Chemieunterricht in Serbien Zwischen Gestern Und Heute

Total Page:16

File Type:pdf, Size:1020Kb

Chemieunterricht in Serbien Zwischen Gestern Und Heute CHEMIEUNTERRICHT IN SERBIEN ZWISCHEN GESTERN UND HEUTE DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena von Milan D. Stojkovic, geboren am 22.06.1977, in Nis, Serbien (Jugoslawien) Gutachter: 1. Prof. Dr. Volker Woest, Arbeitsgruppe Chemiedidaktik 2. Prof. Dr. Andreas Kometz, Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der Verteidigung: 28.01.2015 2 4 Inhaltsverzeichnis Inhaltverzeichnis Abbildungsverzeichnis ......................................................................................................... 8 Tabellenverzeichnis ............................................................................................................ 10 Archivdokumente ............................................................................................................... 13 Einleitung ............................................................................................................................ 14 TEIL 1: Die Anfänge .......................................................................................................... 18 1.1 Die Entwicklung des Schulwesens in Serbien zwischen dem 12. und 17. Jahrhundert .................................................................................................................................... 18 1.1.1 Die Chemie im Mittelalter in Serbien (12. – 17. Jahrhundert).......................... 18 1.1.2 Die Schulen im Mittelalter in Serbien ............................................................... 22 1.2 Das Schulsystem im 18. und frühen 19. Jahrhundert .................................................. 24 1.3 Die Organisation der Schulen ..................................................................................... 29 1.4 Die Entstehung der naturwissenschaftlichen Schulfächer in Serbien im 19. Jahrhundert ................................................................................................................. 42 1.5 Zusammenfasung ........................................................................................................ 46 TEIL 2: Aufbruch in die Moderne – das 19. Jahrhundert ............................................. 49 2.1 Die Entwicklung des Chemieunterrichts in Serbien im 19. Jahrhundert .................... 49 2.1.1 Die Chemie, der Chemieunterricht, Chemielehrprogramme und -lehrbücher (1853 − 1881) .................................................................................................... 49 2.1.2 Die Chemie, der Chemieunterricht, Chemielehrprogramme und -lehrbücher (1881 − 1914) .................................................................................................... 64 2.2 Die Begründer der modernen Chemie in Serbien ....................................................... 70 2.2.1 Mihajlo Raskovic – Leben und Werk ................................................................ 71 2.2.2 Sima Lozanic – Leben und Werk ...................................................................... 77 2.2.3 Marko Leko – Leben und Werk ...................................................................... 103 2.3 Zusammenfassung ..................................................................................................... 114 2.4 Moderne Chemieausbildung – Aufbau von Chemielaboren ..................................... 115 2.5 Zusammnefassung ..................................................................................................... 121 TEIL 3: Zwischen gestern und heute – das 20. Jahrhundert ....................................... 123 3.1 Die Serbische Chemische Gesellschaft ..................................................................... 123 5 Inhaltsverzeichnis 3.2 Der Chemieunterricht in Serbien und Ex-Jugoslawien im 20. Jahrhundert ............. 130 3.2.1 Die Schulung und Ausbildung im Ausland während des Ersten Weltkriegs (1914 – 1918) .................................................................................................. 130 3.2.2 Die verkürzte Ausbildung (1918 – 1920) ........................................................ 133 3.2.3 Der Chemieunterricht zwischen den beiden Weltkriegen (1920 – 1941) ....... 137 3.2.4 Der Chemieunterricht nach dem Zweiten Weltkriegs (1945 – 1991) ............. 144 3.2.5 Der Chemieunterricht in den 90er-Jahren des 20. Jahrhunderts ..................... 156 3.3 Experimenteller Unterricht und Ausstattung der chemischen Kabinette .................. 161 3.3.1 Der experimentelle Unterricht ........................................................................ 162 3.3.2 Die ersten Normen (1948 – 1950) .................................................................. 