Naval and Space Applications of Rubber

Total Page:16

File Type:pdf, Size:1020Kb

Naval and Space Applications of Rubber Naval and Space Applications of Rubber Naval and Space Applications of Rubber 5 C.M. Roland 5.1 Introduction Nine months before Pearl Harbor, an article describing the use of rubber by the United States Navy stated ‘Throughout the extensive network of Naval ships and bases, rubber is playing a vital part in the nation’s fi rst line of defense’ [1]. Certainly over the ensuing 60-plus years, the military’s utilisation of elastomers has increased substantially. Applications range from the sublime – a 900 kg rubber disk for the ejection of torpedoes [2] – to the mundane – ersatz rubber bricks for concealing sensors during Marine reconnaissance missions [3]. This chapter reviews current and potential future uses of rubber for Navy and aerospace applications. For many decades the military and the space program have both fostered development of new technologies, and that is true for elastomers. Longevity is a special concern, Navy ships having a 30 year life cycle (with aircraft carriers designed for 50 years of service life); nevertheless, the applications described herein very often were or are cutting-edge technologies. Although details of military applications are sometimes classifi ed, a more common barrier to information is the proprietary nature of the materials. Since the US government does not manufacture, private companies provide the rubber components and are responsible for much of their development. This limits the descriptions herein to largely a qualitative nature. 5.2 Acoustic Applications Rubber is very commonly used in various acoustic applications, especially by the Navy, taking advantage of the acoustic impedance match between rubber and water. If two materials have the same acoustic impedance, defi ned as the product of the mass density of a material and the sound speed, there will be no refl ections at their interface [4]. For low loss materials, the sound speed is proportional to the square root of the ratio of the density and the modulus (bulk modulus for longitudinal waves, or shear modulus for shear waves). Since the bulk modulus varies weakly among elastomers, fi ne-tuning the acoustic impedance of rubber relies mainly on adjusting its density. The acoustic properties of a variety of rubbers of interest to the Navy are available [5], although specifi c formulations tend to be proprietary. The attenuation 159 5Chapter.indd 159 21/12/07 11:18:59 Rubber Technologist’s Handbook, Volume 2 coeffi cient of rubber is a measure of the loss of intensity of the transmitted wave, the sound amplitude decreasing exponentially with product of the distance travelled and the attenuation coeffi cient. For longitudinal waves (oscillating in the direction of the sound propagation), this attenuation coeffi cient is proportional to the ratio of the bulk loss modulus to the bulk storage modulus. For elastomers, the loss tangent for longitudinal strains is usually less than 10-3 [1, 6]. Thus, sound waves can be transmitted long distances with minimal loss. When avoiding detection is the objective, sound waves must be attenuated. This can be accomplished by converting the longitudinal sound waves into shear waves (‘mode conversion’) [2, 7], since the loss tangent for sheared rubber is in the order of unity. This mode conversion can be achieved in various ways, such as constraining the rubber as a thin fi lm between two rigid surfaces, or by incorporating inclusions such as small glass spheres or gas bubbles. The interfacial rubber in such a confi ned geometry deforms in a shear (or extensional) mode, which is readily attenuated. The rubber itself can be formulated to be highly dissipative at the frequencies of interest. Maximum energy dissipation occurs when the viscoelastic response of the material falls into the rubber-glass transition zone at the applied frequency and temperature. For high frequency sound waves, the transition occurs well above the conventional glass transition temperature (Tg). As measured using scanning calorimetry at typical heating rates, Tg corresponds to a deformation time scale of approximately 100 seconds. Since the effective activation energy for local motion in polymers is very large (a 10 °C temperature change can alter the relaxation time by three orders of magnitude [3, 8]), relatively high Tg elastomers are required to obtain a room-temperature rubber-glass transition at acoustic frequencies [4, 5, 9, 10]. Conventional dynamic mechanical testing is often used to predict the material’s response to acoustic frequencies, by construction of master curves versus reduced frequency [5]. Even fi lled rubber is linearily viscoelastic for deformations less than 10-3 strain amplitude [11]. The strain amplitude of acoustic waves propagating through rubber is typically in the range from 10-5 to 10-10. Note that for