessment and prospect. Diversity and Distributions 11:

686 3–23.

https://mc06.manuscriptcentral.com/genome-pubs 29 Page 31 of 42 Genome

687 Whittaker, R.J., Araujo, M.B., Paul, J., Ladle, R.J., Watson, J.E.M., and Willis, K.J. 2005.

688 Conservation Biogeography: assessment and prospect. Diversity and Distributions

689 11(1): 323. doi: 10.1111/j.13669516.2005.00143.x.

690 Wilson, E.O. 1988. Biodiversity. National Academies of Sciences, Washington DC.

691 Wilson, E.O. 2002. The future of life. Vintage Books, New York.

692 Wilson, E.O. 2003. The encyclopedia of life. Trends in Ecology & Evolution 18: 7780.

693 Wright, D.H., and Reeves, J.H. 1992. On the meaning and measurement of nestedness of

694 species assemblages. Oecologia 92: 416428.

695 Zenker, M.M., Rougerie, R., Teston, J.A., Laguerre, M., Pie, M.R., and Freitas, A.V.L. 2016.

696 Fast Census of Moth Diversity in the Neotropics: A Comparison of FieldAssigned

697 Morphospecies and DNA BarcodingDraft in Tiger Moths. PloS one 11(2): e0148423. doi:

698 10.1371/journal.pone.0148423.

699 Zhang, Z.Q. 2011. Animal biodiversity: an introduction of higherlevel classification and

700 survey of taxonomic richness. Zootaxa 3148 : 712.

701

702

https://mc06.manuscriptcentral.com/genome-pubs 30 Genome Page 32 of 42

703 Tables

704 Table 1. Number of individuals and number of BINs collected for different families/sub

705 families of macromoths at the two study sites and for two seasons at Lopé 2, and number of

706 species listed in the AfroMoths online database (grey bars; De Prins & De Prins 2017) for the

707 same families/subfamilies (WS= wet season; DS= dry season).

Ipassa (WS) Lopé (WS) Lopé (DS) Lopé Total

# ind # BINs # ind # BINs # ind # BINs # ind # BINs # ind # BINs

Bombycidae 2 2 2 2

Brahmaeidae 2 1 2 1 2 1 4 1

Cossidae 6 5 5 4 8 4 13 8 19 11

Crambidae 17 14 73 31 19 16 92 43 109 52

Drepanidae 6 4 1 1 1 1 7 5

Erebidae (Arctiinae) 198 71 Draft131 41 75 37 206 65 404 113

Erebidae (Erebinae) 75 38 71 24 47 34 118 46 193 72

Erebidae

(Lymantriinae) 220 103 47 32 79 54 126 73 346 164

Other Erebidae 61 33 102 18 22 18 124 32 185 60

Eriocottidae 2 2 2 2 2 2

Eupterotidae 13 10 22 3 5 3 27 5 40 15

Euteliidae 1 1 4 2 5 2 5 2

Geometridae 293 153 130 63 117 62 247 107 540 220

Lasiocampidae 88 55 80 42 74 36 154 61 242 101

Lecithoceridae 1 1 2 1 3 2 3 2

Limacodidae 31 15 20 14 8 7 28 18 59 30

Noctuidae 199 125 103 66 95 69 198 124 397 224

Nolidae 2 2 2 2 2 2

Notodontidae 155 77 72 31 45 27 117 49 272 104

Psychidae 1 1 2 2 6 4 8 4 9 5

Pyralidae 65 29 82 37 25 18 107 49 172 70

Saturniidae 62 32 79 31 36 9 115 33 177 43

https://mc06.manuscriptcentral.com/genome-pubs 31 Page 33 of 42 Genome

Sphingidae 98 44 58 28 111 40 169 47 267 66

Thyrididae 4 4 18 1 18 1 22 5

Tineidae 2 1 2 1 2 1

Tortricidae 5 4 1 1 1 1 6 5

Uraniidae 1 1 1 1 1 1

Zygaenidae 1 1 0 1 1

Not identified 2 2 4 4 4 4 6 6

Total 1604 823 1110 481 780 443 1890 782 3494 1385

708

709

Draft

https://mc06.manuscriptcentral.com/genome-pubs 32 Genome Page 34 of 42

710 Table 2. Summary of macromoth data sets collected at the two study sites and for two

711 seasons in Lopé 2 (numbers in parentheses represent the 95% confidence intervals based on a

712 bootstrap method with 200 replications).

Ipassa (WS) Lopé (WS) Lopé (DS) Lopé

Number of indiduals collected 1604 1110 780 1890

Observed richness 823 481 443 782

Proportion of singletons (%) 63.85 63.61 64.93 59.31

Sampling coverage (%) 67.32 (± 2.95) 72.44 (± 2.27) 63.14 (± 3.02) 75.54 (± 1.77)

Richness at constant sampling coverage of 50% 469.2 (± 13.8) 197.6 (± 7.0) 313.7 (± 12.9) 330.4 (± 7.6)

Richness at constant sampling intensity of 1000 indiv. 599.1 (± 8.9) 449.9 (± 4.4) 511.4 (± 25.6) 521.5 (± 9.5)

Chao1 estimated richness 1837.0 (± 130.6) 1011.6 (± 107.9) 869.5 (± 70.9) 1513.4 (± 96.5)

ACE estimated richness 1849.4 (± 27.6) 1120.6 (± 20.7) 1054.4 (± 22.9) 1629.5 (± 26.2)

1211.4 (±

First order jackniffe estimated richness Draft1269.2 (± 286.2) 728.5 (± 169.7) 663.7 (± 166.9) 197.0)

Fisher alpha 678.3 (± 36.5) 318.2 (± 21.0) 419.3 (± 32.3) 491.5 (± 25.0)

713

714

https://mc06.manuscriptcentral.com/genome-pubs 33 Page 35 of 42 Genome

715 Table 3. Comparison of macromoth species assemblages between the two study sites and for

716 two seasons in Lopé 2 showing the Sørensen index of dissimilitude (with singletons removed

717 or not from the dataset) and its partitioning into geographical/seasonal turnover and

718 nestedness.

Sørensen Turnover (%) Nestedness (%)

Ipassa vs Lopé 2 0.75 70.97 29.03

Same without singletons 0.40 67.57 32.43

Wet vs dry season (Lopé 2) 0.69 95.39 4.61

Same without singletons 0.23 54.76 45.24

719

720 Draft

https://mc06.manuscriptcentral.com/genome-pubs 34 Genome Page 36 of 42

721 Figures

722 Figure 1. Location of the study sites; Dark grey areas on the upper right map represent

723 National Parks in Gabon. The Ipassa site is located near Ivindo.

724 Figure 2. Photos of the two study sites and sampling methods: A) View of the savannah

725 forest patchwork in Lopé National Park, showing the position of the light trap (Lopé 2,

726 November 2009); B) Rainforests at Ipassa research station at the edge of the Ivindo river

727 (November 2009); C) Light trapping at Lopé 2 in March 2011; D) Tissue sampling for DNA

728 barcoding during the ECOTROP field class in March 2011.

729 Figure 3. Diversity and composition of the macromoth sample at the two locations (Lopé 2

730 and Ipassa): the circular phylogram represents the results of a Neighbor Joining analysis in

731 BOLD of 3,494 COI sequences clusteringDraft into 1,385 BINs; barcodes obtained for specimens

732 from Ipassa are in green while those from Lopé 2 are in grey. The pie chart represents the

733 relative contribution (ordered) of the different families and subfamilies (for Erebidae) of

734 moths collected in the two sites; numbers within brackets indicate the number of BINs and

735 number of specimens sampled, respectively.

736 Figure 4. Comparisons between the numbers of BINs observed in this study for 28 families

737 and subfamilies of macromoths (dashed bars) and the numbers reported from Gabon in the

738 AfroMoths online database (grey bars; De Prins & De Prins 2017).

739 Figure 5. Individual, sample, and coveragebased rarefaction and extrapolation curves for

740 the two study sites and for two seasons at Lopé 2 (DS: dry season, WS: wet season): A) Size

741 based rarefaction/extrapolation curves; B) Sample coverage plotted against the number of

742 individuals; C) Coveragebased rarefaction/extrapolation (rarefaction curves are represented

743 in solid lines, extrapolation curves in dashed lines; shaded areas represent a 95% confidence

744 intervals based on a bootstrap method with 200 replications).

https://mc06.manuscriptcentral.com/genome-pubs 35 Page 37 of 42 Genome

745

746

Draft

https://mc06.manuscriptcentral.com/genome-pubs 36 Genome Page 38 of 42

747 Supplementary material

748 SI Table 1. List of members of the ECOTROP team and their affiliations.

749 SI Fig. 1. Neighbour Joining (NJ) tree based on K2P distances for the Sphingidae and

750 Saturniidae moths collected in Ipassa (terminals labelled as ‘makokou’ in the tree) and Lopé 2

751 (labelled as ‘La Lope’). The tree was produced with records in BOLD dataset DSLOPELEP1

752 using BOLDalignment and default settings.

753 SI Fig. 2. Images of specimens in NJ tree of SI Fig. 1; numbers of images correspond to

754 numbers of terminals in SI Fig. 1 tree.

755 SI Fig. 3. Rankabundance diagrams for Ipassa (left panels) and Lopé 2 (right panels): (A)

756 and (C) represent Fisher's logseries functions fitted on abundance data; (B) and (D) represent

757 Preston's lognormal (red lines) and truncatedDraft lognormal (blue lines) models.

758

759

https://mc06.manuscriptcentral.com/genome-pubs 37 Page 39 of 42 Genome

Draft

https://mc06.manuscriptcentral.com/genome-pubs Genome Page 40 of 42 A B

Draft

C D

https://mc06.manuscriptcentral.com/genome-pubs Page 41 of 42 Genome

Ogo Og Og Ogo Ogo OgoOg Ogo Og OgoOgoOgo OgoOgoOgo Og OgoOg Og OgoOgo OgoOgoOg OgoOgoOgo OgoOgoOgo OgoOgoOgo OgoOgoOg OgoOgoOgo OgoOgoOgo OgoOgoOgo OgoOgoOg OgoOgoOgo OgoOgoOgo OgoOgo o o OgoOgo o o OgoOgoOg OgoOgo o o OgoOg o OgoOgoOgo o OgoOgo via pudens|TDGAB−1938 Ogo via pudens|TDGAB−2020via pudens|TDGAB−2155via pudens|Lope11−0915via pudens|Lope11−0919 vi via pudens|TDGAB−1908via pudens|TDGAB−1925via pudens|Lope11−0593 o via pudens|TDGAB−1734via pudens|TDGAB−1818via pudens|TDGAB−1878 via pudens|TDGAB−1713via pudens|TDGAB−1714via pudens|TDGAB−1732 via viapudens|TDGAB−1640 pudens|TDGAB−1687via pudens|TDGAB−1704 via viapudens|TDGAB−1517 viapudens|TDGAB−1610 pudens|TDGAB−1636 via viapudens|TDGAB−1417 viapudens|TDGAB−1471 viapudens|TDGAB−1476 pudens|TDGAB−1508 o via viapudens|TDGAB−1378via pudens|TDGAB−1389 pudens|TDGAB−1396 viavia pudens|TDGAB−1346 pudens|TDGAB−1361 E E Erebinae|TDGAB−1947 via pudens|TDGAB−1250 Erebinae|TDGAB−0882Erebinae|TDGAB−0812Erebinae|TDGAB−0808 Erebinae|Lope11−0100 Erebinae|Lope11−0932 Erebinae|TDGAB−1661Erebinae|TDGAB−1516Erebinae|TDGAB−1388 via pudens|TDGAB−1047 Erebinae|TDGAB−1533 viavia pudens|TDGAB−0911 pudens|TDGAB−0959 Erebinae|TDGAB−1244Erebinae|TDGAB−0806Erebinae|TDGAB−0941Erebinae|TDGAB−1212 via pudens|TDGAB−0902 Erebinae|TDGAB−0140Erebinae|TDGAB−1419 via pudens|TDGAB−0895 Erebinae|TDGAB−1924 Erebinae|Lope11−0592 via pudens|TDGAB−0834 Erebinae|TDGAB−1891Erebinae|TDGAB−1344Erebinae|TDGAB−1745Erebinae|Lope11−0874 viavia pudens|TDGAB−0575 pudens|TDGAB−0772 Erebinae|TDGAB−1248Erebinae|TDGAB−1363Erebinae|Lope11−0873 viavia pudens|TDGAB−0125 pudens|TDGAB−0520 Erebinae|TDGAB−1897Erebinae|TDGAB−0835Erebinae|Lope11−0440 o viavia pudens|TDGAB−0033via pudens|TDGAB−0048 pudens|TDGAB−0057 a pudens|TDGAB−1901 viavia pudens|TDGAB−0053via pudens|TDGAB−1318 pudens|TDGAB−1580 o 4580− via pudens|TDGAB−1394 738 289 93 3880− 8 4 via pudens|TDGAB−1515 2380− 435 2490− 9 3400− 6580− via pudens|TDGAB−1586 6850− 555 99 8 via pudens|TDGAB−1633 6780− 6 0060− 742 1 viavia pudens|TDGAB−1703 pudens|TDGAB−1803 rE 3090− viavia pudens|TDGAB−1168via pudens|TDGAB−0909 pudens|TDGAB−1691 rE viavia pudens|TDGAB−1898via pudens|TDGAB−1486 pudens|TDGAB−1373 viavia pudens|TDGAB−0035via pudens|TDGAB−1255 pudens|TDGAB−1648 via pudens|TDGAB−1128 erEerE via pudens|TDGAB−1559 5 e 320− via pudens|TDGAB−1558 790− via pudens|TDGAB−1319 Ogo 1 viavia pudens|TDGAB−1723 pudens|TDGAB−1032 Ogo Ogo 5 002− viavia pudens|TDGAB−0914via pudens|TDGAB−1557 pudens|TDGAB−1830 Mocis con 7202−

ber berEbeb Ericeia inangulata|Lope11−0938 b 1 1 Ericeia inangulata|TDGAB−0892 80 5 1

i iberE1 1 2− 0− 1 iberE 1 1 Erebinae|Lope11−0917 0− 1 Erebinae|TDGABb−342Erebinae|TDGAB−0900Erebinae|TDGAB−1989Erebinae|Lope11−0162Erebinae|Lope11−0591 niberEniberE Erebinae|TDGAB−1913 n Erebinae|TDGAB−1390Erebinae|TDGAB−1355Erebinae|TDGAB−1755 Erebinae|TDGAB−1912 − − − Erebinae|TDGAB−0764 − − − Erebinae|TDGAB−2364Erebinae|TDGAB−1583 − Erebinae|TDGAB−0347Erebinae|TDGAB−0368Erebinae|TDGAB−2321 a a Erebinae|TDGAB−2311 via|TDGAB−0339 Erebinae|TDGAB−2012Erebinae|TDGAB−2131 via|Lope11−0911via|Lope11−0922 a Erebinae|TDGAB−0581Erebinae|TDGAB−1306Erebinae|TDGAB−2011

11epoL| 11epoL|eaniberE Erebinae|TDGAB−2191 11epoL|eaniberE 11e 11epoL|eaniberE Erebinae|TDGAB−0278 11 11epoL|ea 11ep BAGDT Erebinae|TDGAB−0519 B BAGDT|e BAGDT|eanib BAGDT|eaniberE BAGDT|eanib BAGDT|eaniberE Erebinae|TDGAB−2005 BAGDT|eaniberE BA Amphip BAGDT|ean BAGDT|eaniberE BAGDT|eaniberE Erebinae|TDGAB−1985 BAGDT|eani BA eaniber BAGDT|eaniberE Amphip Erebinae|TDGAB−0346 ean Amphip Erebinae|TDGAB−1059 eanieaniberEeani AmphipAmphip Erebinae|TDGAB−1828Erebinae|TDGAB−1601Erebinae|TDGAB−1874 AmphipAmphip Erebinae|TDGAB−1819Erebinae|TDGAB−1863Erebinae|TDGAB−1784 AmphipAmphipAmphip Erebinae|TDGAB−0045Erebinae|TDGAB−0724Erebinae|TDGAB−1387 Erebinae|TDGAB−0009 |ean AmphipAmphipAmphip Erebinae|TDGAB−1455Erebinae|TDGAB−1582Erebinae|TDGAB−1600 AGDT|eaniberE Amphip Erebinae|TDGAB−0811 BAGDT|suberE

T|e T|T|eanib Amphip Erebinae|Lope11−0445 T|eaniberET|eani AmphipAmphip Erebinae|Lope11−0588Erebinae|Lope11−0599 epoL|e Erebinae|TDGAB−0866Erebinae|TDGAB−1273Erebinae|TDGAB−2244Erebinae|Lope11−0190 Erebinae|TDGABb−327Erebinae|Lope11−0450Erebinae|TDGAB−0598

GDT|eaniberE

D T|e a nib er E Erebinae|TDGAB−2264Erebinae|Lope11−0155 D Erebinae|TDGAB−1372Erebinae|Lope11−0505Erebinae|Lope11−0510 D poL|eaniberE GDT| Erebinae|TDGAB−0447Erebinae|TDGAB−1621Erebinae|TDGAB−0012Erebinae|Lope11−0072 Erebinae|TDGAB−1186Erebinae|TDGAB−1668 veniens|TDGAB−2044 oL|ea

AGD AGD |e yrinae|TDGAB−0707yrinae|TDGAB−1911 yrinae|TDGAB−1477yrinae|TDGAB−1809 e e BAGBAGDT| BAGDT|eBAGBAGDT| B BAGDT|BAGDTB yrinae|TDGAB−1385yrinae|TDGAB−1428 BAGBAGDBAGDT| MarMarMar yrinae|TDGAB−1729yrinae|TDGAB−1362 BAGDT|eBAGDT|eani MarMar yrinae|TDGAB−0148yrinae|TDGAB−1725 ymas|TDGABb−348

yrinae|TDGAB−1565 an aniberE Mar aniberE Mar yrinae|TDGAB−0259 aniberE MarMar yrinae|TDGAB−1424yrinae|TDGAB−1422yrinae|TDGAB−0301 an