165 3.3.3 Normen (Standards) für Schulgebäude, Möbel und Unterrichtsmaterialien für die Mittelschule (1969 – 1987) ....................................................................... 170 3.3.4 Die Normen für den naturwissenschaftlichen Unterricht – 90er-Jahren des 20. Jahrhunderts .................................................................................................... 173 3.4 Die Nachfolger der Begründer der modernen Chemie im 20. Jahrhundert .............. 175 3.4.1 Milivoje S. Lozanic ......................................................................................... 175 3.4.2 Vukic Micovic ................................................................................................. 176 3.4.3 Aleksandar Leko ............................................................................................. 178 3.4.4 Pavle Savic ...................................................................................................... 179 3.4.5 Aleksandar Despic .......................................................................................... 182 3.4.6 Ihre Verdienste zur Entwicklung der Chemie im Ex-Jugoslawien ................. 183 3.5 Zusammenfasung ...................................................................................................... 185 TEIL 4: Der Chemieunterricht heute ............................................................................ 187 4.1 Die Situation des Chemieunterrichts in Serbien heute ............................................. 187 4.1.1 Die Chemielehrpläne und-programme in den Grund- und Mittelschulen ...... 187 4.1.2 Das Schulsystem in der Republik Serbien ...................................................... 201 4.1.3 Die Schulgesetze heute ................................................................................... 212 4.1.4 Die Chemielehrerausbildung .......................................................................... 213 4.1.5 Die Ausstattung der Schulen, Schul- und Schülerzeitungen und Lehrbücher 215 4.1.6 Die aktuellen Probleme des Chemieunterrichts in Serbien ............................. 228 4.1.7 Die Zukunft des naturwissenschaftlichen Unterrichts (Chemieunterricht) – mögliche Entwicklungswege und weitere Modernisierung ........................... 236 4.2 Zusammenfassung .................................................................................................... 238 5 Zusammenfassung und Ausblick .............................................................................. 240 Literaturverzeichnis ............................................................................................................ I 6 Inhaltsverzeichnis TEIL 5: Anhang .................................................................................................................... 1 1. Zusätzliche Information ..................................................................................................... 1 2. Archivdokumente und Lehrprogramme ........................................................................... 13 3. Belege............................................................................................................................... 38 Selbständigkeitserklärung ................................................................................................. 57 Danksagung ........................................................................................................................ 58 Lebenslauf ........................................................................................................................... 60 7 Abbildungsverzeichnis Abbildungsverzeichnis Abb. 1: Die serbische Münze aus dem 14. Jahrhundert (Dinar von Kaiser Stefan Dusan, 1308 – 1355) ..................................................................................................... 19 Abb. 2: Der medizinische Kodex des Klosters Hilandar (Ende XV. bzw. Anfang XIV. Jahrhundert) – Anweisungen zur Herstellung von Medikamenten ................... 20 Abb. 3: Das Fresko im Kloster Sopocani (13./14. Jahrhundert; das erste serbische Krankenhaus) .................................................................................................... 22 Abb. 4: Serbien in den Grenzen von heute mit den Ausbildungszentren des 19. Jahrhunderts ...................................................................................................... 23 Abb. 5: Das Gymnasium in Sremski Karlovci (18. – 19. Jahrhundert) ......................... 25 Abb. 6: Die erste Seite des Schulgesetzes für die „Kleinen“ orthodoxen Schulen in der Region Banat, Woiwodin, Österreich-Ungarn (1776) ...................................... 25 Abb. 7: Das Lehrbuch der Physik (1801) ...................................................................... 27 Abb. 8: Prof. Dr. A. I. Stojkovic ...................................................................................