detection, acoustic signals must be stronger than the ambient noise level. Under typical wind conditions, this corresponds to strain amplitudes equal to about 10-14. The important point is that acoustic properties can be characterised from conventional, small-strain dynamic mechanical measurements. These methods are all used by the Navy for quieting. One example is the rubber coating (‘acoustic tiles’) on submarines. The rubber’s acoustic impedance is designed so that the main echo of impinging sonar is amplifi ed (constructive interference) and directed away from the source. Diffuse echoes and internal noise are attenuated by a combination of the rubber formulation and the geometry of the coating layer. In the past these were blends of natural rubber (NR) with nitrile, polychloroprene (PCR), or (in some former Soviet submarines) 1,2-polybutadiene. Most acoustic tiles today are made from polyurethane (PU). 160 5Chapter.indd 160 21/12/07 11:18:59 Naval and Space Applications of Rubber 5.2.1 Sonar Rubber Domes Although sound enables their detection, it also provides underwater ‘vision’ to sea vessels. The sonic transducers on Navy surface ships are covered with rubber (Figure 5.1), and contained in a steel-reinforced rubber dome. On large ships the dome is located on the bow (forward part of the lower hull) while on smaller vessels it is on the keel (keel refers to the bottom beam running from bow to stern). The purpose of the bow and keel domes is to provide a hydrodynamically smooth surface, to minimise noise from water fl ow, and to protect the transducer. The latter was exemplifi ed in the terrorist bombing of the USS Cole in October 2000. The dome and its transducer survived intact, despite the damage to the ship itself (Figure 5.2). The sonar dome must transmit with minimal loss the sound energy, and cannot be disrupted by the fl ow of seawater. Initially domes were made of steel but these had poor sound transmission, were susceptible to corrosion and marine fouling (from barnacles, sea weed, slime-producing bacteria, etc.), and required internal supports, which obstructed the sound. The fi rst rubber sonar dome was installed in 1965, with actual production beginning in 1972. Figure 5.1. Sonar rubber bow dome 161 5Chapter.indd 161 21/12/07 11:18:59 Rubber Technologist’s Handbook, Volume 2 Figure 5.2. The guided missile destroyer USS Cole being returned to the United States after a terrorist attack in Yemen in October 2000. Despite the 150 m2 gash in the port side of the hull (upper photograph), as well as the jostling when the ship was mounted on a salvage transport vessel, the bow dome (seen in lower photograph hanging off the edge of the transport) was still functional. After repairs that included replacement of 550 tonnes of exterior steel plating, the Cole returned to sea duty 18 months later 162 5Chapter.indd 162 21/12/07 11:18:59 Naval and Space Applications of Rubber Sonar bow domes (Figure 5.3) are the largest moulded rubber articles in the world. They weigh 8,600 kg, are 11 m long, 6.4 m wide, and stand almost 2.5 m high. The rubber wall thickness varies up to a maximum of 20 cm. The construction involves manual lay-up of multiple steel-cord reinforced polychloroprene plies. The steel cords provide structural rigidity. To avoid interference with acoustic performance, the spacing of the cords must be less than the wavelength of sound (e.g., 1.5 m at 1 kHz). The rubber itself has minimal absorption over the sonar frequencies. The dome is fabricated on an open (one-sided) mould and vulcanised in a large autoclave. The bow dome is infl ated with approximately 95,000 litres of water, to an internal pressure of 240 kPa. Its location below the baseline of the ship minimises hydrodynamic resistance. Figure 5.3. Rubber sonar dome assembly mounted to bow of ship 163 5Chapter.indd 163 21/12/07 11:19:00 Rubber Technologist’s Handbook, Volume 2 Since their introduction, various improvements to the design of rubber sonar domes have been made, greatly increasing the expected lifetime. Problems with water migration and consequent wire corrosion were corrected by blocking the migration pathways in the wire. Problems with wire fatigue have been addressed by identifying cracks using X-ray radiography of the high stress regions. Such inspections have enabled targeted dome replacement, eliminating at-sea failures. Some sonar domes have been in continuous service for over twenty years. Recently, a rubber and plastic laminate dome (Figure 5.4) has been developed to replace the steel-cord reinforced keel dome. A prototype composite keel dome has been in sea trials since 1997 on a destroyer surface ship and production for other ships has begun. Composite domes using fi berglass and polychloroprene have been used on submarines for over two decades. 5.2.2 Active Sonar Another acoustic application of rubber is the use of active sonar for detection of submarines and surface ships.