− − − − − yrinae|TDGAB−1444 − − − MarMar − − yrinae|TDGAB−1528 − Mar − Notodontidae|TDGAB−1190 MarMarMar niberE MarMar niberE

1 1 i Mar 1 1 1 1 0−0 1 hira|Lope11−0130 Mar ib hira|Lope11−0136 1 1 MarMarMar iberE MarMar cipa|TDGAB−1148cipa|Lope11−0380 Mar 9 Mar cipa|TDGAB−0405 5 7

berE Mar cipa|TDGAB−1353 5 MarMar cipa|TDGAB−1170cipa|TDGAB−1292 b MarMarMar cipa|TDGAB−2248cipa|TDGAB−0497cipa|TDGAB−1271

cipa|Lope11−0308 29 Ma 200 cipa|TDGAB−1408 500− Noctuidae|Lope11−0643Mar cipa|TDGAB−0987 erE erE erE Noctuidae|TDGAB−2126Noctuidae|Lope11−0004Noctuidae|Lope11−0597MarMar cipa|TDGAB−1205cipa|TDGAB−0244cipa|Lope11−0341 erE Noctuidae|TDGAB−0713Noctuidae|TDGAB−1628MarMarMar cipa|TDGAB−0956cipa|TDGAB−0211cipa|TDGAB−2298