Recommended publications
  • Pinacol Rearrangement
    Pinacol rearrangement The pinacol–pinacolone rearrangement is a method for converting a 1,2-diol to a carbonyl compound in organic chemistry. The 1,2-rearrangement takes place under acidic conditions. The name of the rearrangement reaction comes from the rearrangement of pinacol to pinacolone.[1] This reaction was first described by Wilhelm Rudolph Fittig in 1860 of the famed Fittig reaction involving coupling of 2 aryl halides in presence of sodium metal in dry ethereal solution.[2] Contents Mechanism Example of asymmetrical pinacol rearrangement Stereochemistry of the rearrangement History See also References Mechanism In the course of this organic reaction, protonation of one of the –OH groups occurs and a carbocation is formed. If the – OH groups are not alike (i.e. the pinacol is asymmetrical), then the one which creates a more stable carbocation participates in the reaction. Subsequently, an alkyl group from the adjacent carbon migrates to the carbocation center. The driving force for this rearrangement step is believed to be the relative stability of the resultant oxonium ion. Although the initial carbocation is already tertiary, the oxygen can stabilize the positive charge much more favorably due to the complete octet configuration at all centers. It can also be seen as the -OH's lone pairs pushing an alkyl group off as seen in the asymmetrical pinacol example. The migration of alkyl groups in this reaction occurs in accordance with their usual migratory aptitude, i.e.hydride > phenyl carbanion > tertiary carbanion (if formed by migration) > secondary carbanion (if formed by migration) > methyl carbanion. {Why carbanion? Because every migratory group leaves by taking electron pair with it.} The conclusion is that the group which stabilizes the carbocation more effectively is migrated.
    [Show full text]
  • Pinacol Rearrangement
    Pinacol rearrangement The pinacol–pinacolone rearrangement is a method for converting a 1,2-diol to a carbonyl compound in organic chemistry. The 1,2-rearrangement takes place under acidic conditions. The name of the rearrangement reaction comes from the rearrangement of pinacol to pinacolone.[1] This reaction was first described by Wilhelm Rudolph Fittig in 1860 of the famed Fittig reaction involving coupling of 2 aryl halides in presence of sodium metal in dry ethereal solution.[2] Contents Mechanism Stereochemistry of the rearrangement History See also References Mechanism In the course of this organic reaction, protonation of one of the –OH groups occurs and a carbocation is formed. If both the –OH groups are not alike, then the one which yields a more stable carbocation participates in the reaction. Subsequently, an alkyl group from the adjacent carbon migrates to the carbocation center. The driving force for this rearrangement step is believed to be the relative stability of the resultant oxonium ion, which has complete octet configuration at all centers (as opposed to the preceding carbocation). The migration of alkyl groups in this reaction occurs in accordance with their usual migratory aptitude, i.e.hydride > phenyl carbanion > tertiary carbanion (if formed by migration) > secondary carbanion (if formed by migration) > methyl carbanion . {Why Carbanion? Because every migratory group leaves by taking electron pair with it.} The conclusion is that the group which stabilizes the carbocation more effectively is migrated. Stereochemistry of the rearrangement In cyclic systems, the reaction presents more features of interest. In these reactions, the stereochemistry of the diol plays a crucial role in deciding the major product.
    [Show full text]
  • El Reactivo De Tollens: De La Identificación De Aldehídos a Su Uso En Nanotecnología
    173ENSEÑANZA EN EL AULA EL REACTIVO DE TOLLENS: DE LA IDENTIFICACIÓN DE ALDEHÍDOS A SU USO EN NANOTECNOLOGÍA. ASPECTOS HISTÓRICOS Y APLICACIONES DIDÁCTICAS El reactivo de Tollens: de la identifi cación de aldehídos a su uso en nanotecnología. Aspectos históricos y aplicaciones didácticas Gabriel Pinto, Manuela Martín, José María Hernández, María Teresa Martín Resumen: Se recoge una reseña biográfi ca del químico alemán Bernhard Tollens (1841-1918), donde se resalta su labor en el estudio de la estructura y el análisis de compuestos orgánicos. Se destaca también su ejemplar implicación en tareas docentes sobre química agrícola con estudiantes de muy diversos países. Se describen las características del reactivo que inventó, que lleva su nombre, y que al reaccionar con aldehídos proporciona una de las experiencias más vistosas de las prácticas de Química Orgánica de alumnos universitarios: la formación de un “espejo de plata”. Finalmente, se exponen ideas sobre la posible utilización (en investigación y en actividades educativas) del reactivo de Tollens para la obtención y caracterización de nanopartículas de plata, con importancia en distintas aplicaciones. Palabras clave: Biografía de Bernhard Tollens, Identifi cación de aldehídos, Nanopartículas de plata, Nanotecnología, Reactivo de Tollens. Abstract: A short biography of the German chemist Bernhard Tollens (1841-1918) is included, which highlights his works in the study of the structure and analysis of organic compounds. His exemplary involvement in teaching activities on agricultural chemistry with students from many different countries is also emphasized. The characteristics of the reagent invented by him, known by his name, are described. The Tollens’ reagent reacts with aldehydes, providing one of the most attractive experience lab works of undergraduate students of Organic Che- mistry: the formation of a “silver mirror”.