Recommended publications
  • Latex Free Claims: a White Paper on the Risks Associated with Latex Allergies and Latex in Healthcare
    Latex Free Claims: A White Paper on the Risks Associated with Latex Allergies and Latex in Healthcare Brought to you by: Allergy and Asthma Network: Sue Lockwood and Robert Hamilton, M.S., Ph.D. Avella Specialty Pharmacy: Eric Sredzinski, Pharm.D., AAHIVP and Jenna Vaughn, Pharm.D., PGY1 Executive Summary There is significant confusion as to the meaning of “latex free” in healthcare. The FDA has urged manufacturers to drop the term “latex free” or a ”does not contain latex” claim from labels because of the challenge to ensure a product is completely devoid of natural rubber latex proteins which cause the allergic reactions. While there are no regulations requiring the On December 2, labeling of a medical product to state natural rubber latex was not used as a material in the manufacturing process, the terms “latex free” or 2014, the FDA “does not contain latex” are used too broadly. According to the FDA, these labeling techniques are not sufficiently specific, not necessarily scientifically released the accurate, and may be misunderstood and applied too widely. final latex guidance On December 2, 2014, the FDA released the final latex guidance document document advising [https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/ GuidanceDocuments/UCM342872.pdf] advising firms to use “not made with firms to use natural rubber latex” if no natural (Hevea brasiliensis) rubber latex was used in the "not made manufacturing process. Not all types of latex are from natural rubber latex; for example, products that contain nitrile and polyvinyl chloride, will not cause a with natural natural rubber latex allergy because these are synthetic formulations.
    [Show full text]
  • Defense Industry Restructuring in Russia
    S t a n f o r d U n i v e r s i t y C I S A C Center for International Security and Arms Control The Center for International Security and Arms Control, part of Stanford University’s Institute for International Studies, is a multidisciplinary community dedicated to research and train- ing in the field of international security. The Center brings together scholars, policymakers, scientists, area specialists, members of the business community, and other experts to examine a wide range of international security issues. CISAC publishes its own series of working papers and reports on its work and also sponsors a series, Studies in International Se- curity and Arms Control, through Stanford University Press. Center for International Security and Arms Control Stanford University 320 Galvez Street Stanford, California 94305-6165 (415) 723-9625 http://www-leland.stanford.edu/group/CISAC/ Contents Acknowledgments iv Executive Summary v I Introduction 1 Section One: Case Studies II The Central Aerohydrodynamic Research Institute (TsAGI) 9 III ELVIS+ and The Moscow Center for SPARC Technology (MCST) 28 IV Impuls 45 V The Mashinostroenie Enterprise 59 VI The Saratov Aviation Plant 79 Section Two: Analysis VII Privatization at Four Enterprises 111 VIII Organizational Restructuring 137 IX Principal Differences in Accounting Systems in Russia 163 and the United States X Reallocation of the Social Services 183 XI Conclusion 207 Glossary 216 1 Acknowledgments Many people have contributed to this report, and still more have contributed to the research leading up to it. In writing this report, we have not attempted to reach consensus among the authors on the interpretations to be drawn from the data.