Mar 1 73964 Noctuidae|TDGAB−1553 1 7300586 cipa|TDGAB−2081 495051 535 Mar 08729 cipa|TDGAB−0416 87588 Noctuidae|TDGAB−0630Noctuidae|TDGAB−0298Noctuidae|Lope11−0613MarMarMar cipa|TDGAB−0673cipa|TDGAB−1525cipa|TDGAB−0237 Noctuidae|TDGAB−2053Noctuidae|TDGAB−2215Noctuidae|TDGAB−0810 cipa|TDGAB−1230cipa|Lope11−0092cipa|TDGAB−0670 cipa|TDGAB−0150 Erebinae|Lope11−0447 Erebinae|Lope11−0906 Erebinae|TDGAB−0718 Noctuidae|Lope11−0603 ymantriinae|TDGAB−0328ymantriinae|TDGAB−1138 cipa|TDGAB−1847 Erebinae|TDGAB−0901Erebinae|TDGAB−0933 ymantriinae|TDGAB−2002 Erebinae|Lope11−0868 empta|TDGAB−1510 r Erebinae|TDGAB−1350Erebinae|TDGAB−1719 Noctuidae|Lope11−0609 Erebinae|TDGAB−1581 cipa|TDGAB−1566 Erebinae|TDGAB−1885Erebinae|Lope11−0594 Noctuidae|TDGAB−2113 Erebinae|Lope11−0913Erebinae|Lope11−0057 Amphip Erebinae|Lope11−0615 cipa|TDGAB−0715 Erebinae|TDGAB−1892Erebinae|TDGAB−1888Erebinae|Lope11−0871 ymantriinae|Lope11−0623ymantriinae|Lope11−0637 Amphip Erebinae|Lope11−0920Erebinae|TDGAB−1690Erebinae|Lope11−0982Noctuidae|TDGAB−1180 Noctuidae|Lope11−0611 Noctuidae|TDGAB−1242 cipa|TDGAB−0657 Noctuidae|TDGAB−1298 Amphip Noctuidae|TDGAB−0069Noctuidae|TDGAB−1325Noctuidae|TDGAB−1556Noctuidae|TDGAB−0509 ysodeixis acuta|TDGAB−1934 Noctuidae|Lope11−0088 cipa|TDGAB−1604 Noctuidae|TDGAB−1589 ysodeixis acuta|TDGAB−1845 Amphip cipa|TDGAB−1459 Noctuidae|TDGAB−0655Noctuidae|TDGAB−2342Noctuidae|TDGAB−1285Noctuidae|TDGAB−1119 ysodeixis acuta|TDGAB−1458 Noctuidae|Lope11−0598 Noctuidae|TDGAB−2225 ysodeixis acuta|TDGAB−0702 Noctuidae|TDGAB−1281 cipa|TDGAB−1587 Noctuidae|TDGAB−0849 ysodeixis acuta|TDGAB−0104 Agaristinae|TDGAB−2138Noctuidae|TDGAB−1016 cipa|TDGAB−0649 Noctuidae|TDGAB−2208Noctuidae|TDGAB−2374Noctuidae|Lope11−0059Noctuidae|Lope11−0607 ysodeixisysodeixis acuta|Lope11−0096 acuta|Lope11−0610 Amphip L L L Aediinae|Lope11−0300 Noctuidae|Lope11−0334 cipa|TDGAB−0779 DasycDasycJana MGABsp2|TDGABb−333 Noctuidae|TDGAB−1643 cipa|TDGAB−0646 JanaL eur cipa|TDGAB−0726 L Noctuidae|TDGAB−0201Noctuidae|TDGAB−0590 ysanoplusia spoliata|Lope11−0324 cipa|TDGAB−1554 Noctuidae|TDGAB−1821Noctuidae|TDGAB−0070Noctuidae|TDGAB−0563 Agaristinae|Lope11−0519 cipa|TDGAB−1957 Noctuidae|TDGAB−0852Noctuidae|TDGAB−2117Noctuidae|TDGAB−2145 Agaristinae|TDGAB−1971 cipa|TDGAB−1014 Noctuidae|TDGAB−0285Noctuidae|TDGAB−0577Noctuidae|TDGAB−0290Noctuidae|TDGAB−0766 Agaristinae|TDGAB−0917 cipa|TDGAB−1308 Noctuidae|TDGAB−0586Noctuidae|TDGAB−2255Noctuidae|TDGAB−1995 cipa|TDGAB−1577 Noctuidae|TDGAB−2398Noctuidae|TDGAB−1990Noctuidae|TDGAB−0351Noctuidae|TDGAB−2009 ys crini|Lope11−0544 ScSc cipa|TDGAB−1882 Noctuidae|Lope11−0083Noctuidae|Lope11−0178Gracilodes|TDGAB−0393 ys crini|Lope11−0945 Sc Calpinae|TDGAB−0171Calpinae|TDGAB−0274Calpinae|TDGAB−2080Noctuidae|TDGAB−2043 Noctuidae|TDGAB−0967Noctuidae|TDGAB−0289Noctuidae|TDGAB−2109Noctuidae|TDGAB−2151 Sc Noctuidae|TDGAB−0503Noctuidae|TDGAB−0845Noctuidae|TDGAB−1349 ScSc Noctuidae|TDGAB−0511Noctuidae|TDGAB−1243Noctuidae|Lope11−0157 Noctuidae|Lope11−0828Noctuidae|TDGAB−0060Noctuidae|TDGAB−0114 Auc Noctuidae|TDGAB−1936Noctuidae|TDGAB−2405ThChr ChrChrChr ChrChrChrGeometridae|TDGAB−0422 Noctuidae|Lope11−0587hausia|TDGAB−0349hausia|Lope11−0601 Geometridae|TDGAB−0782Geometridae|TDGAB−2230Geometridae|Lope11−0108Metallospora|Lope11−0774 Noctuidae|TDGAB−1718Noctuidae|TDGAB−1932hausia|TDGAB−1414 Noctuidae|TDGAB−0388Noctuidae|TDGAB−0401Noctuidae|TDGAB−0825Noctuidae|TDGAB−1829 Noctuidae|TDGAB−1629Utetheisa|TDGAB−1749hausia|TDGAB−0876 Noctuidae|TDGAB−1103Noctuidae|TDGAB−0164Noctuidae|TDGAB−0601 Noctuidae|TDGAB−1539Noctuidae|TDGAB−1548hausia|TDGAB−0181hausia|TDGAB−0429 Noctuidae|TDGAB−2360Noctuidae|TDGAB−2400Earias|TDGAB−0111Noctuidae|TDGAB−0431 Noctuidae|TDGAB−0098Noctuidae|TDGAB−0089 Noctuidae|TDGAB−1376Noctuinae|TDGAB−0756Noctuidae|TDGAB−1537Noctuidae|TDGAB−1695 Noctuidae|TDGAB−0758 Noctuidae|Lope11−0089Noctuidae|Lope11−0176Noctuidae|TDGAB−1757Noctuidae|TDGAB−0798 Noctuidae|TDGAB−0243Noctuidae|TDGAB−0064yrinae|TDGAB−2257 Noctuidae|TDGAB−0569Noctuidae|Lope11−0090Noctuidae|TDGAB−2017 Noctuidae|TDGAB−0571Noctuidae|Lope11−0486yrinae|TDGAB−0441 Noctuidae|TDGAB−2210Noctuidae|Lope11−0296BrithBrith Noctuidae|Lope11−0376henisa|TDGAB−0761yrinae|TDGAB−0313yrinae|TDGAB−1201 Callopistria|TDGAB−0663Noctuidae|TDGAB−1618Noctuidae|Lope11−0001 Noctuidae|TDGAB−2397Noctuidae|TDGAB−2416yrinae|TDGAB−0203 Noctuidae|TDGAB−1055Noctuidae|TDGAB−0984Noctuidae|TDGAB−1324 Noctuidae|TDGAB−1263Noctuidae|TDGAB−1165 Noctuidae|TDGAB−0236Noctuidae|Lope11−0175Lacinipolia|TDGAB−0802Lacinipolia|TDGAB−0696 Noctuidae|TDGAB−1077Noctuidae|TDGAB−2074 Lacinipolia|TDGAB−1233Noctuidae|TDGAB−1966Noctuidae|TDGAB−2060Noctuidae|TDGAB−1538 Noctuidae|TDGAB−1972Noctuidae|TDGAB−2252Xyleninae|Lope11−0165Xyleninae|TDGAB−0711 Xyleninae|Lope11−0325Xyleninae|Lope11−0650Noctuidae|Lope11−0851Noctuidae|Lope11−0852 Noctuidae|TDGAB−2207Noctuidae|TDGAB−2386Noctuidae|Lope11−0086Noctuidae|TDGAB−1733 Erebinae|TDGAB−0141Erebinae|Lope11−0912Erebinae|Lope11−0916 Noctuidae|Lope11−0836Noctuidae|TDGAB−2394Noctuidae|Lope11−0323Noctuidae|Lope11−0335 Erebinae|TDGAB−2000 Noctuidae|TDGAB−0871Noctuidae|TDGAB−0963Noctuidae|TDGAB−1013 Erebinae|TDGAB−2299Erebinae|Lope11−0087 Noctuidae|TDGAB−0979Noctuidae|TDGAB−0964Noctuidae|TDGAB−0872Noctuidae|TDGAB−0369ctiinae|TDGAB−1461 Erebinae|TDGAB−0564Erebinae|TDGAB−2004 Noctuidae|TDGAB−0176Noctuidae|TDGAB−0510Noctuidae|TDGAB−0965ctiinae|TDGAB−1080ctiinae|TDGAB−1093 Erebinae|TDGAB−0397Erebinae|TDGAB−0183 Noctuidae|TDGAB−1029Noctuidae|TDGAB−1096Noctuidae|TDGAB−1025ctiinae|TDGAB−0952ctiinae|TDGAB−0975ctiinae|TDGAB−1216 Erebinae|Lope11−0606Erebinae|Lope11−0301 Noctuidae|TDGAB−2317Noctuidae|TDGAB−1198Noctuidae|Lope11−0053ctiinae|TDGAB−0040ctiinae|TDGAB−2025ctiinae|TDGAB−2032 Erebinae|TDGAB−0913Erebinae|Lope11−0135 Noctuidae|TDGAB−1849Noctuidae|Lope11−0843Noctuidae|Lope11−0151Noctuidae|Lope11−0164 Erebinae|TDGAB−0552Erebinae|Lope11−0129 Noctuidae|Lope11−0990ArSpodoptera triturata|TDGAB−1097 Erebinae|TDGAB−1114Erebinae|Lope11−0080 SpodopteraSpodopteraAr triturata|TDGAB−1333 ex Erebinae|TDGAB−1142Erebinae|TDGAB−2136 ArArAr Erebinae|TDGAB−0487Erebinae|TDGAB−0528 ArArArAr Erebinae|TDGAB−0522Erebinae|TDGAB−1117Erebinae|TDGAB−0332 Spilosoma|Lope11−0173Spilosoma|Lope11−0534Spilosoma|TDGAB−0027Spilosoma|TDGAB−0028 Hypocala|TDGAB−1870Hypocala|TDGAB−1903Hypocala|Lope11−0655Erebinae|TDGAB−0378 Spilosoma|TDGAB−1642Spilosoma|Lope11−0289Spilosoma|Lope11−0290Spilosoma|Lope11−0657 Hypocala|TDGAB−1770Hypocala|TDGAB−1859 Erebinae|TDGAB−1057Erebinae|TDGAB−2121Erebinae|TDGAB−2190 Hypocala|TDGAB−1645Hypocala|TDGAB−1677 Erebinae|TDGAB−0521Erebinae|TDGAB−2196Erebinae|TDGAB−1804Erebinae|TDGAB−0160 Hypocala|TDGAB−0722Hypocala|TDGAB−1595 Erebinae|TDGAB−1536Erebinae|TDGAB−2373Asota speciosa|TDGAB−1681 HypsorHypsorHypocala|TDGAB−0807Hypocala|TDGAB−0080 AsotaAsotaAsota speciosa|TDGAB−1386 speciosa|TDGAB−1682 speciosa|TDGAB−1832 Hypocala|TDGAB−1345Hypocala|TDGAB−1343 AsotaErebidae|Lope11−0608Amerila|TDGAB−1740 speciosa|TDGABb−337 Hypocala|TDGAB−0044Hypocala|TDGAB−1552 Amerila|TDGAB−0717Amerila|TDGAB−1223Amerila|TDGAB−1240Amerila|TDGAB−0020 Hypocala|TDGAB−1807Hypocala|TDGAB−1644 Amerila|TDGAB−0793Amerila|TDGAB−1715Amerila luteibarba|TDGAB−0629 Eudocima|TDGABb−326Hypocala|TDGAB−1364 AmerilaAmerilaAmerila luteibarba|TDGAB−0046 luteibarba|TDGAB−2029 luteibarba|TDGAB−0047 Eudocima|TDGAB−1669 AmerilaAmerilaAmerila luteibarba|TDGAB−0407 luteibarba|TDGAB−0637 luteibarba|TDGAB−0174 AmerilaAmerilaAmerila luteibarba|Lope11−0292 luteibarba|TDGAB−1249 luteibarba|TDGAB−0409 Noctuidae|Lope11−0841 AmerilaAmerilaAmerilaAmerila luteibarba|TDGAB−0907 luteibarba|TDGAB−0168 luteibarba|TDGAB−0197 luteibarba|Lope11−0342 Noctuidae|TDGAB−1224Noctuidae|Lope11−0172Hypena|TDGAB−2283 AmerilaAmerilaAmerilaAmerila luteibarba|TDGAB−0464 luteibarba|TDGAB−0486 luteibarba|TDGAB−1228 luteibarba|Lope11−0524 Noctuidae|Lope11−0179Noctuidae|Lope11−0181Noctuidae|Lope11−0604Hypena|TDGAB−0408Hypena|TDGAB−0572Hypena|TDGAB−1293 Amerila|Lope11−0658Amerila|TDGAB−0006Amerila|TDGAB−0137Amerila|TDGAB−0730 Noctuidae|TDGAB−0071Noctuidae|Lope11−0718Hypena|TDGAB−0360Hypena|TDGAB−0179opha|Lope11−0441 Amerila|Lope11−0526Amerila|Lope11−0677Noctuidae|TDGAB−1302Noctuidae|TDGAB−0156 Noctuidae|TDGAB−2127Noctuidae|TDGAB−1693opha|Lope11−0139 Noctuidae|TDGAB−0548Noctuidae|TDGAB−1178Noctuidae|TDGAB−1018 Noctuidae|TDGAB−0337Noctuidae|TDGAB−1983Noctuidae|TDGAB−0250 Noctuidae|TDGAB−2116Noctuidae|TDGAB−0645Noctuidae|TDGAB−1040omiaomia lethe|TDGAB−0476lethe|TDGAB−0611ustissima|Lope11−0060 Noctuidae|TDGAB−1674Noctuidae|TDGAB−0043 Noctuidae|TDGAB−0930Noctuidae|TDGAB−0468Noctuidae|TDGAB−0361omiaomiaomia|TDGAB−2353 lethe|TDGAB−1208 lethe|TDGAB−1652 Noctuidae|TDGAB−2046Noctuidae|Lope11−0612 Noctuidae|TDGAB−2331Noctuidae|TDGAB−1334Noctuidae|TDGAB−1311omia|TDGAB−0537omia|TDGAB−0335omia|TDGAB−0398 Noctuidae|Lope11−0618Noctuidae|TDGAB−0443 Noctuidae|TDGAB−1326Noctuidae|TDGAB−0444Noctuidae|Lope11−0359omia|TDGAB−0612omia|TDGAB−1209omia|Lope11−0808 Noctuidae|TDGAB−0032Noctuidae|Lope11−0377Noctuidae|TDGAB−0109 Noctuidae|TDGAB−1653Noctuidae|TDGAB−1314Noctuidae|TDGAB−2362Noctuidae|TDGAB−2417 a|TDGAB−2221 Antiophlebia|TDGAB−1758Antiophlebia|Lope11−0784Noctuidae|TDGAB−0121Noctuidae|TDGAB−0304 Noctuidae|TDGAB−1231Noctuidae|TDGAB−1305Noctuidae|Lope11−0554ctiinae|TDGAB−1960 Antiophlebia|Lope11−0097Noctuidae|TDGAB−1264Noctuidae|TDGAB−2106Noctuidae|Lope11−0340 Noctuidae|TDGAB−0982Noctuidae|TDGAB−1183Noctuidae|TDGAB−1561Noctuidae|TDGAB−1780 Noctuidae|TDGAB−1339Noctuidae|TDGAB−2068AcontiaNoctuidae|TDGAB−0430 transfigurata|Lope11−0645 Erebinae|TDGAB−1772Erebinae|Lope11−0872 ArNoctuidae|Lope11−0649EuchrEuchr octis|TDGAB−1087octis|TDGAB−0427ycopsis|Lope11−0937 Noctuidae|Lope11−0337Noctuidae|Lope11−0614Erebinae|TDGAB−2423 EuchrEuchrEuchr ctiinae|TDGAB−1864ctiinae|TDGAB−2124ctiinae|TDGABb−369octis|Lope11−0140octis|Lope11−0628octis|Lope11−0629 Noctuidae|Lope11−0168Noctuidae|Lope11−0347 EuchrEuchrEuchrEuchr ctiinae|TDGABb−359ctiinae|TDGAB−1125ctiinae|TDGABb−360 AnapisaAnapisa monotica|Lope11−0153monotica|Lope11−0364Noctuidae|Lope11−0149Noctuidae|Lope11−0018 EuchrEuchrNoctuidae|TDGAB−0558ctiinae|TDGABb−361ctiinae|TDGABb−370 Noctuidae|TDGAB−0666Noctuidae|TDGAB−0256Noctuidae|TDGAB−0418 Noctuidae|Lope11−0936ArAr r Noctuidae|TDGAB−0199Noctuidae|TDGAB−1006Noctuidae|TDGAB−1041 ArArArAr ytometra|TDGAB−0113 Noctuidae|Lope11−0298Noctuidae|Lope11−0368 ArAEuprEupr Noctuidae|TDGAB−1544Noctuidae|TDGAB−1654Noctuidae|TDGAB−0545 EuprEuprEupr Noctuidae|Lope11−0929Noctuidae|TDGAB−0095Noctuidae|TDGAB−0515 BombPhPacidaraNoctuidae|TDGAB−0275 ven Noctuidae|TDGAB−2202 Noctuidae|TDGAB−0687Noctuidae|TDGAB−0697Noctuidae|TDGAB−2087ctiinae|TDGAB−2063ctiinae|TDGAB−0924 Noctuidae|TDGAB−0570 Noctuidae|TDGAB−0445Noctuidae|TDGAB−1366Noctuidae|Lope11−0352ctiinae|TDGAB−2037ctiinae|TDGAB−2256ctiinae|TDGAB−2272 Soloella|Lope11−0529 Anomis|TDGAB−1836AnomisAnomis|Lope11−0102Anomis|TDGAB−0257ctiinae|Lope11−0286ctiinae|TDGAB−0297 ctiinae|TDGAB−2333flav Soloella|Lope11−0291 Anomis|Lope11−0552ArAr ctiinae|TDGAB−2141ctiinae|TDGAB−2345ctiinae|TDGAB−1078 Noctuidae|Lope11−0546Noctuidae|Lope11−0842Anapisa|TDGAB−0435Anapisa|Lope11−0832 ArArAr ctiinae|TDGAB−1079ctiinae|TDGAB−1279ctiinae|TDGAB−1777 Noctuidae|TDGAB−1316Noctuidae|TDGAB−0731 ArArAr ctiinae|TDGAB−2125ctiinae|TDGAB−2153ctiinae|TDGAB−2347 Noctuidae|Lope11−0145Noctuidae|TDGAB−0241 ArArAr ctiinae|Lope11−0042ctiinae|TDGAB−0180ctiinae|TDGAB−0752ctia|TDGAB−0880 Noctuidae|Lope11−0304Noctuidae|Lope11−0326Tuer ArArAr ctiinae|Lope11−0319ctiinae|TDGAB−0817ctiinae|TDGAB−0763 Tuer ArArAr ctiinae|TDGAB−0734ctiinae|TDGAB−0636ctiinae|TDGAB−0733 ArAr ArArArAr ctiinae|TDGAB−1606ctiinae|TDGAB−1697ctiinae|TDGAB−1716 hra|TDGAB−1680hra|TDGAB−1852 ArArAr ArArAr ctiinae|Lope11−0542ctiinae|TDGAB−2014 hra|TDGAB−1865hra|TDGAB−2016 ArArAr ctiinae|TDGAB−2007ctiinae|Lope11−0824 ArArAr aramelisa|TDGAB−0225ctiinae|TDGAB−0559ctiinae|TDGAB−2061ctiinae|TDGAB−2249 hra|Lope11−0002hra|Lope11−0029hra|Lope11−0030 ArAr ctiinae|TDGAB−0321ctiinae|Lope11−0333ta|TDGAB−0266ta|TDGAB−0605 ArArAr ctiinae|TDGAB−1667ctiinae|Lope11−0041ctiinae|Lope11−0310 hra|Lope11−0033hra|Lope11−0034hra|Lope11−0035 ArArAr ctiinae|TDGAB−0918ctiinae|TDGAB−1282ctiinae|TDGAB−2031 PArAr ctiinae|Lope11−0538ctiinae|TDGAB−0613 hra|Lope11−0525hra|Lope11−0527hra|TDGAB−0800 ArAr ctiinae|TDGAB−2427ctiinae|TDGAB−0739ctiinae|TDGAB−2057 ArArArAr ctiinae|Lope11−0535ctiinae|Lope11−0806 hra|TDGAB−1433hra|Lope11−0800 ArArAr ctiinae|TDGAB−0299ctiinae|TDGAB−0319 ArArRhipidar ArAr ctiinae|TDGAB−1284ctiinae|TDGAB−1564 ArArAr ArArAr ctiinae|TDGAB−0425ctiinae|TDGAB−0457ctiinae|TDGAB−0458 Balacra|TDGAB−0002Balacra|TDGAB−0008Balacra|Lope11−0008 ArAr ctiinae|TDGAB−0512ctiinae|TDGAB−2076ctiinae|TDGAB−0322 Balacra|Lope11−0038Balacra|Lope11−0037Balacra|Lope11−0801 ArAr ctiinae|TDGAB−0314ctiinae|TDGAB−0320ctiinae|TDGAB−0442 Balacra|TDGAB−2197Balacra|TDGAB−2351Balacra|TDGAB−0399 ArArAr ctiinae|TDGAB−0326ctiinae|TDGAB−2395ctiinae|TDGAB−2189 Balacra|TDGAB−1254Balacra|TDGAB−2089Balacra|TDGAB−2346Balacra|Lope11−0036 ArArAr ctiinae|Lope11−0316ctiinae|Lope11−0361ctiinae|TDGAB−0547 Balacra|Lope11−0039Balacra|Lope11−0040Balacra|Lope11−0802Balacra|TDGAB−2021 ArAr ctiinae|TDGAB−1215ctiinae|TDGAB−2213ctiinae|TDGAB−2390 BalacraBalacraBalacraBalacra pulc pulc pulcpulc ManMactiinae|TDGAB−0932ctiinae|TDGAB−1213 BalacraBalacraBalacra pulc pulcpulc ManManManctiinae|TDGAB−0305ctiinae|TDGAB−1000 BalacraBalacraBalacra pulc pulcpulc ManMan n BalacraBalacraBalacraBalacra pulc pulc pulcpulc Man ulea|Lope11−0541 BalacraBalacra|Lope11−0150Balacra|Lope11−0353utomolis|TDGAB−0523ctiinae|Lope11−0523ctiinae|TDGAB−1252ctiinae|Lope11−0354 pulc ManMan ulea|TDGAB−0086ulea|Lope11−0378ulea|Lope11−0517 Balacra|TDGAB−1607Balacra|Lope11−0804Balacra|Lope11−0805ctiinae|Lope11−0540ctiinae|TDGAB−1742ctiinae|Lope11−0005 Man ulea|TDGAB−2261ulea|TDGAB−0677 AArAr ctiinae|TDGAB−1188ctiinae|TDGAB−2034ctiinae|Lope11−0064 ManMan ulea|TDGAB−1763ulea|TDGAB−2038ulea|TDGAB−2170 ArArAr ctiinae|Lope11−0288ctiinae|Lope11−0293ctiinae|Lope11−0532 ManMa ulea|TDGAB−1498ulea|TDGAB−1728 ArArAr ctiinae|Lope11−0533ctiinae|Lope11−0537ctiinae|TDGAB−1446 ManMan ulea|TDGAB−0765ulea|TDGAB−0923ulea|TDGAB−1260 ArArAr ctiinae|TDGAB−1532ctiinae|Lope11−0807ctiinae|Lope11−0991 ManMan n ulea|TDGAB−0689ulea|TDGAB−0736ulea|TDGAB−0753 ArArAr ctiinae|TDGAB−1783ctiinae|TDGAB−0747ctiinae|TDGAB−1931 Man ulea|TDGAB−0931ulea|TDGAB−0310 ArArArAr ctiinae|TDGAB−0004ctiinae|TDGAB−0153ctiinae|TDGAB−1826 ManMan ulea|TDGAB−2201ulea|TDGAB−1673ulea|TDGAB−0276 ArArAr ctiinae|TDGAB−0795ctiinae|TDGAB−1412ctiinae|TDGAB−1848 MaMan ulea|TDGAB−1800ulea|TDGAB−2110 ArArAr ctiinae|TDGAB−1939ctiinae|TDGAB−0848ctiinae|TDGAB−0131 ManMa ulea|TDGAB−1639ulea|TDGAB−1649ulea|TDGAB−1756 ArArAr ctiinae|TDGAB−0147ctiinae|TDGAB−1371ctiinae|TDGAB−1485 Man ulea|TDGAB−0690ulea|TDGAB−0258ulea|TDGAB−1288 ArArAr ctiinae|TDGAB−1696ctiinae|TDGAB−1707ctiinae|TDGAB−1940 ManMannnnulea|TDGAB−0694ulea|TDGAB−0691 ArArAr ctiinae|TDGAB−1942ctiinae|TDGAB−1943ctiinae|TDGAB−1944 ManMa ulea|TDGAB−0809ulea|TDGAB−0775ulea|TDGAB−0743 ArArAr ctiinae|TDGAB−0005ctiinae|TDGAB−1785ctiinae|TDGAB−0149 ManMan ulea|TDGAB−0774ulea|TDGAB−1568ulea|TDGAB−1450 ArArAr ctiinae|TDGAB−0616ctiinae|TDGAB−1846ctiinae|TDGAB−1941 ManMannulea|TDGAB−1356ulea|TDGAB−1634ulea|TDGAB−0345 ArArAr ctiinae|TDGAB−0007ctiinae|TDGAB−0151ctiinae|TDGAB−1805 ArMaMan ulea|TDGAB−0740ulea|TDGAB−0791ulea|TDGAB−0922 ArArArAr ctiinae|TDGAB−1935ctiinae|TDGAB−1945 ArAr ulea|TDGAB−0873ulea|TDGAB−1377ulea|TDGAB−0693 ArAr Ar ctiinae|TDGAB−2352ctiinae|TDGAB−2409nn ulea|TDGAB−0692ulea|TDGAB−0745 ArNotodontidae|TDGAB−0906Notodontidae|TDGAB−1107hira goodii|TDGAB−1825era|TDGAB−0998era|TDGAB−0065 ArAr ctiinae|TDGAB−2332ctiinae|TDGAB−1266ctiinae|TDGAB−1500ulea|TDGAB−0264ulea|TDGAB−0424ulea|TDGAB−0342 Notodontidae|TDGAB−0921Notodontidae|TDGAB−0996Notodontidae|TDGAB−1088Notodontidae|TDGAB−0943era|TDGAB−1684era|Lope11−0346 Ar ctiinae|TDGAB−2356ctiinae|TDGAB−1611 Notodontidae|TDGAB−1083Notodontidae|TDGAB−1110Notodontidae|Lope11−0638ymantriinae|TDGAB−0919ymantriinae|TDGAB−1289ctiinae|Lope11−0814era|Lope11−0644 ArAr ctiinae|TDGAB−2171ctiinae|TDGAB−2239ctiinae|TDGAB−0327 LLPyralidae|Lope11−0639ymantriinae|TDGABb−318orata|TDGAB−1151orata|TDGAB−1253 Ar ctiinae|TDGAB−2431ctiinae|TDGAB−0440 LArLymantriinae|TDGAB−1012 ArAr ctiinae|TDGAB−2420ctiinae|TDGAB−2108ctiinae|TDGAB−0928 DasycNoctuidae|TDGAB−1961Soloe|TDGAB−0669 ArAr ctiinae|TDGAB−0324ctiinae|TDGAB−1054ctiinae|TDGAB−2426 Soloe|TDGAB−0624Soloe|TDGAB−0685Soloe|TDGAB−1787 Herminiinae|TDGAB−2065ArAr ctiinae|TDGAB−2265ctiinae|TDGAB−0270ctiinae|TDGAB−2403 Soloe|Lope11−0081Soloe|Lope11−0318Soloe|Lope11−0817Noctuidae|TDGAB−0066oma|TDGAB−0595 