    [Show full text]
  • Naslovna Prazna.Fm
    HEMIJSKI YU ISSN04406826 god. 45 UDC 54.001.93 PREGLED br. 6 (decembar) CHEMICAL REVIEW HEMIJSKI PREGLED Editor-in-Chief Volume 45 RATKO M. JANKOV NUMBER 6 Deputy Editor-in-Chief (December) DRAGICA ÅIÅOVIÕ Honorary Editor STANIMIR R. ARSENIJEVI] Publisher broj 6 SERBIAN CHEMICAL SOCIETY Godi{te 45. decembar Belgrade/Yugoslavia, Karnegijeva 4 Izdaje S A D R @ A J SRPSKO HEMIJSKO DRU[TVO Telefon 3370-467 ØLANCI KATARINA MILOVANOVIÕ, NATALIJA Karnegijeva 4 POLOVIÕ KATARINA MILOVANOVIÕ, NATALIJA POLOVIÕ izlazi dvomese~no UBIKVITINOM POSREDOVANA DEGRADACIJA ODGOVORNI I GLAVNI UREDNIK UNUTARÕELIJSKIH PROTEINA Ratko M. Jankov UBIQUITIN MEDIATED DEGRADATION OF INTRACELLULAR PROTEINS _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 126 POMOÕNIK ODGOVORNOG I GLAVNOG SNEŸANA BOJOVIÕ UREDNIKA SNEŸANA BOJOVIÕ Dragica Åiåoviõ STRUØNI ISPIT IZ HEMIJE IZ 1884. GODINE Izdavawe ~asopisa „HEMIJSKI PREGLED” po- PROFESSORIAL EXAM IN CHEMISTRY IN 1884 _ _ _ _ _ 131 ma‘u: Tehnolo{ko-metalur{ki fakultet, Hemij- DRAGICA ÅIÅOVIÕ ski fakultet i Fakultet za fizi~ku hemiju u DRAGICA ÅIÅOVIÕ Beogradu. ZAÅTO je HEMIJA deo OSNOVNOG/OBAVEZNOG OBRAZOVAÑA URE\IVA^KI ODBOR WHY IS CHEMISTRY A PART OF BASIC/COMPULSORY EDUCATION _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 134 Nikola Blagojeviõ, Ivan Gutman, Sneÿana Za- riõ, Jovan Jovanoviõ, Slavko Kevreåan, Dragan Markoviõ, Rado Markoviõ, Vladimir Pavloviõ, VESTI IZ ÅKOLA Slobodan Ribnikar, Radomir Saiøiõ, Ÿivorad OLIVERA STANOJEVIÕ Øekoviõ (predsednik). Olivera Stanojeviõ SCENARIO ØASA: POVEZANOST OKSIDA, Godi{wa pretplata za studente i uøenike koji nisu KISELINA, HIDROKSIDA i SOLI ølanovi SHD 400 din, za pojedince koji nisu øl- A SCENARIO FOR ELABORATION anovi SHD 800 din, za radne organizacije 1100 din., OF THE THEME: THE CONNECTIONS AMONG za inostranstvo 30 US $.