    [Show full text]
  • CORALITE MUSCLE JOINT- Camphor Menthol Menthyl Salicylate Patch United Exchange Corp
    CORALITE MUSCLE JOINT- camphor menthol menthyl salicylate patch United Exchange Corp. Disclaimer: Most OTC drugs are not reviewed and approved by FDA, however they may be marketed if they comply with applicable regulations and policies. FDA has not evaluated whether this product complies. ---------- Active ingredients Purpose Camphor 1.2%...........................................Topical analgesic Menthol 5.7%.............................................Topical analgesic Methyl Salicylate 6.3%.................................Topical analgesic Uses For temporary relief of minor aches and pains of muscles and joints associated with: arthritis simple backache strains bruises sprains Warnings For external use only Allergy alert: If prone to allergic reaction from aspirin or salicylates, consult a doctor before use. Do not use on wounds or damaged skin with a heating pad if you are allergic to any ingredients of this product When using this product do not use other than directed avoid contact with the eyes, mucous membranes or rashes do not bandage tightly Stop use and ask a doctor if: rash, itching, or excessive skin irritation develops conditions worsen symptoms persist for more than 7 days symptoms clear up and occur again within a few days If pregnant or breast-feeding, ask a health professional before use. Keep out of reach of children. If swallowed, get medical help or contact a Poision Control Center right away. Directions Adults and children 12 years of age and over: clean and dry affected area remove patch from film apply to affected area not more than 3 to 4 times daily remove patch from skin after at most 8 hours of application Children under 12 years of age: consult with a doctor Other information avoid storing product in direct sunlight protect from excessive moisture Inactive ingredients butylated hydroxytoluene, glyceryl rosinate, natural rubber, polybutene, polyisobutylene, precipitated calcium carbonate, quinton, sorbitan stearate, tocopherol acetate, YS resin, zinc oxide DISTRIBUTED BY: UNITED EXCHAGE CORP.
    [Show full text]
  • Requirements and Selection of Design Concepts to Be Investigated
    GF_WP1_TN_Requirements GF_WP1_TN_Requirements Department of Automotive and Aeronautical Engineering Hamburg University of Applied Sciences (HAW) Berliner Tor 9 D - 20099 Hamburg Green Freighter – Requirements and Selection of Design Concepts to be Investigated Kolja Seeckt Dieter Scholz 2007-11-29 Technical Note 1 GF_WP1_TN_Requirements Dokumentationsblatt 1. Berichts-Nr. 2. Auftragstitel 3. ISSN / ISBN GF_WP1_TN_Requirements Grüner Frachter (Entwurfsuntersuchungen zu --- umweltfreundlichen und kosteneffektiven Fracht- flugzeugen mit unkonventioneller Konfiguration) 4. Sachtitel und Untertitel 5. Abschlussdatum Green Freighter – Requirements and Selection of Design Concepts to 29.11.2007 be Investigated 6. Ber. Nr. Auftragnehmer GF_WP1_TN_Requirements 7. Autor(en) (Vorname, Name) 8. Vertragskennzeichen Kolja Seeckt ([email protected]) 1710X06 Dieter Scholz ([email protected]) 9. Projektnummer FBMBF06-004 10. Durchführende Institution (Name, Anschrift) 11. Berichtsart Hochschule für Angewandte Wissenschaften Hamburg (HAW) Technische Niederschrift Fakultät Technik und Informatik 12. Berichtszeitraum Department Fahrzeugtechnik und Flugzeugbau Forschungsgruppe Flugzeugentwurf und Systeme (Aero) 06.12.2006 - 20.09.2007 Berliner Tor 9 13. Seitenzahl D - 20099 Hamburg 96 14. Fördernde Institution / Projektträger (Name, Anschrift) 15. Literaturangaben Bundesministerium für Bildung und Forschung (BMBF) 70 Heinemannstraße 2, 53175 Bonn - Bad Godesberg 16. Tabellen Arbeitsgemeinschaft industrieller Forschungsvereinigungen 10 „Otto
    [Show full text]
  • Rubber Tapping Machine
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072 Rubber Tapping Machine Mr. Raghavendra Prasad S.A Assistant Professor, Dept. of Mechanical Engineering, St. Joseph Engineering College, Mangalore, Karnataka, India ----------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - A labour has to apply force many times on each 89% of area and 92% of production came from small holding tree to get the desired path for the harvesting of rubber so, this with an average size of 0.50 ha. The total area of natural makes the labour tired and they to do this job for so many rubber cultivation is sub-grouped into traditional (0.53 Mha) trees in a short duration at early morning on every day. This and nontraditional regions, where the traditional regions leads shortage in labour for rubber tapping in India. Hence a have the lion share. The state of Kerala and Kanyakumari motorized concept of tapping knife is needed to reduce their district of Tamil Nadu are the traditional NR cultivating effort. Our proposed machine will satisfy and full fill the above regions, whereas the non-traditional region are in the states problem. The main aim of this project is to rubber tapping in of Maharashtra, Karnataka, Goa , Andhra Pradesh and rubber trees. This equipment is having rack and pinion, Odisha, as classified by RBI [3]. battery, motor arrangement, in the rubber tapping machine. In this project the components are modeled by CREO Software 1.1 Uses & Importance of Rubber and animation also done by CREO software.