Lepidoptera|Lope11−0641Herminiinae|TDGAB−1312ArAr ctiinae|TDGAB−2078ctiinae|TDGAB−0972ctiinae|TDGAB−1074 Noctuidae|TDGAB−1563Noctuidae|TDGAB−1927Noctuidae|TDGAB−0110 LChiromacLepidoptera|TDGAB−1571Lepidoptera|TDGAB−1754Ar ctiinae|TDGAB−2077ctiinae|TDGAB−0449ctiinae|TDGAB−0300 Noctuidae|TDGAB−0668Noctuidae|TDGAB−1158Noctuidae|TDGAB−1330Nar ymantriinae|TDGAB−2388Caryctiinae|TDGAB−0323ctiinae|TDGAB−0325 NaromaNaroma signifsignif NaromaAnticarsiaoeda|TDGABb−321oeda signif caffra|Lope11−0715caffra|Lope11−0869irr AnticarsiaNotodontidae|TDGAB−0920Notodontidae|TDGAB−1070Notodontidae|TDGAB−1075 irr Cy atis|TDGAB−2015 OtrOtrLymantriinae|TDGAB−0330ymantriinae|TDGAB−0465ymantriinae|TDGAB−1130 Rhypopter CyCy hla|Lope11−0443 LNotodontidae|TDGAB−0283 Rhypopter CyCy ana|TDGAB−0189ana|TDGAB−0417ana|Lope11−0536 Notodontidae|TDGAB−0576Notodontidae|TDGAB−0768Notodontidae|Lope11−0590ymantriinae|TDGAB−1452ymantriinae|TDGAB−1002ymantriinae|TDGAB−1098hira|Lope11−0142hira|Lope11−0143 Rhypopter CyCy ana|TDGAB−2019ana|Lope11−0146ana|Lope11−0531 LLymantriinae|TDGAB−2135ymantriinae|Lope11−0631ymantriinae|TDGAB−1688 Rhypopter Ar CyCy ana|TDGAB−0560ana|TDGAB−2339ana|TDGAB−0981 LLymantriinae|TDGAB−0272ymantriinae|TDGAB−2013ymantriinae|TDGAB−2094 Rhypopter Noctuidae|TDGAB−0182Noctuidae|TDGAB−0387Noctuidae|TDGAB−2328Erebidae|TDGAB−0452Erebidae|TDGAB−2179CyCy ana|TDGAB−2174ana|TDGAB−2128ana|TDGAB−0517 LDasycymantriinae|TDGAB−0875ymantriinae|TDGAB−0375 ctiinae|Lope11−0803ana|Lope11−0379ana|TDGAB−0830 DasycL ymantriinae|TDGAB−0238ymantriinae|Lope11−0481ymantriinae|TDGAB−0947 StracenaRhypopterRhypopter yxvenosa|Lope11−0056yxErebidae|TDGAB−2093Erebidae|TDGAB−2275 UD003|Lope11−0811UD003|Lope11−0818ana|TDGAB−1773ana|TDGAB−1791 LLymantriinae|TDGAB−1053ymantriinae|TDGAB−0614ymantriinae|Lope11−0642 StracenaRhypopteryx UD001|Lope11−0633 UD003|Lope11−0786UD001|Lope11−0790 LLymantriinae|TDGAB−1914ymantriinae|TDGAB−0502ymantriinae|TDGAB−1177 StracenaRhypopter UD002|TDGAB−2334 LLymantriinae|TDGAB−0958ymantriinae|TDGAB−0863ymantriinae|TDGAB−1163 yx UD002|Lope11−0810UD002|Lope11−0812 LLaeliaymantriinae|TDGAB−0541ymantriinae|TDGAB−0938 UD001|TDGAB−2176 Lymantria v LLymantriinae|TDGAB−1313ymantriinae|TDGAB−1082ymantriinae|TDGAB−2067ymantriinae|TDGAB−1605 LymantriaLymantria vv Stracena|TDGAB−1768Stracena|Lope11−0349yx|TDGAB−1786yx|TDGAB−1905 LLymantriinae|TDGAB−1953ymantriinae|Lope11−0721ymantriinae|TDGAB−0154 LymantriaLLymantriinae|TDGAB−1623 v Stracena|TDGAB−2302Stracena|TDGAB−2114yx|TDGAB−0438yx|TDGAB−0499 LLymantriinae|Lope11−0147ymantriinae|Lope11−0845 LeucomaLymantriinae|TDGAB−0705ymantriinae|TDGAB−1421ymantriinae|TDGAB−1457 luteipes|Lope11−0635Leucoma|Lope11−0106Stracena|TDGAB−1141Stracena|TDGAB−2245yx|TDGAB−0331 LNotodontidae|TDGAB−1214Notodontidae|TDGAB−1038Notodontidae|TDGAB−2271 Notodontidae|TDGAB−1262Notodontidae|Lope11−0363Notodontidae|TDGAB−1590 Notodontidae|Lope11−0101Notodontidae|TDGAB−1831Notodontidae|Lope11−0357 acillans|TDGAB−1134acillans|TDGAB−1317acillans|TDGAB−1994 Notodontidae|TDGAB−1519Notodontidae|TDGAB−1451Notodontidae|TDGAB−1034 Leucoma|TDGAB−2295acillans|TDGAB−0175acillans|TDGAB−0479acillans|TDGAB−0829 Geometridae (220,540) Notodontidae|TDGAB−0861Notodontidae|TDGAB−0129Notodontidae|TDGAB−0117 Leucoma|TDGAB−2214Leucoma|TDGAB−0295 Notodontidae|TDGAB−1540Notodontidae|TDGAB−1572Notodontidae|TDGAB−1856Notodontidae|TDGAB−1857 Leucoma|TDGAB−2430Leucoma|TDGAB−0253Leucoma|TDGAB−0573 Notodontidae|TDGAB−1869Notodontidae|TDGAB−1923Notodontidae|Lope11−0103 Leucoma|TDGAB−1066Leucoma|TDGAB−1181Leucoma|TDGAB−2399 Notodontidae|Lope11−0158Notodontidae|Lope11−0303Notodontidae|Lope11−0329 Leucoma|TDGAB−0896Leucoma|TDGAB−0973 Notodontidae|Lope11−0556Notodontidae|Lope11−0559Notodontidae|Lope11−0717 Leucoma|TDGAB−2175Leucoma|TDGAB−2413Leucoma|TDGAB−0195 Notodontidae|Lope11−0085Notodontidae|TDGAB−1881Notodontidae|TDGAB−1861 Leucoma|TDGAB−0953Leucoma|TDGAB−2160Leucoma|TDGAB−0583 Notodontidae|TDGAB−1579Notodontidae|TDGAB−1520Notodontidae|TDGAB−1511 Leucoma|TDGAB−1067Leucoma|TDGAB−2340Leucoma|TDGAB−0877 Notodontidae|TDGAB−1489Notodontidae|TDGAB−1488Notodontidae|TDGAB−1513 Leucoma|TDGAB−2219Leucoma|TDGAB−0978Leucoma|TDGAB−1064 Notodontidae|TDGAB−1434Notodontidae|TDGAB−1521Notodontidae|TDGAB−1522Notodontidae|Lope11−0094 Leucoma|TDGAB−1150Leucoma|TDGAB−2292Leucoma|TDGAB−2173 Notodontidae|TDGAB−1468Notodontidae|TDGAB−0132Notodontidae|TDGAB−1562odonta|TDGAB−0377 Leucoma|TDGAB−2030Leucoma|TDGAB−2341Leucoma|TDGAB−0955 Notodontidae|Lope11−0099Notodontidae|Lope11−0183Notodontidae|Lope11−0312odonta|TDGAB−0379odonta|Lope11−0442 Dasyc Leucoma|TDGAB−1062Leucoma|TDGAB−1127 Notodontidae|Lope11−0825Notodontidae|Lope11−0839Notodontidae|TDGAB−1584Notodontidae|TDGAB−1664 Leucoma|TDGAB−0163Leucoma|TDGAB−0466Leucoma|TDGAB−1063 Notodontidae|TDGAB−1499Notodontidae|TDGAB−0082Notodontidae|Lope11−0946ymantriinae|TDGAB−1155ymantriinae|TDGAB−0453hira antica|TDGAB−2293 hirahira statheuta|TDGAB−2315statheuta|Lope11−0066Leucoma|TDGAB−1129Leucoma|TDGAB−1987Leucoma|TDGAB−0279 LLymantriinae|TDGAB−1299ymantriinae|TDGAB−0173ymantriinae|TDGAB−1031 Lymantriinae|TDGAB−2018Leucoma|TDGAB−0912Leucoma|TDGAB−1061Leucoma|TDGAB−1065 LLymantriinae|TDGAB−1637 Lymantriinae|TDGAB−2064ymantriinae|TDGAB−0350 DasycRahonaRahonaymantriinae|TDGAB−0485 macrmacr LLymantriinae|TDGAB−0245ymantriinae|TDGAB−0217ymantriinae|TDGAB−0184 LLymantriinae|TDGAB−2260ymantriinae|TDGAB−1008ymantriinae|TDGAB−1335hirahira|Lope11−0636 delicata|Lope11−0120 LLymantriinae|TDGAB−0420ymantriinae|TDGAB−0281 LLymantriinae|TDGAB−1889ymantriinae|TDGAB−2228ymantriinae|TDGAB−0463 Lymantriinae|TDGAB−0291ymantriinae|TDGAB−0514ymantriinae|TDGAB−0432 LDasycymantriinae|TDGAB−2042dara africana|TDGAB−1875africana|Lope11−0166 LLymantriinae|TDGAB−0561ymantriinae|TDGAB−0240ymantriinae|TDGAB−0251 DasycLymantriinae|TDGAB−0400ymantriinae|TDGAB−0489ymantriinae|TDGABb−340daradara africana|Lope11−0169africana|Lope11−0782africana|TDGAB−1436 LLymantriinae|TDGAB−0204ymantriinae|TDGAB−0426 LLymantriinae|TDGAB−0946ymantriinae|TDGAB−0826ymantriinae|TDGAB−1910dara africana|Lope11−0098africana|Lope11−0847 Lymantriinae|TDGAB−0448ymantriinae|TDGAB−0556ymantriinae|TDGAB−0218 LNeomaroctis|TDGAB−0759 LLymantriinae|TDGAB−0215ymantriinae|TDGAB−0242ymantriinae|TDGAB−0219 Neomaroctis|TDGAB−0801octis|TDGAB−1840octis|TDGAB−1949 Lymantriinae|TDGAB−0177ymantriinae|TDGAB−0216 NeomarEupr octis|TDGAB−1631octis|Lope11−0369octis UD006|Lope11−0148 Ar EuprEupr octisoctis|TDGAB−1793octis|TDGAB−1868 UD003|Lope11−0792 Ar ctiinae|Lope11−0809 EuprEupr octisoctis|TDGAB−0966octis|TDGAB−1970 UD002|Lope11−0171 Arctiinae|TDGAB−1774ctiinae|TDGAB−0659ctiinae|TDGAB−0102 Eupr octisoctis|TDGAB−0362octis|TDGAB−1004 UD008|Lope11−0821 Arctiinae|TDGAB−0606ctiinae|TDGAB−1348ctiinae|TDGAB−2220 Eupr octis|TDGAB−1234octisoctis|TDGAB−1222hira|Lope11−0180 UD001|Lope11−0124 Arctiinae|TDGAB−0916ctiinae|TDGAB−2052ctiinae|TDGAB−0312 Eupr octis|Lope11−0154hira|TDGAB−0152hira|TDGAB−1527hira|Lope11−0910 Arctiinae|TDGAB−2424ctiinae|TDGAB−2433ctiinae|TDGAB−1072 EuprDasyc hira|TDGAB−0490hira|TDGAB−0530hira UD001|Lope11−0558 Arctiinae|TDGAB−0316ctiinae|TDGAB−1547ctiinae|TDGAB−2391 Dasyc hira UD001|Lope11−0928 Arctiinae|TDGAB−2058ctiinae|TDGAB−1978ctiinae|TDGAB−1439 Lymantriinae (164,346) Dasycymantriinae|TDGAB−0372 Arctiinae|TDGAB−2263ctiinae|TDGAB−1627ctiinae|TDGAB−2367 DasycLymantriinae|TDGAB−0348ymantriinae|TDGAB−0886ymantriinae|TDGAB−1182 Arctiinae|TDGAB−1546ctiinae|TDGAB−0783 Lymantriinae|TDGAB−1195ymantriinae|TDGABb−365ymantriinae|TDGAB−0371 Arctiinae|TDGAB−2259ctiinae|TDGAB−1762ctiinae|TDGAB−0317 Lymantriinae|TDGABb−366ymantriinae|TDGAB−0847ymantriinae|Lope11−0046 Arctiinae|TDGAB−1416ctiinae|TDGAB−1567ctiinae|TDGAB−1218 Lymantriinae|Lope11−0331ymantriinae|TDGAB−0450ymantriinae|TDGAB−1256 Arctiinae|TDGAB−1357ctiinae|TDGAB−0306ctiinae|TDGAB−0664 LLymantriinae|TDGAB−1269ymantriinae|TDGAB−0494ymantriinae|TDGAB−0508 Arctiinae|TDGAB−1801ctiinae|TDGAB−2262 Lymantriinae|TDGAB−0527ymantriinae|TDGAB−2083ymantriinae|TDGAB−0874 Arctiinae|TDGAB−2325ctiinae|TDGAB−2378ctiinae|TDGAB−2411 Lymantriinae|TDGAB−0818ymantriinae|TDGAB−0842ymantriinae|TDGAB−1541 Arctiinae|TDGAB−2055ctiinae|TDGAB−2095ctiinae|TDGAB−2203 Lymantriinae|TDGAB−1591ymantriinae|TDGAB−1909ymantriinae|TDGAB−1238yria|TDGAB−0356 Arctiinae|TDGAB−2075ctiinae|TDGAB−2274ctiinae|TDGAB−2371 Lymantriinae|TDGAB−0951ymantriinae|TDGAB−1187ymantriinae|TDGAB−2140yria|TDGAB−1445yria|TDGAB−1701yria|TDGAB−0525 Arctiinae|TDGAB−0500ctiinae|TDGAB−0318ctiinae|TDGAB−0784 Lymantriinae|TDGAB−2082ymantriinae|TDGAB−1015ymantriinae|TDGAB−2161yria|TDGAB−1993yria ila|TDGAB−0358ila|TDGAB−1169 Arctiinae|TDGAB−2370ctiinae|TDGAB−2434ctiinae|Lope11−0516 LGriveaud yriayria|TDGAB−0359 ila|Lope11−0160ila|Lope11−0627 Arctiinae|TDGAB−1232ctiinae|TDGAB−1217 Griveaud yria|TDGAB−0813yria|TDGAB−0451yria|TDGAB−0341 Arctiinae|TDGAB−2366ctiinae|TDGAB−2381ctiinae|TDGAB−2309 Griveaud yria|TDGAB−1294yria|TDGAB−2118yria|TDGAB−2330 AmphipArctiinae|TDGAB−1085ctiinae|TDGAB−0456ctiinae|TDGAB−2365 Griveaud yria|TDGAB−2343yria|TDGAB−0248yria|TDGAB−1084 Noctuidae|Lope11−0487Noctuidae|TDGAB−2273Arctiinae|TDGAB−0742ctiinae|TDGAB−1219 Griveaud yria|TDGAB−1290yria|TDGAB−2158yria cangia|TDGAB−0936 Noctuidae|TDGAB−0672Noctuidae|TDGAB−1529Noctuidae|Lope11−0343yrinae|TDGAB−0207 Griveaud yria cangia|TDGAB−0355cangia|TDGAB−0513cangia|TDGAB−0539 Noctuidae|TDGAB−1599Noctuidae|Lope11−0367Noctuidae|Lope11−0480 Griveaud yria cangia|TDGAB−0881cangia|TDGAB−1382cangia|TDGAB−1392 Noctuidae|TDGAB−0446Noctuidae|TDGAB−2236 Noctuidae (224,397) Griveaud yria cangia|TDGAB−1393cangia|TDGAB−1759cangia|TDGAB−1883 Lepidoptera|TDGAB−0867ParNoctuidae|TDGAB−0209 Griveaud yria cangia|Lope11−0105cangia|Lope11−0620cangia|Lope11−0621 Noctuidae|TDGAB−0894Noctuidae|Lope11−0052Noctuidae|Lope11−0918dasena|TDGAB−0112 Griveaud yria cangia|Lope11−0630cangia|Lope11−0719 Noctuidae|TDGAB−0235Noctuidae|TDGAB−1046Noctuidae|TDGAB−2396 Griveaud Noctuidae|TDGAB−2237Noctuidae|TDGAB−2389Noctuidae|TDGAB−0591 GriveaudLymantriinae|TDGAB−0858ymantriinae|Lope11−0994 Noctuidae|TDGAB−0249Noctuidae|TDGAB−2152Noctuidae|TDGAB−2231 LNoctuidae|TDGAB−0411JanaNoctuidae|TDGAB−0262 gracilis|TDGABb−328 Epiphora rectifascia|TDGABb−274Noctuidae|TDGAB−2289Noctuidae|TDGAB−0544Noctuidae|TDGAB−0395 Noctuidae|TDGAB−1675Noctuidae|TDGAB−0580Noctuidae|TDGAB−1873 EpiphoraEpiphoraNotodontidae|TDGAB−1295Ar ploetzi|TDGABb−284ctiinae|TDGAB−1327albida|TDGABb−261 Notodontidae|Lope11−0785Notodontidae|TDGAB−1023Lasiocampidae|TDGAB−1179teri|TDGAB−1585teri|TDGAB−1657 Notodontidae|TDGAB−1267 Lasiocampidae|TDGAB−0105Lasiocampidae|TDGAB−1206Lasiocampidae|TDGAB−1659teri|TDGAB−0472teri|TDGAB−1139teri|TDGAB−1915 Geometridae|TDGAB−2066Lepidoptera|TDGAB−2054Crambidae|TDGAB−1814 Lasiocampidae|TDGAB−1662Lasiocampidae|TDGAB−1771Lasiocampidae|Lope11−0152 Orthogonioptilum|Lope11−0435thogonioptilum|Lope11−0897Lymantriinae|TDGAB−0929ymantriinae|TDGAB−1197 Epanaphe car OrOrthogonioptilum|TDGABb−0195thogonioptilum|Lope11−0893thogonioptilum|Lope11−0433 EpanapheEpanaphe|TDGAB−1820Epanaphe|TDGAB−1823 car Orthogonioptilum|Lope11−0429thogonioptilum|Lope11−0432thogonioptilum|Lope11−0434 Epanaphe|TDGAB−1926Epanaphe|TDGAB−1111Epanaphe|TDGAB−0714 OrOrthogonioptilum|TDGABb−228thogonioptilum|Lope11−0425thogonioptilum|Lope11−0426 Epanaphe|TDGAB−1795Epanaphe|TDGAB−0054Epanaphe|TDGAB−1986 Orthogonioptilum|TDGABb−0193thogonioptilum|TDGABb−0201thogonioptilum|TDGABb−0203 Epanaphe|TDGAB−1996Epanaphe|TDGAB−1236Epanaphe|TDGAB−2119Epanaphe|TDGAB−2296 Orthogonioptilum|TDGABb−0198thogonioptilum|TDGABb−0200thogonioptilum|TDGABb−0194 Epanaphe|TDGAB−2415ArTimana|TDGAB−0161ctiinae|Lope11−0315 Orthogonioptilum|TDGABb−0205thogonioptilum|TDGABb−0204thogonioptilum|TDGABb−0199 Timana|TDGAB−0833Geometridae|TDGAB−2185Geometridae|TDGAB−0658ylla|TDGABb−388 Orthogonioptilum|TDGABb−217thogonioptilum|TDGABb−216 Geometridae|TDGAB−2267Geometridae|TDGAB−0210Geometridae|TDGAB−1466Geometridae|Lope11−0321gus|TDGABb−390gus|TDGABb−391gus|TDGABb−392 Orthogonioptilum|TDGABb−225thogonioptilum|TDGABb−221thogonioptilum|TDGABb−220 Geometridae|Lope11−0489Noctuidae|TDGAB−2073Eudaemonia troglophgus|TDGABb−393gus|TDGABb−394 Orthogonioptilum|Lope11−0892thogonioptilum|Lope11−0430 Draft Eudaemonia aarrgiphontes|TDGABb−395giphontes|TDGABb−389giphontes|TDGABb−396 Orthogonioptilum|Lope11−0884thogonioptilum|Lope11−0885thogonioptilum|Lope11−0887 Eudaemonia argiphontes|TDGABb−397giphontes|TDGABb−398 Orthogonioptilum|Lope11−0436thogonioptilum|Lope11− Eudaemonia ar Orthogonioptilum|Lope11−0682thogonioptilum|Lope11−0683thogonioptilum|Lope11−0684 EudaemoniaAurivillius aratus|TDGABb−275aratus|TDGABb−276 ar era|TDGABb−317 Orthogonioptilum|Lope11−0882thogonioptilum|Lope11−0883thogonioptilum|Lope11−06810437 ADasycurivilliushira|Lope11−0133 triramis|TDGABb−277triramis|TDGABb−278 Orthogonioptilum|TDGABb−224thogonioptilum|Lope11−0685thogonioptilum|Lope11−0881 PselapheliaPseudantheraea gemmif discrepans|TDGABb−0187discrepans|TDGABb−0186 OrOrthogonioptilum|TDGABb−0197thogonioptilum|TDGABb−223thogonioptilum|TDGABb−215 Pseudantheraeaunaea alinda|TDGABb−286tyrrhena|TDGABb−285 discrepans|TDGABb−0184leopatra|TDGABb−287discrepans|TDGABb−0188discrepans|TDGABb−0185 OrthogonioptilumOrOrthogonioptilum|TDGABb−0196thogonioptilum|TDGABb−226 luminosum|Lope11−0875 PseudantheraeaPseudob discrepans|TDGABb−0189 OrthogonioptilumthogonioptilumOrthogonioptilum|TDGABb−218thogonioptilum|TDGABb−222 luminosum|TDGABb−230luminosum|Lope11−0431 PseudobunaeaAthletes albicans|TDGABb−0182albicans|TDGABb−0180albicans|TDGABb−0181 c OrOrthogonioptilumthogonioptilum luminosum|TDGABb−231luminosum|TDGABb−229 violascens|Lope11−0878 AthletesLobobunaea albicans|TDGABb−0183albicans|TDGABb−301 acetes|TDGABb−288acetes|TDGABb−289acetes|TDGABb−290 OrOrthogonioptilumthogonioptilum vestigiatum|TDGABb−262vestigiatum|TDGABb−264 violascens|TDGABb−219 Lobobunaea phaedusa|TDGABb−311phaedusa|TDGABb−308phaedusa|TDGABb−309 Orthogonioptilum vestigiatum|TDGABb−263 Lobobunaea phaedusa|TDGABb−310phaedusa|Lope11−0428acuta|TDGABb−307otes|TDGABb−304otes|TDGABb−305 CarnegiaCarnegia mirabilis|TDGABb−0206 mirabilis|TDGABb−212mirabilis|TDGABb−213 LobobLobobunaea erythrotes|TDGABb−306otes|TDGABb−302otes|TDGABb−303 Micr Carnegia mirabilis|TDGABb−211mirabilis|TDGABb−209 Lobobunaeaunaea erythrgoodii|Lope11−0680 Micragoneagone neonubifneonubifneonubifera|Lope11−0886 LobobunaeaLobobNudaureliaunaea jamesoni|TDGABb−300 erythrgoodii|Lope11−0879lis|TDGABb−279lis|TDGABb−280 MicragoneMicragone neonubifera|TDGABb−247era|TDGABb−249era|Lope11−0686 Nudaurelia eblis|TDGABb−281lis|TDGABb−282lis|TDGABb−283 MicragoneMicragone neonubif agath era|TDGABb−245era|TDGABb−246era|TDGABb−248 Arctiinae (113,404) NudaureliaImbrasia er tli|TDGABb−254tli|TDGABb−255tli|TDGABb−257eb MicragoneMicragone agathylla|TDGABb−0192ylla|TDGABb−227era|TDGABb−244 Imbrasia erlongicaudata|TDGABb−387epimethea|TDGABb−299 MicrMicragoneagone lichenodes|TDGABb−243ylla|TDGABb−0190ylla|TDGABb−0191 Imbrasia epimethea|TDGABb−259epimethea|TDGABb−260epimethea|TDGABb−258 MicrMicragoneDogoiaagone mgablichenodes|TDGABb−242henodes|TDGAB−1751henodes|TDGAB−2429 sp. 1|TDGABb−253 ImbrasiaNudaurelia epimethea|TDGABb−256epimethea|Lope11−0679 bouvieri|TDGABb−271 Dogoia mgab sp. 1|TDGABb−2511|TDGABb−2501|TDGABb−252 NudaureliaBunaea alcinoe|Lope11−0678 bouvieri|TDGABb−272bouvieri|TDGABb−273 Dogoia obscuripennis|TDGABb−232obscuripennis|TDGABb−233 BunaeaNudaurelia alcinoe|TDGABb−291alcinoe|Lope11−0867alcinoe|TDGABb−292 amathusia|TDGABb−268 Goodia falcata|TDGABb−240falcata|TDGABb−239falcata|TDGABb−241 Nudaurelia amathusia|TDGABb−267amathusia|TDGABb−269anthinoides|TDGABb−270 GoodiaStenoglene|Lope11−0126 falcata|TDGABb−237falcata|TDGABb−238 Nudaurelia dione|TDGABb−293dione|TDGABb−295dione|TDGABb−294 StenogleneStenogleneStenoglene|Lope11−0125 MGABsp3|TDGABb−315 fouassini|TDGAB−0891 Nudaurelia dione|TDGABb−296dione|TDGABb−298dione|TDGABb−297 Stenoglene maculifera|TDGABb−364era|TDGABb−336era|TDGABb−362 LecNotodontidae|TDGAB−2024Nudaureliahriolepis|TDGAB−0506 dione|Lope11−0980 StenogleneEpijana bimaculatus|TDGABb−363 lanosa|TDGABb−319 Lechriolepis|TDGAB−0336hriolepis|TDGAB−0536hriolepis|TDGAB−0504 Acrojana MGABsp1|TDGABb−346MGABsp1|TDGABb−343Noctuidae|Lope11−0093 Antheua|TDGAB−0839Phalerinae|TDGAB−0036Lechriolepis|TDGABb−380hriolepis|TDGABb−379 HolocerinaAcrojana MGABsp2|TDGABb−324 angulata|TDGABb−236angulata|TDGABb−235 Antheua|TDGAB−1890Antheua|TDGAB−1866Antheua|TDGAB−1162 HolocerinaDactyloceras angulata|TDGABb−234 lucina|TDGABb−386lucina|TDGABb−383 Antheua|TDGAB−1683Antheua|TDGAB−0822Antheua|TDGAB−1741 Dactyloceras lucina|TDGABb−384lucina|TDGABb−385yi|TDGAB−1656 