    [Show full text]
  • Lactone - Wikipedia
    3/28/2021 Lactone - Wikipedia Lactone Lactones are cyclic carboxylic esters, containing a 1-oxacycloalkan-2-one structure (−C(=O)−O−), or analogues having unsaturation or heteroatoms replacing one or more carbon atoms of the ring.[1] Lactones are formed by intramolecular esterification of the corresponding hydroxycarboxylic acids, which takes place spontaneously when the ring that is formed is five- or six-membered. Lactones with three- or four-membered rings (α- lactones and β-lactones) are very reactive, making their isolation difficult. Special methods are normally required for the laboratory synthesis of small-ring lactones as well as those that contain rings larger than six-membered.[2] Contents Nomenclature Etymology Natural sources Synthesis Reactions Hydrolysis Reduction Aminolysis Polymerization Michael reaction Uses Flavors and fragrances Prebiotic Chemistry Plastics Examples dilactones See also References & notes Nomenclature Lactones are usually named according to the precursor acid molecule (aceto = 2 carbon atoms, propio = 3, butyro = 4, valero = 5, capro = 6, etc.), with a -lactone suffix and a Greek letter prefix that specifies the number of carbon atoms in the heterocycle — that is, the distance between the relevant -OH and the -COOH groups along said backbone. The first carbon atom after the carbon in the -COOH group on the parent compound is labelled α, the second will be labeled β, and so forth. Therefore, the prefixes also indicate Lactone nomenclature: α- the size of the lactone ring: α-lactone = 3-membered ring, β-lactone = 4-membered, γ- acetolactone, β-propiolactone, γ- lactone = 5-membered, etc. Macrocyclic lactones are known as macrolactones.[3] butyrolactone, and δ- valerolactone The other suffix used to denote a lactone is -olide, used in substance class names like butenolide, macrolide, cardenolide or bufadienolide.
    [Show full text]
  • An International Journal of the History of Chemistry Substantia an International Journal of the History of Chemistry
    2532-3997 March 2020 March Vol. 4 - n. 1 2020 Vol. 4 – n. 1 4 – n. Vol. SubstantiaAn International Journal of the History of Chemistry Substantia An International Journal of the History of Chemistry FIRENZE PRESSUNIVERSITY Substantia An International Journal of the History of Chemistry Vol. 4, n. 1 - 2020 Firenze University Press Substantia. An International Journal of the History of Chemistry Published by Firenze University Press – University of Florence, Italy Via Cittadella, 7 - 50144 Florence - Italy http://www.fupress.com/substantia Direttore Responsabile: Romeo Perrotta, University of Florence, Italy Cover image: polarized light micrograph (magnification 600x) of crystals in quenched steel in a matrix of austenite, by Harlan H. Baker, Ames, Iowa, USA. Courtesy of Nikon Small World (7th Place, 1977 Photomicrography Competition, https://www.nikonsmallworld.com). Copyright © 2020 Authors. The authors retain all rights to the original work without any restriction. Open Access. This issue is distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY-4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided you give ap- propriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication (CC0 1.0) waiver applies to the data made available in this issue, unless otherwise stated. Substantia is honoured to declare the patronage of: With the financial support of: No walls. Just bridges Substantia is a peer-reviewed, academic international journal dedicated to traditional perspectives as well as innovative and synergistic implications of history and philosophy of Chemistry.