    [Show full text]
  • Vortexcell2050
    Sixth EU Framework Programme for Research and Technological Development (FP6) Contract No AST4-CT-2005-012139. 2005-2009 VortexCell2050 Specific Targeted Research Project “Fundamentals of actively controlled flows with trapped vortices ” Publishable executive summary VortexCell2050 aimed at delivering a new technological platform combining two cutting-edge technologies, the trapped-vortex and the active flow control. Trapping vortices is a technology for preventing vortex shedding and reducing drag in flows past bluff bodies. Active flow control is a form of control which requires energy input. The project outcomes will serve the designers of the next-generation thick-wing aircraft, and will also be applied in other areas where reduction in drag in a flow past a bluff body is desirable. VortexCell2050 developed a tool for vortex cell design, collected a substantial amount of data on three-dimensional and actively controlled flows in vortex cells, and demonstrated the advantage of a thick airfoil with a properly designed vortex cell with active control over a thick airfoil without a vortex cell, thus opening a possibility of trying this technology in specific applications. VortexCell2050 also highlighted several promising avenues for further improvement of the vortex cell performance. The results of VortexCell2050 ensure European Aeronautical Sector a leadership in a small but critical area, the importance of which will grow in the future with an increase in aircraft size. This summary outlines the project context, major activities, and outcomes . Partners University of Southampton, UK Politecnico di Torino, Italy Centro Italiano Ricerche Aerospaziali ScpA, Italy Piaggio Aero Industries, Italy Technical University of Munich, Germany University of Bordeaux 1, France Battery Company RIGEL, Russian Federation Glasgow University, UK Technische Universiteit Eindhoven, Netherlands Institute of Mechanics of the Moscow State University, Russian Federation Contacts Prof.
    [Show full text]
  • (AMEO) As a Coupling Agent on Curing and Mechanical Properties of Natural Rubber/Palm Kernel Shell Powder Composites
    Available online at www.sciencedirect.com ScienceDirect Procedia Chemistry 19 ( 2016 ) 327 – 334 5th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM) & 2nd International Postgraduate Conference on Materials, Mineral and Polymer (MAMIP), 4-6 August 2015 The Effect of 3-aminopropyltrimethyoxysilane (AMEO) as a Coupling Agent on Curing and Mechanical Properties of Natural Rubber/Palm Kernel Shell Powder Composites Shuhairiah Daud, Hanafi Ismail*, Azhar Abu Bakar aSchool of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia *Corresponding author:[email protected] Abstract This research is conducted using palm kernel shell powder (PKS) as filler in natural rubber. The effect of 3- aminopropyltrimethoxysilane as coupling agent on composites were studied at different palm kernel shell loading i.e, 0. 5, 10, 15 and 20 phr. The palm kernel shell was crushed and sieved to an average particle size of 5.53 µm. The palm kernel shell filled natural rubber composites were prepared using laboratory size two roll mill. The curing characteristics such as scorch time, cure time and maximum torque were obtained from rheometer. The palm kernel shell powder filled natural rubber composites were cured at 150oC using hot press according to their cure time. Curing characteristics, tensile properties, rubber-filler interaction and morphological properties of palm kernel shell powder filled natural rubber were studied. Scorch time and cure time show reduction but tensile strength, elongation at break, modulus at 100% (M100) and modulus at 300% (M300) increased with the presence of 3-aminopropyltrimethyloxysilane. Rubber-filler interaction studies showed that rubber filler interaction in natural rubber filled with palm kernel shell powder improved with incorporation of 3-aminopropyltrimethyoxysilane.