Notodontidae|TDGAB−0354Antheua|Lope11−0854Antheua|TDGAB−0890Antheua|Lope11−0520 CephonodesMicragone hylas virescens|Lope11−1002 joice Notodontidae|TDGAB−1483Notodontidae|TDGAB−0915Notodontidae|TDGAB−0280 Lophostethus dumolinii congoicum|TDGABb−003congoicum|TDGABb−001congoicum|TDGABb−002Noctuidae|Lope11−0159Noctuidae|Lope11−0068 Notodontidae|TDGAB−0908Notodontidae|TDGAB−0897Notodontidae|TDGAB−0589Notodontidae|TDGAB−1492 Noctuidae|Lope11−0058Dasychira|TDGAB−0221hira|Lope11−0850 Notodontidae|TDGAB−0904Notodontidae|Lope11−0069Notodontidae|TDGAB−0910 Lymantriinae|TDGAB−1902ymantriinae|TDGAB−1761ymantriinae|Lope11−0652 Notodontidae|TDGAB−0857Notodontidae|TDGAB−1156Notodontidae|Lope11−0797 Lymantriinae|TDGAB−0529ymantriinae|Lope11−0632ymantriinae|Lope11−0619 Notodontidae|TDGAB−1225Notodontidae|TDGAB−1191Notodontidae|TDGAB−0187Notodontidae|TDGAB−2048 Lymantriinae|TDGAB−1185ymantriinae|TDGAB−2211ymantriinae|TDGAB−0579 Notodontidae|TDGAB−0865Notodontidae|TDGAB−0934Notodontidae|TDGAB−2097 TemnoraLymantriinae|TDGAB−0884 scitula|Lope11−0995 Notodontidae|TDGAB−2286Notodontidae|TDGAB−0968Notodontidae|TDGAB−0394 Temnora scitula|Lope11−0909scitula|Lope11−0674scitula|Lope11−0675 Notodontidae|TDGAB−0533Notodontidae|TDGAB−1196Notodontidae|TDGAB−2308 TemnoraTemnora scitula|TDGABb−0136 scitula|Lope11−0424scitula|Lope11−0079 Notodontidae|Lope11−0798Notodontidae|TDGAB−2033Notodontidae|Lope11−0048Notodontidae|TDGAB−0840 Temnora scitula|Lope11−0921scitula|Lope11−0905 Notodontidae|TDGAB−0553Notodontidae|TDGABb−345Notodontidae|TDGAB−0850 Temnora scitula|Lope11−0700scitula|Lope11−0694scitula|Lope11−0676 Notodontidae|TDGAB−1370Notodontidae|Lope11−0877Notodontidae|Lope11−0011 TemnoraTemnora scitula|TDGABb−0138scitula|TDGABb−0139 scitula|Lope11−0423 Notodontidae|TDGAB−0524Notodontidae|TDGAB−0364Notodontidae|TDGAB−1666 TemnoraTemnora scitula|TDGABb−0132 scitula|Lope11−0697scitula|Lope11−0673 Notodontidae|Lope11−0123Notodontidae|TDGAB−1199Notodontidae|TDGAB−0838Notodontidae|TDGAB−0538 Temnora scitula|TDGABb−0135scitula|TDGABb−0134scitula|TDGABb−0133 Others (40,72) Notodontidae|TDGAB−0083Notodontidae|TDGAB−1506Notodontidae|TDGAB−1005 T Temnoraygoides|Lope11−0926 livida|TDGABb−033livida|TDGABb−032livida|Lope11−0709 Notodontidae|Lope11−0589Notodontidae|TDGAB−1210Notodontidae|Lope11−0490 Temnoraygoides|Lope11−0925 livida|TDGABb−031 ArErebinae|Lope11−0777ctiinae|Lope11−0819ctiinae|TDGAB−1221 TemnoraTemnora iap griseata|TDGABb−089griseata|Lope11−0902 Notodontidae|TDGAB−0273Notodontidae|TDGAB−1122Notodontidae|TDGAB−1091Notodontidae|TDGAB−1136 TTemnoraemnora griseata|TDGABb−0179 funebris|TDGABb−105funebris|Lope11−0418 Notodontidae|TDGAB−1035Notodontidae|TDGAB−1167Notodontidae|TDGAB−1147 Temnoraounensis|TDGABb−0131 funebris|TDGABb−104funebris|TDGABb−103funebris|Lope11−0411 Notodontidae|TDGAB−1332Notodontidae|TDGAB−1094Notodontidae|TDGAB−1171 TTemnora fumosa|TDGABb−096fumosa|TDGABb−094ulata|Lope11−0054 Notodontidae|Lope11−0077Notodontidae|TDGAB−1193Notodontidae|TDGAB−2134Notodontidae|TDGAB−1042 TemnoraTT emnoraTcameremnora spiritus|TDGABb−0148 eranga|TDGABb−0150ulata|TDGABb−111ulata|TDGABb−110 Notodontidae|TDGAB−0574Notodontidae|TDGAB−0286Notodontidae|TDGAB−0107 Temnora crenulata|TDGABb−109ulata|TDGABb−108ulata|TDGABb−106 Notodontidae|TDGAB−1472Notodontidae|Lope11−0163Notodontidae|Lope11−0161 AtemnoraTemnora westermannii|TDGABb−090 crenulata|TDGABb−107 Notodontidae|Lope11−0104Notodontidae|TDGAB−0091Notodontidae|TDGAB−1658 Temnoraon cren megaera|Lope11−0967megaera|Lope11−0864 Notodontidae|TDGAB−1020Notodontidae|TDGAB−0344Notodontidae|TDGAB−1003 Euchlorhloron megaera|Lope11−0385megaera|Lope11−0383megaera|Lope11−0381 Notodontidae|TDGAB−1153Notodontidae|TDGAB−1036Notodontidae|TDGAB−1024Notodontidae|TDGAB−1164 EucEuchloronon megaera|TDGABb−0166megaera|TDGABb−0165 megaera|TDGABb−013 Notodontidae|TDGAB−1896Notodontidae|TDGAB−0870Notodontidae|TDGAB−1320 EuchlorEuchlorhloronon megaera|TDGABb−0164 megaera|TDGABb−014megaera|TDGABb−015di|TDGABb−063di|TDGABb−061 Notodontidae|TDGAB−2086Notodontidae|TDGAB−1748Notodontidae|TDGAB−0836 EuchlorEucEuchlor on megaera|Lope11−0865megaera|Lope11−0688tha|Lope11−0413tha|Lope11−0396di|TDGABb−062 Notodontidae|TDGAB−1435Notodontidae|Lope11−0596Notodontidae|TDGAB−2071 EuchlorEuchlorEuchlor tha|TDGABb−073tha|TDGABb−054tha|Lope11−0394 Notodontidae|TDGAB−0363Notodontidae|TDGAB−0136Notodontidae|TDGAB−1007Notodontidae|Lope11−0170 CentroctenaoctenaTheretra rutherforruther jugurfortha|TDGABb−053tha|TDGABb−074tha|TDGABb−052 Notodontidae|TDGAB−2327Notodontidae|TDGAB−2028Notodontidae|TDGAB−1384 Centr Theretra jugur Cossidae (11,19) Notodontidae|TDGAB−0357Notodontidae|Lope11−0935Notodontidae|TDGAB−1028Notodontidae|TDGAB−0333 Theretra jugurosae|Lope11−0856 Notodontidae (104,272) Notodontidae|TDGAB−1720Notodontidae|TDGAB−1303Notodontidae|TDGAB−0937 TheretraNephele jugurfunebris|TDGABb−060funebris|Lope11−0894osae|TDGABb−043osae|Lope11−0414osae|Lope11−0405 Notodontidae|TDGAB−0526Notodontidae|TDGAB−0771Notodontidae|TDGAB−2040Notodontidae|TDGAB−0462 NepheleNepheleNephele funebris|TDGABb−0154 funebris|TDGABb−056 rosae|TDGABb−044osae|TDGABb−045 Notodontidae|TDGAB−0389Notodontidae|TDGAB−0582Notodontidae|TDGAB−0989 NepheleNephele funebris|TDGABb−0153 osae|TDGABb−0159osae|TDGABb−0160r era|Lope11−0714era|Lope11−0402 Notodontidae|TDGAB−2146Notodontidae|TDGAB−0592Notodontidae|TDGAB−0403 Nephele r era|TDGABb−051era|TDGABb−050 Notodontidae|TDGAB−1307Notodontidae|TDGAB−1095Notodontidae|TDGAB−2282 Nephele r Notodontidae|TDGAB−0954Notodontidae|TDGAB−0501Notodontidae|TDGAB−0969Notodontidae|TDGAB−2422 Nephele accentif Eupterotidae (15,40) Notodontidae|TDGAB−0269Notodontidae|TDGAB−0827Notodontidae|TDGAB−2130 NepheleNephele accentif maculosa|Lope11−0701 Notodontidae|TDGAB−1811Notodontidae|TDGAB−1058Notodontidae|TDGAB−0976 Nephele maculosa|Lope11−0692maculosa|Lope11−0690maculosa|Lope11−0412alens|Lope11−0422 Notodontidae|TDGAB−1102Notodontidae|TDGAB−1172Notodontidae|TDGAB−1174 Nephele maculosa|Lope11−0407maculosa|Lope11−0393alens|TDGABb−0174alens|TDGABb−022alens|Lope11−0403 Notodontidae|TDGAB−0488Notodontidae|TDGAB−0803Notodontidae|TDGAB−1033 Nephele maculosa|TDGABb−085maculosa|TDGABb−084maculosa|TDGABb−057alens|TDGABb−023alens|TDGABb−024tita|Lope11−0406tita|Lope11−0399 Notodontidae|TDGAB−0254Notodontidae|TDGAB−0239Notodontidae|TDGAB−0284Notodontidae|TDGAB−0334 NepheleNephele maculosa|TDGABb−0161 maculosa|TDGABb−055 Notodontidae|TDGAB−1928Notodontidae|TDGAB−1999Notodontidae|TDGAB−1918 Nephele aequivaequiv Notodontidae|TDGAB−0994Notodontidae|TDGAB−0995Notodontidae|Lope11−0557Notodontidae|Lope11−0182 NepheleNepheleNepheleNephele aequiv aequivaequi bipar comma|Lope11−0395v Notodontidae|Lope11−0045Notodontidae|TDGAB−1050Notodontidae|TDGAB−0888 HippotionBasiothia celerio|Lope11−0895medea|Lope11−0703 Limacodidae (30,59) Notodontidae|Lope11−0622Notodontidae|TDGAB−2306Notodontidae|TDGAB−1021Notodontidae|TDGAB−0213 BasiothiaHippotion medea|TDGABb−0144medea|TDGABb−0145 gracilis|Lope11−0862 Notodontidae|TDGAB−0971Notodontidae|Lope11−0931Notodontidae|TDGAB−1794Notodontidae|TDGAB−2162 HippotionHippotion gracilis|Lope11−0401gracilis|Lope11−0691 eson|Lope11−0702eson|Lope11−0693eson|Lope11−0400 Notodontidae|TDGAB−1300Notodontidae|TDGAB−1981Notodontidae|TDGAB−1608 HippotionHippotion eson|TDGABb−028eson|TDGABb−029eson|Lope11−0699 ParajanaLimacodidae|TDGAB−1760Limacodidae|TDGAB−1676Notodontidae|Lope11−0944 gab Hippotion eson|Lope11−0696eson|Lope11−0388eson|Lope11−0689 Tor HippotionDaphnis osiris|TDGABb−016 nerii|Lope11−0857opos|Lope11−0968 Limacodidae|Lope11−0444Tortricidae|TDGAB−0307tricidae|TDGAB−2270tricidae|TDGAB−2072 TheretraDaphnis orpheus|TDGABb−113opos|TDGABb−0147 nerii|TDGABb−011nerii|Lope11−0698 Notodontidae|TDGAB−1405Notodontidae|TDGAB−0138Notodontidae|TDGAB−1917Notodontidae|TDGAB−0837tricidae|TDGAB−2375tricidae|TDGAB−2241 HippotionDaphnisDaphnisDaphnis balsaminae|TDGABb−018 nerii|TDGABb−0155 nerii|TDGABb−010nerii|Lope11−0404 LNotodontidae|TDGAB−2026unica|Lope11−0978 Daphnisontia atrhholzi|TDGABb−093hholzi|TDGABb−092hholzi|TDGABb−091 nerii|TDGABb−012 Lepidoptera|TDGAB−1465Lepidoptera|TDGAB−0704Lymantriinae|Lope11−0833ymantriinae|Lope11−0076ymantriinae|Lope11−0073 olvuli|Lope11−0671olvuli|Lope11−0670olvuli|Lope11−0398 Tineidae|TDGAB−1974Tineidae|TDGAB−1573Geometridae|Lope11−0553 AcherontiaAcher atr olvuli|TDGABb−0118olvuli|Lope11−0669 PsyPsyc CoeloniaCoeloniaPoliana fulvinotata|TDGABb−0168 fulvinotata|TDGABb−046fulvinotata|TDGABb−047 buc olvuli|TDGABb−0119olvuli|TDGABb−0120 Psyc hidae|Lope11−0317 PolianaAgrius convbuc Saturniidae (43,177) Cossidae|TDGAB−1973Cossidae|TDGAB−0460Psycchidae|Lope11−0189hidae|TDGAB−1808hidae|Lope11−0640 Agriusthographus|Lope11−0896 conv Zygaenidae|TDGAB−2380Lepidoptera|TDGAB−1813Eriocottidae|TDGAB−1958Eriocottidae|TDGAB−1954hidae|Lope11−0927hidae|TDGAB−1592hidae|Lope11−0625 AgriusAgrius thographus|TDGABb−0173thographus|TDGABb−0170convthographus|TDGABb−039 conv Limacodidae|TDGAB−1843Limacodidae|TDGAB−1779Limacodidae|TDGAB−1071 chusAgrius orthographus|TDGABb−0172 convthographus|TDGABb−038thographus|Lope11−0704dii|TDGABb−0130dii|TDGABb−0129teri|Lope11−0866teri|Lope11−0707 Limacodidae|TDGAB−1406Limacodidae|TDGAB−0135Limacodidae|TDGAB−0993 hus or thographus|TDGABb−0171thographus|TDGABb−037teri|TDGABb−065teri|TDGABb−064teri|TDGABb−066 Limacodidae|Lope11−0582Limacodidae|Lope11−0355Limacodidae|TDGAB−2157Limacodidae|TDGAB−2023 ypty hus thihongae|TDGABb−0143cula|Lope11−0710cula|TDGAB−1824 Lasiocampidae (101,242) PLimacodidae|TDGAB−0821Limacodidae|TDGAB−0725 Pol chushus husor thihongae|TDGABb−0142thihongae|TDGABb−0141 bernar cula|Lope11−0397cula|Lope11−0706cula|Lope11−0420 PLimacodidae|TDGAB−2350Limacodidae|TDGAB−2349arasa|TDGAB−0760 PolyptycPolyptychusPolyptychus or or cula|Lope11−0416cula|Lope11−0391 PParasa|TDGAB−2414arasa|TDGAB−0819 PolyptychusPolyptychusPolyptychusPolyptycypty or oror PParasa|TDGAB−0391arasa|TDGAB−0277arasa|TDGAB−0194 PolyptychusPolPolyptycPolyptycPolyptychus or car PParasa|TDGAB−2149arasa|TDGAB−2022arasa|TDGAB−0887 PolyptychusPolyptychus bernar car uloti|Lope11−0880uloti|Lope11−0409ga|Lope11−0668ga|TDGABb−069ga|Lope11−0384 Limacodidae|TDGAB−0816Limacodidae|TDGAB−0770Parasa|TDGAB−2419arasa|TDGAB−2358arasa|TDGAB−2326 hushushus hollandi|Lope11−0389trisecta|TDGABb−080 trisecta|TDGABb−079andosa|Lope11−0427ga|TDGABb−068ga|TDGABb−067us|Lope11−0712 PLimacodidae|TDGABb−367Limacodidae|TDGAB−2428Limacodidae|TDGAB−2006 Polyptychus huspauper andosa|TDGABb−0152andosa|TDGABb−0151nus|Lope11−0711us|Lope11−0419us|Lope11−0415 PParasa|TDGAB−2122arasa|TDGAB−1632arasa|TDGAB−0329 Polyptychus pauper uri us|Lope11−0386 Crambidae (52,109) PParasa|TDGAB−2324arasa|TDGAB−0454arasa|TDGAB−2101 PolyptychusPolyptychusPolyptycPolyptyc pauperpauper us|TDGABb−0122us|TDGABb−0121us|TDGABb−0124 Limacodinae|TDGAB−1258Parasa|Lope11−0320arasa|TDGAB−1920arasa|TDGAB−1904 PolyptycPolyptyc nus|TDGABb−0123 Limacodinae|TDGAB−1752Limacodinae|TDGAB−2154Limacodinae|TDGAB−2222Limacodinae|TDGAB−1278 PolyptychusPolyptyc chus herb murinuri Limacodidae|TDGAB−2163Limacodidae|TDGAB−0712Limacodinae|Lope11−0585Limacodinae|Lope11−0295 Polyptychus nigripla osea|Lope11−0705 Limacodidae|TDGAB−1979Limacodidae|TDGAB−1614Limacodidae|TDGAB−1512 PolyptychusPolyptychusypty husnigripla m spurrelli|Lope11−0708osea|Lope11−0666osea|Lope11−0382osea|Lope11−0410 Limacodidae|TDGAB−1220Limacodidae|Lope11−0370Limacodidae|Lope11−0362 PolyptychusPolPolyptychushus nigripla spurrelli|TDGABb−0117murinspurrelli|TDGABb−0116 Cossidae|TDGABb−316Limacodidae|TDGAB−1879Limacodidae|TDGAB−1700Psyc Polyptychushushushus spurrelli|TDGABb−0115murinspurrelli|TDGABb−0114 spurrelli|Lope11−0417 Cossidae|TDGAB−2323Cossidae|TDGAB−1351Cossidae|TDGAB−0939 PolyptychusPolyptychus murinmurin Cossidae|Lope11−0993Cossidae|Lope11−0949Cossidae|Lope11−0855Cossidae|Lope11−0313hidae|Lope11−0578 PolyptychusRufoclanis m r Drepanidae|TDGABb−320Drepanidae|TDGAB−2098Lepidoptera|TDGAB−1922 NeopolyptycRufoclanislanislanis virescens|TDGABb−0157 virescens|TDGABb−077 r eldti|TDGABb−009eldti|TDGABb−008eldti|TDGABb−007 Erebinae (72,193) Sphingidae (66,267) Drepanidae|TDGAB−0505Drepanidae|Lope11−0075Drepanidae|TDGAB−2320Drepanidae|TDGAB−0844 NeopolyptycNeopolyptyclanislanislanislanis virescens|TDGABb−0156 virescens|TDGABb−075virescens|TDGABb−076 admatha|TDGABb−071 OpisthodontiaOpisthodontia superba|Lope11−0185superba|Lope11−0184superba|TDGAB−1418 NeopolyptycNeopolyptyclanislanis occidentalis|TDGABb−072 admatha|TDGABb−070 Lecithoceridae|Lope11−0336Lecithoceridae|TDGAB−1570Drepanidae|TDGAB−1200Opisthodontia superba|Lope11−0560 ChlorocChloroc Noctuidae|TDGAB−1976Noctuidae|TDGAB−1963Noctuidae|TDGAB−1331Lecithoceridae|Lope11−0647 ChlorocChlorocymatodesAndriasa contraria|TDGAB−1838 lemairei|TDGABb−017weni|Lope11−0859 StracenaStracena ee PseudocAndriasaxiphia contraria|TDGAB−1132 mpassa|Lope11−0901mpassa|Lope11−0860weni|Lope11−0667 Pyralidae (70,172) StracenaStracena ee Pseudoc xiphiaxiphia mpassa|TDGABb−036 mpassa|Lope11−0888ormosa|TDGABb−082thueri|TDGABb−088thueri|Lope11−0858 Stracena|TDGAB−0415Stracena e xiphiaxiphiaxiphia mpassa|TDGABb−0176 mpassa|Lope11−0861mpassa|Lope11−0408ormosa|TDGABb−081thueri|TDGABb−087thueri|TDGABb−086 Stracena|TDGAB−1992Stracena|TDGAB−2123Stracena|TDGAB−1068Stracena|TDGAB−1052 OplercrcPhyllolanislanisxiphia rhadamistus|TDGABb−099rhadamistus|TDGABb−098xiphia mpassa|TDGABb−0175 mpassa|TDGABb−035mpassa|TDGABb−034thueri|Lope11−0672 StracenaStracena|TDGAB−2218 pr Falcatula cPhylloPhyllo xiphia mpassa|Lope11−0863 Noctuidae|TDGAB−0421Stracena pr ximia|TDGAB−0186 AcanthosphinxAcanthosphinxPhylloPhylloPhyllo guessfguessguessff Noctuidae|TDGAB−2045Noctuidae|TDGAB−0940Noctuidae|TDGAB−0206ximia|TDGAB−0588ximia|TDGAB−0540ximia|TDGAB−2217 PhylloPhylloPhylloxiphia o Noctuidae|TDGAB−0483Noctuidae|TDGAB−0101Noctuidae|TDGAB−2090ximia|TDGAB−2401ximia|TDGAB−2363ximia|TDGAB−1991 Phyllo ganii|Lope11−0390ganii|Lope11−0387 Noctuidae|Lope11−0132Noctuidae|TDGAB−0778Noctuidae|Lope11−0167Noctuidae|TDGAB−0999ximia|TDGAB−2412 Phylloxiphiaoxiphia ober f ganii|TDGABb−0163ganii|TDGABb−027ganii|TDGABb−025 Noctuidae|TDGAB−0142Noctuidae|Lope11−0348Noctuidae|Lope11−0138 Phylloxiphiayll xiphia f illustris|TDGABb−102illustris|Lope11−0713ganii|TDGABb−0162ganii|TDGABb−026 Noctuidae|TDGAB−1145Noctuidae|TDGAB−1833Noctuidae|TDGAB−1154 Phylloxiphiaxiphia ober illustris|TDGABb−101illustris|TDGABb−100 Noctuidae|Lope11−0091Noctuidae|TDGAB−1635Noctuidae|TDGAB−0949Noctuidae|TDGAB−2226omelaena|Lope11−0009omelaena|TDGAB−1379omelaena|TDGAB−2393 PhPhylloxiphia ober Noctuidae|Lope11−0823Noctuidae|Lope11−0602Noctuidae|Lope11−0311omelaena|Lope11−0061 RhadinopasaPhylloxiphiaPhyllo oberhornimani|Lope11−0890 PorthesarNoctuidae|TDGAB−1257 RhadinopasaRhadinopasaPhylloPhylloPlatysphinx hornimani|TDGABb−005hornimani|TDGABb−006hornimani|Lope11−0392Spilomelinae|TDGAB−0738 vicaria|TDGABb−021vicaria|TDGABb−020 Noctuidae|Lope11−0846Noctuidae|Lope11−0358Porthesar RhadinopasaPlatysphinx hornimani|TDGABb−004 vicaria|TDGABb−019 Crambidae|TDGAB−1391ThCrambidae|TDGAB−1338 XanthopanLasiocampidae|Lope11−0948Lasiocampidae|Lope11−0930 mor Crambidae|TDGAB−0720Crambidae|TDGAB−1851Crambidae|TDGAB−0676 XanthopanXanthopanLasiocampidae|TDGAB−1893Lasiocampidae|Lope11−0940Lasiocampidae|Lope11−0924 mor mormor Crambidae|Lope11−0006Crambidae|TDGAB−1788Crambidae|TDGAB−1462Crambidae|TDGAB−0665yrididae|TDGAB−0208 XanthopanXanthopanLasiocampidae|Lope11−0720Lasiocampidae|TDGAB−0728Lasiocampidae|TDGAB−1395 mor mor Crambidae|TDGAB−0701Crambidae|TDGAB−0619Crambidae|TDGAB−0087Crambidae|Lope11−0007 Lasiocampidae|TDGAB−1454Lasiocampidae|TDGAB−1702Lasiocampidae|TDGAB−1948 Crambidae|Lope11−0555Crambidae|TDGAB−1950Crambidae|TDGAB−1625Crambidae|TDGAB−0754oa|Lope11−0350oa|Lope11−0297oa UD001|Lope11−0371 Lasiocampidae|Lope11−0186Lasiocampidae|Lope11−0576Lasiocampidae|Lope11−0577 MarucaCrambidae|Lope11−0831 vitrata|TDGAB−0609vitrata|TDGAB−0860oa|Lope11−0634 Lasiocampidae|Lope11−0791Lasiocampidae|Lope11−0294Lasiocampidae|Lope11−0174Leptometa|Lope11−0788Leptometa|TDGAB−1026Leptometa|TDGABb−314 Crambidae|TDGAB−1842Maruca vitrata|TDGAB−2369vitrata|TDGAB−1375 Lasiocampidae|TDGAB−1727Lasiocampidae|TDGAB−1576Leptometa|Lope11−0188Leptometa|TDGAB−1855Leptometa|TDGAB−1735 PleuroptyPleuroptyPleurCrambidae|TDGAB−2392 Lasiocampidae|TDGAB−0143Lasiocampidae|TDGAB−1523Leptometa|TDGAB−1650Leptometa|TDGAB−1448Leptometa|TDGAB−1019 PleuroptyPleuroptyPleuropty Leptometa|TDGAB−0340 PleuroptyPleuroptyPleuroptyPleuropty oplakaeis|TDGABb−329oplakaeis|TDGAB−1776 PleuroptyPleuPleuroptyPleur opt orficulatus|TDGAB−0366oplakaeis|TDGAB−0134 Crambidae|TDGAB−1919Crambidae|TDGAB−0024Pleur Lasiocampidae|Lope11−0574Lasiocampidae|TDGAB−2238Lasiocampidae|TDGAB−0554 