    [Show full text]
  • Jovan Cvijić
    POŠTOVANI ČITAOČE! SIGNATURA jeste redni broj pod kojim je knjiga zavedena u biblioteci. Ukoliko ste zainteresovani za neku knjigu znajte: možete je najbrže naći pomoću signature. U koloni "AUTOR (UREDNIK)": postojanje simbola "; ;" u polju bez ikakvog podatka o autoru, govori da nemamo istaknute podatke o autoru za to delo (pogledajte kolonu "PODATAK O ODGOVORNOSTI"). PODATAK O SIGNATURA AUTOR (UREDNIK) NASLOV DELA ODGOVORNOSTI (AUTOR) Deke McClelland; preveo 5002 McCLELLAND, Deke; ; Photoshop za neupućene Gorazd Herman 4992 ; ; Lečebnite mineralni vodi v Blgarija : nahodišca i lečeben efekt 4998 Lazarević, Radenko; ; Vaganska pećina Radenko Lazarević 5001 ; ; Geography of Societal Transformation in the Czech Republic Martin Hampl; urednik Hranislav Rakić; Nikola 5000 RAKIĆ, Hranislav; ; Narodna vlast u leskovačkom kraju : 1941-1945 P.Ilić 4997 ; ; Manastir Hilandar Gojko Subotić; priređivač 4994 SIMIĆ, Vasilije; ; Plana : srednjevekovno naselje rudarske privrede Vasilije Simić PAVIĆEVIĆ, Nikola; Antonović, Gligorije; Nikola Pavićević, Antonović Nikodijević, Viden; Gligorije, Nikodijević Viden, 4993 Tanasijević, Đorđe; ; Zemljišta Starog Vlaha i Raške Tanasijević Đorđe A 11 ; ; Istorijski atlas Dragutin Ranković; urednik 4707 ; ; Život i delo srpskih naučnika urednik Miloje Sarić 4707 ; ; Život i delo srpskih naučnika urednik Miloje Sarić 4707 ; ; Život i delo srpskih naučnika urednik Miloje Sarić 4707 ; ; Život i delo srpskih naučnika urednik Miloje Sarić Jugoslovenski model socijalističke privrede (tržišnog socijalizma): teorijska zasnovanost i mogućnost 4996 ; ; operacionalizacije; urednik Nikola Čobeljić Problemi migracije naučnih i tehničkih kadrova; urednik Nikola 4995 ; ; Čobeljić 4999 ; ; Šumadija u prošlosti i sadašnjosti; uredio Dragoslav P.Đorđević A 12 PETROVIĆ, Miodrag N.; ; Atlas karata seizmičkog hazarda Republike Srbije Miodrag N.Petrović Prirodna baština pod bombama = Natural Heritage Under 5003 ; ; Bombs Violeta Orlović; urednik 885 ABELLA, Miklos; ; CSEHSLOVAKIA GAZDASGI FOLDRAJZA.
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis [001] Bull. Soc. Chim. de Paris 1865, #01, p. 98 - 110 (via {BNF ) August Kekulé (von Stradonitz) http://gallica.bnf.fr/ark:/12148/bpt6k281952v/f102.image.r= (kostenfrei zugänglich) [002] Ann. 1866, #137-2, p. 129 - 196, besonders S. 158 August Kekulé (von Stradonitz) (und unter Mithilfe von Carl Andreas Glaser) "Untersuchungen über aromatische Verbindungen" DOI: 10.1002/jlac.18661370202 [003] Liebigs Ann. Chem. 1872, #162-1, p. 77 - 124 August Kekulé "Ueber einige Condensationsproducte des Aldehyds" DOI: 10.1002/jlac.18721620110 [004] Zeits. f. Phy. 1931, #70_3-4, p. 204 - 286 Erich Hückel "Quantentheoretische Beiträge zum Benzolproblem - I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen" DOI: 10.1007/BF01339530 [005] Zeits. f. Phy. 1931, #72_5-6, p. 310 - 337 Erich Hückel "Quantentheoretische Beitrage zum Benzolproblem - II. Quantentheorie der induzierten Polaritäten" DOI: 10.1007/BF01341953 [006] ACIE 2007, #46-41, p. 7869 - 7873 (und Inside Cover der Ausgabe) Marcin Stępień, Lechosław Latos-Grażyński, Natasza Sprutta, Paulina Chwalisz and Ludmiła Szterenberg "Expanded Porphyrin with a Split Personality: A Hückel–Möbius Aromaticity Switch" DOI: 10.1002/anie.200700555 (Angew. 2007, #119-41, p. 8015 - 8019; dito, dito; DOI: 10.1002/ange.200700555) [007] Glauberus Concentratus Cap. XXIX, S. 181 (u.a. via MDZ / BSB) gedruckt 1715 in Leipzig Johann Rudolph Glauber "Spiritus von Stein-Kohlen" ( http://reader.digitale-sammlungen.de/de/fs1/object/display/bsb10226683_00187.html ) [008] Furni Novi Philosophici (Band 2 / Ander Theil) Amsterdam 1650 (Furni Novi Philosophici Oder Beschreibung einer New-erfundenen Distillir-Kunst) Johann Rudolph Glauber S. 71 in der Auflage von 1650, Amsterdam; S. 85 in der Auflage von 1661, Amsterdam (cap.