    [Show full text]
  • Natural Rubber Systems and Climate Change Proceedings and Extended Abstracts from the Online Workshop, 23–25 June 2020
    May 2021 FTA WORKING PAPER • 9 Natural rubber systems and climate change Proceedings and extended abstracts from the online workshop, 23–25 June 2020 Salvatore Pinizzotto, Datuk Dr Abdul Aziz b S A Kadir, Vincent Gitz, Jérôme Sainte-Beuve, Lekshmi Nair, Eric Gohet, Eric Penot, Alexandre Meybeck Natural rubber systems and climate change Proceedings and extended abstracts from the online workshop, 23–25 June 2020 The CGIAR Research Program on Forests, Trees and Agroforestry (FTA) Working Paper 9 © 2021 The CGIAR Research Program on Forests, Trees and Agroforestry (FTA) Content in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0), http://creativecommons.org/licenses/by/4.0/ DOI: 10.17528/cifor/008029 Pinizzotto S, Aziz A, Gitz V, Sainte-Beuve J, Nair L, Gohet E, Penot E and Meybeck A. 2021. Natural rubber systems and climate change: Proceedings and extended abstracts from the online workshop, 23–25 June 2020. Working Paper 9. Bogor, Indonesia: The CGIAR Research Program on Forests, Trees and Agroforestry (FTA). CGIAR Research Program on Forests, Trees and Agroforestry CIFOR Headquarters Jalan CIFOR Situ Gede, Sindang Barang Bogor Barat 16115 Indonesia T +62-251-8622-622 E [email protected] foreststreesagroforestry.org We would like to thank all funding partners who supported this research through their contributions to the CGIAR Fund. For a full list of the ‘CGIAR Fund’ funding partners please see: http://www.cgiar.org/our-funders/ Any views expressed in this publication are those of the authors. They do not necessarily represent the views of The CGIAR Research Program on Forests, Trees and Agroforestry (FTA), the editors, the authors’ institutions, the financial sponsors or the reviewers.
    [Show full text]
  • Effects of Coconut Coir Powders on the Properties of Natural Rubber Composites
    International Jounal of Science and Innovative Technology Volume3 Issue1 January - June 2020 53 Effects of Coconut Coir Powders on the properties of Natural Rubber Composites Teerakorn Kongkaew1,Sureeporn Kumneadklang1, Jate Panichpakdee1 and Siriporn Larpkiattaworn1, * Received May 18, 2020; Revised, June 10, 2020; Accepted June 29 2020 Abstract In this work, the coconut coir powders (CCP)/natural rubber (NR) composites were successfully prepared. The CCP acts as a reinforcing filler with two different sizes of fine powders (39 um) and coarse powders (101 um). The coconut coir powders added to the natural rubber matrix at the filler content of 25, 50, 75, and 100 phr. The effect of CCP contents on physical and mechanical properties was studied. The result revealed that the increase in CCP content has decreased the tensile strength, elongation at break and toughness of composites but increased the modulus of elasticity. The CCP/NR composite at 25 phr of filler loading shows better mechanical properties. For different sizes of fillers, the F-CCP exhibit the better mechanical properties and hardness compare to C-CCP. These properties of composites indicate that it can develop and possible apply in rubber mats. Keywords: Coconut coir powders, Natural rubber, Mechanical properties, Composites Introduction al., 2002; Luz et al., 2007; Panthapulakkal et al., 2006). Polymer composites are a combination of a The natural fibers act as reinforcing natural fillers with polymer matrix with fillers. They have been attractive- biodegradable and renewable properties. The proba- ly applied in industrial and academic researches due bility of natural fibers such as kenaf, sisal, pineapple to the control of the material properties.