CadarenaCadarenaCrambidae|TDGAB−2284 sin sin y Lasiocampidae|TDGAB−0402Gastr ha|TDGABb−313 Crambidae|TDGAB−1841Crambidae|TDGAB−0641Crambidae|TDGAB−2069roptyopt a|TDGAB−0681a|TDGAB−0652 Gastr StemorrhagStemorrhagCrambidae|Lope11−0082Crambidae|TDGAB−0022opt a|TDGAB−1413a|TDGAB−1469a|TDGAB−1437 Lasiocampidae|TDGAB−1655Lasiocampidae|TDGAB−1478 SyllepteProphantisStemorrhag c smaraa|TDGAB−0767a|TDGAB−0769a|TDGAB−1368 Lasiocampidae|TDGAB−1409Lasiocampidae|TDGAB−1207Lasiocampidae|Lope11−0908 Crambidae|TDGAB−2385Crambidae|Lope11−0548Syllepte c ya|TDGAB−0653a|TDGAB−0688a|TDGAB−0727 Lasiocampidae|Lope11−0071Lasiocampidae|Lope11−0583Lasiocampidae|TDGAB−1886yx|TDGAB−1359yx|TDGAB−0585 Crambidae|TDGAB−0698Crambidae|TDGAB−0661Crambidae|Lope11−0549y a|TDGAB−1602a|TDGAB−1542a|TDGAB−0103 Lasiocampidae|TDGAB−1646Lasiocampidae|TDGAB−1423Lasiocampidae|TDGAB−0017 Crambidae|TDGAB−1227Crambidae|TDGAB−0309DolicharCrambidae|TDGAB−2322a|Lope11−0551 Lasiocampidae|TDGAB−0003Lasiocampidae|TDGAB−2129Lasiocampidae|Lope11−0575Gonometa|TDGABb−376 Crambidae|Lope11−0830Crambidae|TDGAB−0643Crambidae|Lope11−0829Crambidae|Lope11−0547 Lasiocampidae|TDGAB−0380GonopacGonometa|TDGABb−375Gonometa|TDGABb−374Gonometa|TDGAB−0893 Crambidae|TDGAB−0732Crambidae|TDGAB−0623Crambidae|TDGAB−1347 Gastroplakaeis f Lasiocampidae|Lope11−0573Lasiocampidae|TDGAB−1746 Crambidae|TDGAB−1706Crambidae|TDGAB−1507Crambidae|TDGAB−1354 Lasiocampidae|TDGAB−0373Lasiocampidae|TDGAB−0370 Crambidae|Lope11−0835Crambidae|TDGAB−1203Crambidae|TDGAB−1722uata|TDGAB−2376uata|TDGAB−1598uata|TDGAB−0776 Mallocampa audea|TDGAB−0532oplakaeis|Lope11−0452oplakaeis|TDGAB−1895oplakaeis|TDGAB−1030 Spilomelinae|TDGAB−1730Spilomelinae|TDGAB−1609Spilomelinae|TDGAB−0062lementsi|TDGAB−1630lementsi|TDGAB−0647es sericea|TDGAB−1044 Lasiocampidae|TDGABb−339oplakaeis|TDGAB−0970oplakaeis|TDGAB−0192 Crambidae|TDGAB−2167Crambidae|TDGAB−1997Crambidae|TDGAB−1781Agathodes|TDGAB−0797eses sericea|TDGAB−1686sericea|TDGAB−0889 Lasiocampidae|TDGAB−0903Lasiocampidae|TDGAB−0353Lasiocampidae|TDGABb−341Gonobomboplakaeis|TDGAB−1027oplakaeis|TDGAB−2159oplakaeis|TDGAB−1161 PPCrambidae|Lope11−0545thria|Lope11−0373 Lasiocampidae|TDGAB−1173oplakaeis|TDGAB−1620 PPP alpitaalpita bonjongalis|TDGAB−0026bonjongalis|TDGAB−0030 Gastr Crambidae|Lope11−0550Crambidae|Lope11−0063PP alpitaalpitaalpita bonjongalis|TDGAB−0748 bonjongalis|TDGAB−0100bonjongalis|TDGAB−0025 GastrGastr ParParCrambidae|TDGAB−1724alpitaalpita bonjongalis|TDGAB−1844bonjongalis|TDGAB−1613 GastrGastr Pyralidae|TDGAB−1967Pyralidae|TDGAB−1965Pyralidae|TDGAB−1899Pyralidae|TDGAB−1420 gdina|TDGAB−1425 GastrLasiocampidae|TDGAB−1698 Pyralidae|Lope11−0322Pyralidae|TDGAB−0695Pyralidae|TDGAB−1969 Lasiocampidae|TDGAB−0944Lasiocampidae|TDGAB−1336Lasiocampidae|TDGAB−1877 Pyralidae|TDGAB−1509Pyralidae|TDGAB−0709Pyralidae|TDGAB−0303Pyralidae|TDGAB−1812domima|Lope11−0853domima|TDGAB−0686 Lasiocampidae|TDGAB−1880Lasiocampidae|Lope11−0078Lasiocampidae|TDGAB−1438 Pyralidae|TDGAB−0261Pyralidae|TDGAB−1184Pyralidae|Lope11−0840Pyralidae|TDGAB−1955 Lasiocampidae|TDGABb−382Lasiocampidae|TDGABb−381Lasiocampidae|Lope11−0939 Pyralidae|TDGAB−2316Pyralidae|TDGAB−1711Pyralidae|TDGAB−0751Pyralidae|TDGAB−1202 Lasiocampidae|TDGAB−0365Lasiocampidae|Lope11−0584Lasiocampidae|TDGAB−0072 Pyralidae|TDGAB−1689Pyralidae|TDGAB−0719Pyralidae|TDGAB−0437 Lasiocampidae|TDGAB−0950Lasiocampidae|Lope11−0581 Pyralidae|TDGAB−0126Pyralidae|TDGAB−1894Pyralidae|TDGAB−1495Pyralidae|TDGAB−1769 Lasiocampidae|Lope11−0580Lasiocampidae|Lope11−0562Lasiocampidae|TDGAB−1975 Pyralidae|TDGAB−0615Pyralidae|TDGAB−1415Pyralidae|TDGAB−1575 Lasiocampidae|Lope11−0933Lasiocampidae|Lope11−0339Lasiocampidae|Lope11−0923 Pyralidae|Lope11−0022Pyralidae|TDGAB−0144Pyralidae|TDGAB−1712 Lasiocampidae|TDGAB−1678Lasiocampidae|TDGAB−2407 Pyralidae|TDGAB−1076Pyralidae|TDGAB−1009Pyralidae|TDGAB−0992Pyralidae|Lope11−0595 Lasiocampidae|TDGAB−2206Lasiocampidae|TDGAB−2085 Pyralidae|TDGAB−2421GalleriaPyralidae|Lope11−0543 mellonella|Lope11−0651 Lasiocampidae|TDGAB−0232Lasiocampidae|TDGAB−2406Lasiocampidae|TDGAB−2212 Pyralidae|Lope11−0332Pyralidae|TDGAB−1726Pyralidae|TDGAB−0474Pyralidae|TDGAB−0146 Lasiocampidae|TDGAB−0282Lasiocampidae|Lope11−0012Lasiocampidae|TDGAB−2242 Pyralidae|TDGAB−1710Pyralidae|TDGAB−0710Pyralidae|TDGAB−0679Pyralidae|TDGAB−0473 Lasiocampidae|TDGAB−1204Lasiocampidae|TDGAB−0853Lasiocampidae|TDGAB−0531 Pyralidae|TDGAB−1447Pyralidae|Lope11−0330Pyralidae|TDGAB−0948 Lasiocampidae|TDGAB−0962Lasiocampidae|TDGAB−0338 Pyralidae|TDGAB−1301Pyralidae|TDGAB−1530Pyralidae|TDGAB−1480Pyralidae|TDGAB−1796 Lasiocampidae|Lope11−0889Lasiocampidae|TDGABb−347Lasiocampidae|Lope11−0141ypasa|Lope11−0900 Pyralidae|TDGAB−2133Pyralidae|TDGAB−1101Pyralidae|TDGAB−0188 Lasiocampidae|Lope11−0074Lasiocampidae|TDGAB−1694ypasa|Lope11−0187ypasa|TDGAB−1699ypasa|Lope11−0567 Pyralidae|TDGAB−1663Pyralidae|TDGAB−0703Pyralidae|TDGAB−1430Pyralidae|TDGAB−1799 Lasiocampidae|Lope11−0914Lasiocampidae|Lope11−0084Lasiocampidae|Lope11−0121Stoermeriana|TDGAB−1322ypasa|TDGAB−1352ypasa|TDGAB−1365 Pyralidae|TDGAB−1862Pyralidae|TDGAB−1802Pyralidae|TDGAB−1496 Lasiocampidae|Lope11−0044Lasiocampidae|Lope11−0446ypasa|TDGAB−1383ypasa|TDGAB−1463ypasa|TDGAB−1907 Pyralidae|TDGAB−1304Pyralidae|TDGAB−1980Pyralidae|TDGAB−1545Pyralidae|TDGAB−1871 Lasiocampidae|Lope11−0834Lasiocampidae|Lope11−0827ypasa|TDGABb−325ypasa|Lope11−0438ypasa|Lope11−0453 Pyralidae|TDGAB−0684Pyralidae|TDGAB−0073Pyralidae|TDGAB−1647 Lasiocampidae|TDGAB−2372Lasiocampidae|TDGAB−1670Pach ypasa|Lope11−0563ypasa|Lope11−0568ypasa|Lope11−0571 Pyralidae|TDGAB−1440Pyralidae|TDGAB−1441Pyralidae|TDGAB−0068Pyralidae|Lope11−0374 Lasiocampidae|TDGAB−1593Lasiocampidae|TDGAB−2178Lasiocampidae|TDGAB−1060PachPachPach ypasa|Lope11−0898ypasa|TDGAB−0222 Pyralidae|TDGAB−0115Pyralidae|TDGAB−0116Pyralidae|TDGAB−0122 Lasiocampidae|TDGAB−0750Lasiocampidae|TDGAB−1011Lasiocampidae|Lope11−0351PachPach Pyralidae|TDGAB−1341Pyralidae|TDGAB−2049Pyralidae|TDGAB−1192Pyralidae|TDGAB−1789 Lasiocampidae|TDGAB−1337Lasiocampidae|TDGAB−1189PachPachPach Pyralidae|TDGAB−2008Pyralidae|TDGAB−0534Pyralidae|TDGAB−1988 Lasiocampidae|TDGAB−0578Lasiocampidae|TDGAB−1039PachPachPach Pyralidae|TDGAB−1797Pyralidae|TDGAB−0124Pyralidae|TDGAB−2194Pyralidae|TDGAB−2166 PachPachPach Pyralidae|TDGAB−1043Pyralidae|TDGAB−0546Pyralidae|TDGAB−1998 PachPach Pyralidae|TDGAB−0099Pyralidae|TDGAB−0084Pyralidae|Lope11−0328Pyralidae|TDGAB−2132 Pyralidae|TDGAB−1660Pyralidae|TDGAB−0792Pyralidae|TDGAB−1951Pyralidae|TDGAB−0119 Pyralidae|Lope11−0617Pyralidae|TDGAB−2250Pyralidae|TDGAB−2079Pyralidae|TDGAB−1952 Pyralidae|TDGAB−2251Pyralidae|TDGAB−1309Pyralidae|TDGAB−0467Pyralidae|TDGAB−0471 Pyralidae|TDGAB−2047Pyralidae|TDGAB−2050Pyralidae|TDGAB−2051Pyralidae|TDGAB−2143 Lasiocampidae|Lope11−0572Lasiocampidae|Lope11−0569 Pyralidae|TDGAB−0706Pyralidae|TDGAB−1037Pyralidae|TDGAB−1959 Lasiocampidae|TDGAB−1753Lasiocampidae|TDGABb−078 Pyralidae|TDGAB−1569Pyralidae|TDGAB−0198Pyralidae|TDGAB−0495Pyralidae|TDGAB−0656 Lasiocampidae|TDGABb−373Lasiocampidae|TDGAB−1367Lasiocampidae|TDGABb−372 Pyralidae|TDGAB−0311Pyralidae|TDGAB−0302Pyralidae|TDGAB−2432Pyralidae|TDGAB−2379 Lasiocampidae|Lope11−0439Lasiocampidae|TDGAB−2115Lasiocampidae|Lope11−0899 Pyralidae|TDGAB−2059Pyralidae|TDGAB−0551Pyralidae|TDGAB−0550Pyralidae|TDGAB−0549 Lasiocampidae|Lope11−0564Lasiocampidae|Lope11−0448 Pyralidae|TDGAB−2246Pyralidae|TDGAB−2240Pyralidae|TDGAB−2156Pyralidae|TDGAB−2070 Lasiocampidae|TDGAB−1692Lasiocampidae|TDGAB−1487 Pyralidae|Lope11−0372Pyralidae|Lope11−0356Pyralidae|TDGAB−2418Pyralidae|TDGAB−2254 Lasiocampidae|TDGAB−0019 Pyralidae|Lope11−0822Pyralidae|TDGAB−0607Pyralidae|Lope11−0309 Lasiocampidae|Lope11−0659 Pyralidae|TDGAB−1272Pyralidae|TDGAB−1166Pyralidae|TDGAB−0267Pyralidae|TDGAB−0233 Lasiocampidae|TDGAB−1884Lasiocampidae|TDGAB−0543 Pyralidae|TDGAB−1443Pyralidae|TDGAB−0108Pyralidae|TDGAB−1790 ypasaypasaLasiocampidae|Lope11−0451 rectilineata|Lope11−0799rectilineata|Lope11−0579 Pyralidae|TDGAB−1624Pyralidae|TDGAB−1497Pyralidae|TDGAB−0675Pyralidae|TDGAB−0133 ypasaLasiocampidae|TDGABb−323Lasiocampidae|TDGAB−0960 Lasiocampidae|TDGAB−0376rectilineata|TDGAB−0729Thetidia|TDGAB−0680 Pyralidae|TDGAB−1329Pyralidae|TDGAB−1543Pyralidae|TDGAB−1853 ypasa Lasiocampidae|TDGAB−1834rectilineata|TDGAB−0482Lasiocampidae|TDGAB−0367 Pyralidae|Lope11−0306Pyralidae|TDGAB−0716Pyralidae|TDGAB−1679 Lasiocampidae|TDGAB−0167Lasiocampidae|Lope11−0566Zamarada|TDGAB−2232 Pyralidae|TDGAB−2224Pyralidae|Lope11−0820Pyralidae|Lope11−0656Pyralidae|Lope11−0626 Lasiocampidae|Lope11−0565Lasiocampidae|Lope11−0049ymantriinae|TDGAB−1105ymantriinae|TDGAB−0862ymantriinae|TDGAB−0193 Pyralidae|TDGAB−1073Pyralidae|Lope11−0375Pyralidae|Lope11−0947 Lasiocampidae|TDGAB−0608Lasiocampidae|TDGAB−2404L Pyralidae|TDGAB−1619Pyralidae|TDGAB−1560Pyralidae|TDGAB−1360Pyralidae|TDGAB−1622 LL Lasiocampidae|TDGAB−1175Epiplema|TDGAB−0063Pyralidae|Lope11−0950 PachPach Lasiocampidae|TDGAB−0868Lasiocampidae|TDGAB−0223Lasiocampidae|TDGAB−1194Lasiocampidae|TDGAB−0352 PachPach osa|TDGAB−1484osa|TDGAB−0419 Lasiocampidae|Lope11−0177Lasiocampidae|Lope11−0561Lasiocampidae|TDGAB−1143 IdaeaSomatinaAnisodesLasiocampidae|Lope11−0570 pulveraria|TDGAB−1792 c di Lasiocampidae|TDGAB−2361Lasiocampidae|TDGAB−1241 Geometridae|TDGAB−2223Geometridae|TDGAB−1235Geometridae|TDGAB−0296Scopula lactaria|TDGAB−1964 Lasiocampidae|Lope11−0653Zamarada|Lope11−0796 Ennominae|TDGAB−1641Ennominae|TDGAB−1140AmusaronRacinoa|TDGAB−1261 k Lomadonta obscura|Lope11−0943Lasiocampidae|Lope11−0062Lasiocampidae|Lope11−0050Zamarada|TDGAB−1108Zamarada|Lope11−0115 Geometridae|TDGAB−0864Geometridae|TDGAB−0455Geometridae|TDGAB−1340Tor LomadontaLomadonta obscura|Lope11−0070Lasiocampidae|TDGABb−344obscura|Lope11−0837Lasiocampidae|TDGABb−331Zamarada|TDGAB−2304Zamarada|TDGAB−0671 Zeuctoboarmia|TDGAB−1113Zeuctoboarmia|TDGAB−1124Zeuctoboarmia|TDGAB−1001 Lomadonta obscura|Lope11−0314Lasiocampidae|TDGABb−330Lasiocampidae|TDGABb−354Zamarada|TDGAB−1956Zamarada|TDGAB−1906 Zeuctoboarmia|TDGAB−1286Zeuctoboarmia|TDGAB−0824Zeuctoboarmia|TDGAB−0157Zeuctoboarmia|TDGAB−0815 LomadontaLomadonta obscura|TDGAB−1767obscura|TDGAB−1490Lasiocampidae|TDGABb−353Lasiocampidae|TDGABb−352Zamarada|TDGAB−2408Zamarada|TDGAB−1270oborata|Lope11−0345 Zeuctoboarmia|TDGAB−0492Zeuctoboarmia|TDGAB−0406Geometridae|TDGAB−0224 Lasiocampidae|TDGABb−351Lasiocampidae|TDGABb−350Zamarada|TDGAB−1291Zamarada|TDGAB−2084oborata|Lope11−0127oborata|TDGAB−0079 Geometridae|Lope11−0305Geometridae|TDGAB−0067Zeuctoboarmia|TDGAB−2165Geometridae|TDGAB−0823 Lasiocampidae|TDGAB−1410Lasiocampidae|TDGABb−335Zamarada|TDGAB−0651Zamarada|TDGAB−2195Zamarada|TDGAB−0428oborata|TDGAB−0023oborata|Lope11−0003 Zeuctoboarmia|TDGAB−0640Zeuctoboarmia|TDGAB−0600Zeuctoboarmia|TDGAB−0410 Lasiocampidae|TDGAB−1839Lasiocampidae|TDGAB−1743oborata|TDGAB−0029oborata|Lope11−0119 Zeuctoboarmia|TDGAB−1617Zeuctoboarmia|TDGAB−1381Zeuctoboarmia|TDGAB−0805Zeuctoboarmia|TDGAB−0789tricidae|Lope11−0646 Lasiocampidae|TDGAB−1411Lasiocampidae|TDGAB−1615Zamarada|TDGAB−1470oborata|TDGAB−0628oborata|TDGAB−0644 Zeuctoboarmia|TDGAB−2425Zeuctoboarmia|TDGAB−2285Zeuctoboarmia|TDGAB−1860 Lasiocampidae|TDGAB−1404oborata|TDGAB−0041oborata|TDGAB−2268oborata|TDGAB−0470 Zeuctoboarmia|Lope11−0113Zeuctoboarmia|Lope11−0065Zeuctoboarmia|Lope11−0019Zeuctoboarmia|Lope11−0010 oborata|TDGAB−2193 Zeuctoboarmia|Lope11−0783Zeuctoboarmia|Lope11−0780Zeuctoboarmia|Lope11−0763Zeuctoboarmia|Lope11−0116 CleoraCleoraZeuctoboarmia|Lope11−0795Zeuctoboarmia|Lope11−0794 r r CleoraCleoraCleoraCleora r r r r CleoraCleoraCleoraCleora radula darg darg r leptopasta|TDGAB−1721 Zamarada|Lope11−0365 Cleora|TDGAB−0088Cleora|TDGAB−1900Cleora|TDGAB−1449Cleora|TDGAB−1709 Zamarada|TDGAB−0229Zamarada|Lope11−0131 Cleora|TDGAB−0042Cleora|TDGAB−2313Cleora|TDGAB−0787 Zamarada|TDGAB−2287Zamarada|Lope11−0128 Cleora|TDGAB−2137Cleora|TDGAB−0723Cleora|TDGAB−0773Cleora|TDGAB−0050 Zamarada|TDGAB−2314 Cleora|TDGAB−1112Cleora|TDGAB−0788Cleora|TDGAB−1479Cleora|TDGAB−2338 Zamarada|TDGAB−2168Zamarada|TDGAB−0625 Cleora|TDGAB−0945Cleora|TDGAB−1226Cleora|TDGAB−1551 Zamarada|TDGAB−2100Zamarada|TDGAB−2209 Cleora|TDGAB−0796Cleora|TDGAB−0781Cleora|TDGAB−0620 Zamarada|TDGAB−2182 Cleora|TDGAB−1460Cleora|TDGAB−2186Cleora|TDGAB−1858Cleora|TDGAB−0749 ha Zamarada|TDGAB−1491Zamarada|TDGAB−2188 Cleora|Lope11−0838Cleora|Lope11−0499Cleora|Lope11−0114 plosticta|TDGAB−0090 Zamarada|TDGAB−1574 Cleora|TDGAB−2088Cleora|TDGAB−1146Cleora|TDGAB−0604Cleora|TDGAB−2039 Zamarada|TDGAB−1229Zamarada|Lope11−0772 CleoraCleoraCleora oculata|TDGAB−1268 oculata|TDGAB−1106 oculata|TDGAB−0667 Zamarada|TDGAB−2096Zamarada|TDGAB−1245 CleoraCleoraCleora oculata|TDGAB−2104 oculata|TDGAB−2229 oculata|TDGAB−1467 Zamarada|TDGAB−1442Zamarada|Lope11−0477 CleoraCleoraCleoraCleora oculata|TDGAB−2177 oculata|TDGAB−2150 oculata|TDGAB−0804 oculata|TDGAB−1504 Zamarada|TDGAB−0228 Cleora|TDGAB−1887Cleora|TDGAB−0165Cleora oculata|Lope11−0764 olga|TDGABb−334 Zamarada dolor Zamarada|TDGAB−2410Zamarada|TDGAB−2319 CleoraCleoraCleora|Lope11−0769Cleora|Lope11−0762 boets boetscc l Zamarada dolor Zamarada|TDGAB−2247 CleoraCleoraCleoraCleora boetsc boetsc boetsc boetsc yboeata|TDGAB−0631 Zamarada|TDGAB−2187Zamarada|TDGAB−2169 CleoraCleoraCleoraCleora boets boets boets boetscccc Zamarada|TDGAB−1277Zamarada|Lope11−0511 Geometridae|TDGAB−0977ChiasmiaCleoraCleora boets albivia|TDGAB−0436boetscc Zamarada|TDGAB−1531 Geometridae|TDGAB−2164Geometridae|TDGAB−2091Geometridae|TDGAB−2216Geometridae|TDGAB−2111 Zamarada|TDGAB−1481 AcrAcrGeometridae|Lope11−0501Geometridae|TDGAB−2318 ostella|TDGAB−0634ostella|TDGAB−0078 Zamarada|TDGAB−0055Zamarada|TDGAB−0059 Geometridae|TDGAB−0212AcrAcr ostella|TDGAB−1431ostella|Lope11−0095 Zamarada|TDGAB−1822Zamarada|Lope11−0476 Geometridae|TDGAB−0185Geometridae|TDGAB−2288Geometridae|TDGAB−1747Geometridae|TDGAB−0287 ostella|Lope11−0509ostella|TDGAB−1474 Geometridae|TDGAB−0263Geometridae|TDGAB−2301Geometridae|TDGAB−2269Geometridae|TDGAB−0469 ostella|Lope11−0539 Zamarada|TDGAB−1962Zamarada|TDGAB−1502 Geometridae|TDGAB−0413Geometridae|TDGAB−1315Geometridae|TDGAB−1251 Zamarada corr Zamarada|Lope11−0514 DorGeometridae|TDGAB−2092Geometridae|TDGAB−2387Geometridae|TDGAB−2227 Zamarada corr Geometridae|Lope11−0844Cleora|Lope11−0761Geometridae|Lope11−0134Geometridae|TDGAB−1099 Geometridae|TDGAB−2383Geometridae|TDGAB−1328Comibaena|TDGAB−1916 Zamarada corr Geometridae|TDGAB−2281Geometridae|TDGAB−2205Geometridae|TDGAB−0491Geometridae|TDGAB−1118 Zamarada corr Geometridae|Lope11−0507Geometridae|Lope11−0506Geometridae|TDGAB−2266 Zamarada corr Geometridae|TDGAB−1275Geometridae|TDGAB−0190Geometridae|TDGAB−2290 Geometridae|TDGAB−0593Geometridae|TDGAB−0518Geometridae|TDGAB−2303 Zamarada corr Geometridae|TDGAB−0412Geometridae|TDGAB−0271Geometridae|TDGAB−0202 Zamarada corr Geometridae|TDGAB−0498Geometridae|TDGAB−0974Geometridae|TDGAB−0484 EulEulGeometridae|TDGAB−1283Geometridae|TDGAB−2312 Zamarada corr EulEulEul EulEul Zamarada corr GongropterGeometridae|TDGAB−1806Geometridae|TDGAB−1766Geometridae|TDGAB−0786 Gongropter yrididae|TDGAB−0178 Geometridae|TDGAB−0414Geometridae|TDGAB−0268GongropterGongr ostatheusis|TDGAB−2355 Zamarada corr Geometridae|TDGAB−2102Geometridae|Lope11−0491Geometridae|Lope11−0492Geometridae|TDGAB−0565 ostatheusis|Lope11−0779 yrididae|TDGAB−2180 Buzura|TDGAB−0385Geometridae|TDGAB−2329Geometridae|TDGAB−2300 ostatheusis|Lope11−0781ostatheusis|TDGAB−0638 Buzura|TDGAB−0568 Zamarada corr Biston|Lope11−0494Biston|Lope11−0493Buzura|Lope11−0112 Biston|Lope11−0051Biston|Lope11−0067Biston|Lope11−0109Biston|Lope11−0110 Zamarada corr Biston|TDGAB−1456Biston|TDGAB−1501Biston|Lope11−0028 Geometridae|TDGAB−2253 Biston|TDGAB−0130B Biston|Lope11−0503Biston|Lope11−0111 Zamarada corr Geometridae|TDGAB−2041 Biston|TDGAB−1176Biston|Lope11−0778Biston|Lope11−0504 G G G ei|TDGAB−0075 hidae|TDGAB−1010 G G Geometridae|TDGAB−0433Geometridae|TDGAB−1287Geometridae|TDGAB−1280Crambidae|Lope11−0826 Zeuctoboarmia|TDGAB−1323 Zeuctoboarmia|TDGAB−0650 Zeuctoboarmia|TDGAB−0481 ei|TDGAB−2359 Geometridae|TDGAB−0315Crambidae|TDGAB−1612Crambidae|TDGAB−1427Pyralidae|Lope11−0605Pyralidae|TDGAB−1827Pyralidae|Lope11−0122erinae|Lope11−0687erinae|Lope11−0449 sifulcrum|TDGAB−2147 Crambidae|TDGAB−0794erinae|TDGABb−332 9870− 6 5500− 9580− 73 90 2 8 339 2490− iB 1 458 Geometridae|TDGAB−1503 276 932 5360− 7 23 Geometridae|TDGAB−2243Crambidae|TDGAB−0785Crambidae|TDGAB−0461Th Pyralidae|TDGAB−1369yrididae|TDGAB−0475 2460− 7 3480− Geometridae|TDGAB−1705Th z eG Geometridae|TDGAB−0496 siB ycia|TDGAB−1514ycia|TDGAB−0708ycia|TDGAB−0123 Geometridae|TDGAB−2199Geometridae|TDGAB−1297Naprepa|TDGAB−0374 ycia|TDGAB−1778ycia|TDGAB−1775ycia|TDGAB−0118ycia|TDGAB−0097 1 050− 11 47 11 922−