    [Show full text]
  • Wurtz–Fittig Reaction
    Wurtz–Fittig reaction The Wurtz–Fittig reaction is the chemical reaction of aryl halides Wurtz–Fittig reaction with alkyl halides and sodium metal in the presence of dry ether to Named after Charles give substituted aromatic compounds.[1] Charles Adolphe Wurtz Adolphe Wurtz reported what is now known as the Wurtz reaction in 1855,[2][3] involving the formation of a new carbon-carbon bond by coupling Wilhelm two alkyl halides.[4][5] Work by Wilhelm Rudolph Fittig in the 1860s Rudolph Fittig extended the approach to the coupling of an alkyl halide with an aryl Reaction type Coupling [6][7] halide. This modification of the Wurtz reaction is considered a reaction separate process and is named for both scientists.[1] Identifiers Organic wurtz-fittig- Chemistry Portal reaction The reaction works best for forming asymmetrical products if the halide reactants are somehow separate in their relative chemical reactivities. One way to accomplish this is to form the reactants with halogens of different periods. Typically the alkyl halide is made more reactive than the aryl halide, increasing the probability that the alkyl halide will form the organosodium bond first and thus act more effectively as a nucleophile toward the aryl halide.[8] Typically the reaction is used for the alkylation of aryl halides; however, with the use of ultrasound the reaction can also be made useful for the production of biphenyl compounds.[9] Contents Mechanism Use of other metals Applications See also References Mechanism There are two approaches to describing the mechanism of the Wurtz–Fittig reaction.[10][11] The first involves the sodium-mediated formation of both alkyl and aryl radicals.
    [Show full text]
  • Secondary-School Chemistry Textbooks in the 19Th Century VESNA D
    J. Serb. Chem. Soc. 80 (10) 1321–1338 (2015) UDC 54(075.3)’’18’’:37(497.11) JSCS–4800 Original scientific paper Secondary-school chemistry textbooks in the 19th century VESNA D. MILANOVIC1#, DRAGICA D. TRIVIC2*# and BILJANA I. TOMASEVIC2# 1Innovation Centre of the Faculty of Chemistry, Studentski trg 12–16, Belgrade, Serbia and 2University of Belgrade, Faculty of Chemistry, Studentski trg 12–16, Belgrade, Serbia (Received 26 September 2014, revised 30 May, accepted 8 June 2015) Abstract: The teaching of chemistry in Serbia as a separate subject dates from 1874. The first secondary-school chemistry textbooks appeared in the second half of the 19th century. The aim of this study was to gain insight, by analysing two secondary-school chemistry textbooks, written by Sima Lozanić (1895) and Mita Petrović (1892), into the amount of scientific knowledge from the sphere of chemistry was presented to secondary school students in Serbia in the second half of the 19th century, and the principles textbooks written at the time were based on. Within the framework of the conducted research, we defined the criteria for assessing the quality of secondary-school chemistry textbooks were defined in the context of the time they were written. The most important difference found between the two textbooks under analysis pertained to the way in which their contents were organised. Sima Lozanić’s textbook is char- acterised by a greater degree of systematicness when it comes to the manner of presenting its contents and consistency of approach throughout the book. In both textbooks, the authors’ attempts to link chemistry-related subjects to everyday life, and to indicate the practical significance of various substances and their toxicity can be perceived.