    [Show full text]
  • Family Agriculture and the Sustainable Development Issue: Possible Approaches from the African Oil Palm Sector. the Example of Ivory Coast and Cameroon
    LES ACTEURS Family agriculture and the sustainable development issue: possible approaches from the African oil palm sector. The example of Ivory Coast and Cameroon 1 Emmanuelle CHEYNS Abstract: Based on the results of studies conducted in Ivory Coast and Cameroon, the article proposes Sylvain RAFFLEGEAU2 an analysis of the family agriculture situation in the oil palm commodity chain, repositioning it within a context of sustainable development issues. At a time when production standards are back on the agenda 1 CIRAD, UR Normes et régulation des marchés, with so-called ″voluntary commitment″ processes, through ″private standards″ to enable sustainable Montpellier, France agriculture, the authors examines the outcome of the previous phases of family agriculture standardi- 2 CIRAD, UR Performance des systèmes de zation by Estates and State-owned companies between 1960 and 1990, followed by privatization of the culture de plantes pérennes / IRAD, La Dibamba, sector. The article shows that family agriculture possesses its own rationality which needs to be taken Cameroon into consideration, if the stakes, over and above guaranteeing ″sustainable oil″, are indeed those of the impact that the palm oil sector has on ″sustainable development″. Starting from that point, the question is no longer: how can family agriculture take on board technical standards designed for other production models, but how can family agriculture take part in the compromises negotiated in the commodity chain in such a way that its logics and operating methods are considered
    [Show full text]
  • “Automated Rubber Tapping Machine”
    VISVESVARAYA TECHNOLOGICAL UNIVERSITY Jnana Sangama, Belgavi, Karnataka – 590 014 Project Report on “AUTOMATED RUBBER TAPPING MACHINE” Submitted in partial fulfillment of the requirement for the award of degree of BACHELOR OF ENGINEERING IN MECHANICAL ENGINEERING SUBMITTED BY SAGAR K 1NH14ME109 SREESH S KRISHNA 1NH14ME123 SUSHREETH PUTHRAN 1NH14ME128 SYED ANIES 1NH14ME130 Under the guidance of Mr. SUJEETH SWAMI Asst. Professor, Department of Mechanical Engineering, DEPARTMENT OF MECHANICAL ENGINEERING NEW HORIZON COLLEGE OF ENGINEERING BANGALORE-560 103 2017-18 DEPARTMENT OF MECHANICAL ENGINEERING CERTIFICATE It is certified that the project entitled “AUTOMATED RUBBER TAPPING MACHINE” is work carried out by Sagar K, Sreesh S Krishna,Sushreeth Puthran,Syed Anies, a bonafide student of New Horizon College of Engineering, Bangalore in partial fulfillment for the award of degree of Bachelor of Engineering in Mechanical Engineering of the Visvesvaraya Technological University, Belgaum during the year 2017-18. It is further certified that all corrections/suggestions indicated for internal assessment has been incorporated in the report deposited in the departmental library. The Project Report has been approved as it satisfies the academic requirements in respect of Project Work prescribed for the said degree. Signature of the guide Signature of the HOD Signature of the Principal Mr. SUJEETH SWAMI Dr. M S GANESHA PRASAD Dr. MANJUNATHA Asst. Professor Dean-Student Affairs & HOD-ME, Principal Dept. of Mechanical Engineering, Dept. of Mechanical Engineering, NHCE NHCE NHCE Name(s) of the student: University Seat Number(s): 1. SAGAR K 1NH14ME109 2. SREESH S KRISHNA 1NH14ME123 3. SUSHREETH PUTHRAN 1NH14ME128 4. SYED ANIES 1NH14ME130 External Examiner(s) Signature with Date 1.
    [Show full text]
  • What Is Natural Rubber Latex?
    latex allergy latexallergy What is natural rubber latex? NATURAL RUBBER IS A HIGHLY PROCESSED PLANT PRODUCT FROM THE LATEX OF THE COMMERCIAL RUBBER TREE. ABOUT 90% IS PROCESSED FOR MANUFACTURE OF EXTRUDED RUBBER PRODUCTS, MOULDED GOODS OR PNEUMATIC TYRES. The remaining 10% is used for the manufacture of rubber gloves and other dipped products, such as condoms, swimming caps and balloons. Although there are traces of latex allergen in tyre dust, dipped rubber products are responsible for most allergic reactions. What is a latex allergy? A latex allergy is an allergy to products made from natural rubber latex. The allergy-causing particles become attached to the cornstarch powder in gloves, swimming caps and balloons. Moisture from the skin can enhance this process. The particles can become airborne and inhaled when products are used. Sensitized individuals react to these particles. Milk protein is sometimes mixed in with latex in surgical and household gloves and this can be the cause of reactions in milk allergic individuals. Who is at risk of a latex allergy? Adults and children most at risk are those with other allergies such as eczema, asthma and hayfever.Those who have regular contact with natural rubber latex such as powdered gloves or catheters are the most likely to become sensitized. What are the symptoms of a latex allergy? The reactions can be mild and cause rashes on the hands, itchy swollen eyes, runny nose and sneezing.An asthma attack can occur. latex allergy It is also possible to have a severe life threatening allergic reaction (anaphylactic shock).This is occurs when the latex particles come in contact with mucous membranes.
    [Show full text]