oeG oeo oe Cossidae|Lope11−0907 tsiB Crambidae|Lope11−0327 70− 1 11 Crambidae|TDGAB−0094Th Marmax|TDGAB−1671 4 Marmax|TDGAB−1616 moeG moeG moeGm Marmax|TDGAB−0737 moeG Geometridae|Lope11−0479Psyc Marmax|TDGAB−0660Marmax|TDGAB−0654Marmax|TDGAB−0648 0− 0− 1 0− 1 1 1 Marmax|TDGAB−0077Marmax|TDGAB−0016 1 0− Anaphe panda|TDGAB−0542Zeu Marmax|TDGAB−0015Marmax|TDGAB−0013 tcueZ Lepidoptera|TDGAB−2056ZeuzZeuz Marmax|TDGAB−0139Marmax|TDGAB−0106 opte Marmax|TDGAB−0096Marmax|TDGAB−0081 otcueZ eme − emoe − e − − Marmax|TDGAB−0678 − − Opisthodontia|TDGAB−2003 Marmax|TDGAB−0014 e Opisthodontia|TDGAB−0762Notodontidae|TDGAB−2368 Marmax|TDGAB−0744Marmax|TDGAB−0052 |notsi|not T

Pycnostega fumosa|TDGAB−1505Notodontidae|TDGAB−1086 11epoL| 1 b 11epoL|aimraobotcueZ 11 ymantriinae|Lope11−0013 11epoL|a 11epoL|aimraobotcueZ Pycnostega fumosa|TDGAB−1116Lasiocampidae|TDGAB−0997Metarbelinae|TDGAB−1374 11epoL|aimraobotcueZ te Metarbelinae|Lope11−0299 BAGDT|aimraobot BAGDT|aimraobotcueZ BAGDT|aimraobotcueZ BAGDT|aimraobotcueZ BAGDT|aimrao BAGDT|aimraobotc B BAG BAGDT BAGDT|aimraobotcueZ Metarbelinae|TDGAB−0292 BAGDT|aimraobotcueZ BAGDT|aimraobotcueZ BAGD hi|TDGAB−2148hi|TDGAB−0755 rtemrtrtemoeG hi|Lope11−0767 rtrt hi|Lope11−0773 Metarbelinae|TDGAB−1549Metarbelinae|TDGAB−0721 hi|TDGAB−0735hi|TDGAB−2233hi|TDGAB−0557 L 1epoL|a hi|TDGAB−0925 hi|Lope11−0934hi|TDGAB−0674hi|TDGAB−0477hi|Lope11−0512 i i