    [Show full text]
  • 333025 1 En Bookbackmatter 625..688
    Appendix Pedigree of Ostwald Family © Springer International Publishing AG 2017 625 R.S. Jack and F. Scholz (eds.), Wilhelm Ostwald, Springer Biographies, DOI 10.1007/978-3-319-46955-3 Ostwald, Wilhelm Goƪried (1824 – 1903). Cooper. Ostwald, Elisabeth (neé Leukel) (1832 – 1920) Father: GoriedOstwald (1785 – 1860). Cooper in Moscow. Mother: Johanna Chrisne Leukel (neé Braun) (1808 – 1869) Father: Johann Heinrich Leukel (1804 – 1862). Master baker. Ostwald, Eugen Ostwald, Goƪried Riga 23 October 1851 – Riga 12 February 1932. Professor of Forestry in Riga. 1855 – 1918. Entrepreneur possessing an iron foundry and machine factory Son: Heinrich Ostwald (Riga 27 July 1877 – Eberswalde 23 March 1950). Professor of Forestry in Eberswalde and Berlin Ostwald, Friedrich Wilhelm Ostwald, Flora Helene Mathilde, neé von Reyher Riga 2 September 1853 – Leipzig 4 April 1932. Riga 14 January 1854 – Großbothen 2 April 1946. Teacher Father: Carl Christoph von Reyher (Riga 22 June 1817 – Riga 1 January 1890). Courtyard councillor Mother: Maria Helena Mathilde von Reyher (neé Ulmann) (25 November 1822 – 6 June 1904). Teacher Brother: Carl Dietrich Christoph von Reyher (Riga, October 23 1846 – St. Petersburg 11 January 1891). Surgeon Brother: Carl Gustav Paul von Reyher (Riga 30 May 1848 – ?) Ostwald, Grete (Margarete) (Riga 13 February 1882 – Großbothen 1 August 1960). She studied from 1905-1907 at „Großherzoglich- Brother: Carl Max Christopher von Reyher (Riga 15 March 1850 – ?) Sächsischen Kunstschule“ (Art Academy) in Weimar. Since 1918 she suffered from severe arthris. Since 1932 she managed the Ostwald Brother: Carl Wilhelm Emil von Reyher (Riga 22 January 1852 – ?) property “Haus Energie” in Großbothen, where she founded the Wilhelm Ostwald Archive.
    [Show full text]
  • Encyclopedia of Scientific Principles, Laws, and Theories
    Encyclopedia of Scientific Principles, Laws, and Theories Volume 2: L–Z Robert E. Krebs Illustrations by Rae Dejur Library of Congress Cataloging-in-Publication Data Krebs, Robert E., 1922– Encyclopedia of scientific principles, laws, and theories / Robert E. Krebs ; illustrations by Rae Dejur. p. cm. Includes bibliographical references and index. ISBN: 978-0-313-34005-5 (set : alk. paper) ISBN: 978-0-313-34006-2 (vol. 1 : alk. paper) ISBN: 978-0-313-34007-9 (vol. 2 : alk. paper) 1. Science—Encyclopedias. 2. Science—History—Encyclopedias. 3. Physical laws— Encyclopedias. I. Title. Q121.K74 2008 503—dc22 2008002345 British Library Cataloguing in Publication Data is available. Copyright C 2008 by Robert E. Krebs All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2008002345 ISBN: 978-0-313-34005-5 (set) 978-0-313-34006-2 (vol. 1) 978-0-313-34007-9 (vol. 2) First published in 2008 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 L LAGRANGE’S MATHEMATICAL THEOREMS: Mathematics: Comte Joseph-Louis Lagrange (1736–1813), France. Lagrange’s theory of algebraic equations: Cubic and quartic equations can be solved algebraically without using geometry. Lagrange was able to solve cubic and quartic (fourth power) equations without the aid of geometry, but not fifth-degree (quintic) equations.
    [Show full text]