irtemoeG

AGDT|aimraobotcueZ dirtemoeG

dirtemoeG dirtemoeG epoL|aimr Pitthea|TDGAB−1810 r Pitthea|TDGAB−1708Pitthea|TDGAB−0128Pitthea|TDGAB−0031 Pitthea|TDGAB−0127 adirt yx|TDGAB−0255 Pitthea|TDGAB−1045Pitthea|TDGAB−0869 yx|TDGAB−2336yx|TDGAB−0170yx|TDGAB−0618 Geometridae|Lope11−0870 Mixocera|Lope11−0996 Geometridae|Lope11−0344 Mixocera|Lope11−0484 AGD Geodena|Lope11−0816Geodena|Lope11−0107 AGDT|nots ea

ea dirte m o e G

hia|Lope11−0014 DT| B |eadi |eadiB BAGDT |e a dirte m o e G

11epoL|no

T|ead imrao T|aimraobotcueZ T|T|e a dirte m o e G Ennominae|TDGAB−1524Ennominae|TDGAB−0879 T|ead 5% a |aimraob

D T|e a dirte m D DT|eaD T|e a dirte m o e G DD T|e a dirte m o e PhialaPhiala MGABsp1|Lope11−0732 MGABsp1|Lope11−0731 eugma|Lope11−0027 aim eugma|TDGAB−0434 |aimraobo| Phiala MGABsp1|TDGAB−1930 aimraobotcue Phiala MGABsp1|TDGAB−1867 i 0− Phiala MGABsp1|TDGAB−1850 imraobotcueZ Phiala MGABsp1|TDGAB−1835 T PhialaPhialaPhiala MGABsp1|TDGAB−1765 MGABsp1|TDGAB−1750 MGABsp1|TDGAB−1731 Geometridae|Lope11−0992 GDT|eadir G PhialaPhiala MGABsp1|TDGAB−1717 MGABsp1|TDGAB−0799 Geometridae|Lope11−0793Geometridae|Lope11−0483 tor se d o n d oro h C Phiala MGABsp1|TDGAB−0790 6 60− Phiala MGABsp1|TDGAB−0627 Geometridae|TDGAB−2384 hora|TDGABb−349hora|TDGAB−0898hora|TDGAB−0602 Phiala MGABsp1|TDGAB−0621 Geometridae|TDGAB−0260Geometridae|TDGAB−1603 hora|TDGAB−0230hora|TDGAB−0231hora|TDGAB−0478 PhialaPhiala MGABsp1|TDGAB−0056 MGABsp1|TDGAB−0018 Geometridae|TDGAB−0777Geometridae|Lope11−0016Geometridae|TDGAB−0885 hora|TDGAB−1126 h PhialaPhiala MGABsp1|TDGAB−0011 MGABsp1|TDGAB−0010 Geometridae|TDGAB−1144Geometridae|TDGAB−0699 mrao Phiala MGABsp1|TDGAB−0610 Pingasa|Lope11−0766Pingasa|TDGAB−2305 Pingasa|Lope11−0496 A G D3 T|eadirte m oe G Phiala MGABsp2|TDGABb−358 Pingasa|TDGAB−0191 A G D T|ea dirte m o e PhialaPhiala MGABsp2|TDGABb−356 MGABsp2|TDGABb−355 ymayma fusca|TDGAB−1872 fusca|TDGAB−0757 Pingasa|TDGAB−2344Pingasa|TDGAB−0596Pingasa|TDGAB−2099 AGD Phiala MGABsp2|TDGAB−1744 ymayma fusca|TDGAB−0662 fusca|TDGAB−0617 Pingasa|TDGAB−0384 raobotcueZ Phiala MGABsp2|TDGABb−357 Pingasa|TDGAB−0632Pingasa|TDGAB−0535 leora|TDGAB−0343leora|TDGAB−0252 p o L|ai m ra o b otc u e Z Antharmostes|Lope11−0775Geometridae|TDGAB−0439Geometridae|Lope11−0021Geometridae|TDGAB−1157Geometridae|Lope11−0813 Antharmostes|Lope11−0485Geometridae|TDGAB−0265Geometridae|Lope11−0497 6470− Antharmostes|Lope11−0025 3 Antharmostes|TDGAB−2294Geometridae|TDGAB−2181 787030 BAGDT| Geometridae|TDGAB−1265Geometridae|Lope11−0815 BAGDT|eBAGDTBAG Antharmostes|TDGAB−2183 BAGDTBBAGBAGDT|eadi A G D T|eadirte m oe G Antharmostes|Lope11−0765 B Geometridae|Lope11−0478 BAGB BAGDT|ead BAGDTBBABAG A G D T|e a dirte aobotcueZ BBABAGBAGD A G D T|ea dirt Antharmostes|TDGAB−1816Antharmostes|TDGAB−1123Geometridae|TDGAB−2307Geometridae|Lope11−0020Geometridae|TDGAB−2235Lophostola|TDGAB−2204 BAGDT|eaBB B A A G G D D T|eadirte T|eadirte m m oe oe G G Geometridae|TDGAB−2192Geometridae|Lope11−0482 Biston|TDGAB−1159Biston|TDGAB−1149 Biston|TDGAB−1137Biston|TDGAB−1121Biston|TDGAB−1022 Geometridae|TDGAB−1310 Biston|TDGAB−1017Biston|TDGAB−0983Biston|TDGAB−0935 Biston|TDGAB−0423Biston|TDGAB−0220 Geometridae|TDGAB−0991Geometridae|TDGAB−1526Geometridae|TDGAB−2348 hiahia palliata|TDGAB−0493 palliata|TDGAB−0074 Biston|TDGAB−0214Biston|TDGAB−0166 AGDT Cleora|TDGAB−1638

− − Geometrinae|TDGAB−0700 − − − − − − − − − Geometridae|TDGAB−1426Geometridae|TDGAB−0381Geometridae|TDGAB−1274Geometridae|Lope11−0017 − Geometridae|Lope11−0015Geometridae|TDGAB−2200 Geometridae|TDGAB−1056Geometridae|TDGAB−1651 B BAGD Androz Geometridae|TDGAB−2234Geometridae|TDGAB−1259 b 11e 0 1 1 0− Androz 0−0 2− botcu 2−0−1 Geometridae|TDGAB−2184 1 0− Thalassodes|Lope11−0026Thalassodes|Lope11−0024Thalassodes|Lope11−0023

Thalassodes|TDGAB−1131 otcueZ − 1 1 1 1 115 1 5 Geometridae|TDGAB−1473Geometridae|Lope11−0941 0 Geometridae|Lope11−0495Geometridae|Lope11−0287 otcueZ Lophorrhac Geometridae|Lope11−0144Geometridae|TDGAB−1237 Geometridae|TDGAB−2172Geometridae|TDGAB−0247Geometridae|TDGAB−1104Geometridae|Lope11−0360 ColocColoc 280−

0 580− 950 MiantocMiantocMiantocMiantoc 5 050− MiantocMiantocMiantoc Ennominae|TDGAB−1089 Ennominae|TDGAB−0597Ennominae|TDGAB−0205Ennominae|TDGAB−0957

Geometridae|TDGAB−1092 cueZ Geometridae|TDGAB−2112Geometridae|TDGAB−0058Geometridae|TDGAB−0926 Geometridae|TDGAB−1135 BAGDT|i8 70− 4850− Sphingomima|TDGABb−377Sphingomima|TDGAB−0814 Geometridae|TDGAB−0988Geometridae|TDGAB−0980 27283040400840 Sphingomima|TDGAB−2382 6302−64295 Sphingomima|TDGAB−0386 1 9670672 Geometridae|TDGAB−2291 26 7650 Geometridae|TDGAB−2402 55929331 Sphingomima|TDGAB−0383 4 00203 Sphingomima|TDGAB−0841 Geometridae|TDGAB−2337Geometridae|TDGAB−2335Geometridae|Lope11−0498 7732−1 7 Sphingomima|TDGAB−1160 Geometridae|TDGAB−0846Geometridae|TDGAB−1115Geometridae|TDGAB−1100Geometridae|TDGAB−0587Geometridae|Lope11−0488 Geometridae|TDGAB−1069Geometridae|TDGAB−0820 Prasinoc hora venerata|TDGAB−1120 Geometridae|TDGAB−1048Geometridae|TDGAB−0566 Prasinoc leoraleora indivisa|TDGAB−0392 indivisa|TDGAB−0196 Geometridae|TDGAB−1296Geometridae|TDGAB−0961Geometridae|TDGAB−1090 u PrasinocPrasinoc horahora interrupta|Lope11−0771 interrupta|Lope11−0770 Geometridae|TDGAB−1211

eZ eZ 86

266930−

Zeuctoboarmia|Lope11−0508Zeuctoboarmia|Lope11−0500

Z Zeuctoboarmia|TDGAB−0905 Zeuctoboarmia|TDGAB−2198

Lophorrhac

Lophorrhac 7220−

Megadrepana cinerea|Lope11−0047 ColocColoc MegadrepanaMegadrepanaMegadrepanaMegadrepana cinerea|TDGABb−378 cinerea|TDGAB−2357 cinerea|TDGAB−2142 cinerea|TDGAB−1817

Miantoc https://mc06.manuscriptcentral.com/genome-pubsMiantocMiantoc Genome Page 42 of 42

Noctuidae Geometridae Notodontidae Sphingidae Lymantriinae Saturniidae Arctiinae Lasiocampidae Other_Erebidae Erebinae Pyralidae Crambidae Thyrididae Draft Limacodidae Nolidae Eupterotidae Cossidae Drepanidae Zygaenidae Psychidae Tortricidae Euteliidae Tineidae Lecithoceridae Eriocottidae Number of species in AfroMoths Bombycidae Number of BINs observed Uraniidae Brahmaeidae

0 50 100 150 200 https://mc06.manuscriptcentral.com/genome-pubs Number of BINs/species Page 43 of 42 A GenomeB C

Draft # of BINs # of BINs Sample coverage

Ipassa Lopé Lopé WS Lopé DS 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0.0 0.2 0.4 0.6 0.8 0 1000 2000 3000 0https://mc06.manuscriptcentral.com/genome-pubs 1000 2000 3000 0.0 0.2 0.4 0.6 0.8 # of individuals # of individuals Sample coverage