Single-Nucleotide Polymorphism-Based Differentiation and Drug Resistance Detection in Mycobacterium Tuberculosis from Isolates Or Directly from Sputum C

Total Page:16

File Type:pdf, Size:1020Kb

Single-Nucleotide Polymorphism-Based Differentiation and Drug Resistance Detection in Mycobacterium Tuberculosis from Isolates Or Directly from Sputum C CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector ORIGINAL ARTICLE 10.1111/j.1469-0691.2004.01034.x Single-nucleotide polymorphism-based differentiation and drug resistance detection in Mycobacterium tuberculosis from isolates or directly from sputum C. Arnold1, L. Westland1,2, G. Mowat3, A. Underwood1, J. Magee3 and S. Gharbia1 1Genomics, Proteomics and Bioinformatics Unit, Centre for Infections, Health Protection Agency, London, UK, 2Hogeschool van Utrecht, Faculteit Natuur & Techniek, Institute of Life Sciences and Chemistry, Utrecht, The Netherlands and 3Regional Centre for Mycobacteriology, Health Protection Agency Newcastle Laboratory, Newcastle, UK ABSTRACT The rapid technique of pyrosequencing was used to examine 123 samples (in the form of DNA extracts and inactivated sputum) of Mycobacterium spp. Of 99 Mycobacterium tuberculosis samples investigated for single-nucleotide polymorphisms (SNPs), 68% of isoniazid-resistant isolates analysed had an AGC fi ACC mutation in katG at codon 315, resulting in the Ser fi Thr substitution associated previously with isoniazid resistance. Of the rifampicin-resistant isolates, 92% showed SNPs in rpoB at codons 516, 531 or 526. Inactivated sputum samples and DNA extracts could both be analysed by pyrosequencing, and the method was able to differentiate rapidly between the closely related species of the M. tuberculosis complex (M. tuberculosis, Mycobacterium bovis, Mycobacterium africanum, Mycobacterium canetti and Mycobacterium microti), except between M. tuberculosis, M. canetti and one of two M. africanum strains. This low-cost, high-throughput technique could be used as a rapid screen for drug resistance and as a replacement for some of the time-consuming tests used currently for species identification. Keywords Antibiotic susceptibility testing, identification, Mycobacterium tuberculosis complex, pyrosequencing, resistance Original Submission: 5 April 2004; Revised Submission: 2 September 2004; Accepted: 11 September 2004 Clin Microbiol Infect 2005; 11: 122–130 amikacin, and fluoroquinolones such as ofloxacin INTRODUCTION and ciprofloxacin, are used as second-line agents. It has been estimated that one-third of the global Drug resistance in M. tuberculosis occurs fol- population is infected with Mycobacterium tuber- lowing spontaneous mutation in target genes culosis, with c. 9 million cases of active tubercu- such as katG, rpoB and inhA [3]. The mechanisms losis (TB) and > 2 million deaths occurring each and the dominant mutations resulting in the drug year [1,2]. These numbers are increasing, as is the resistance profiles have been well-documented number of individuals infected with strains resist- [3–5]. Isoniazid resistance is often associated with ant to first-line anti-TB drugs. In the UK, the mutation in a gene encoding catalase-peroxidase current first-line treatment is a 2-month course of (katG), most frequently a Ser315Thr mutation [6]. isoniazid, rifampicin and pyrazinamide, often Rifampicin inhibits transcription by binding to with the addition of ethambutol, followed by the RNA polymerase b-subunit, encoded by the isoniazid and rifampicin for a further 4–6 months. rpoB gene [7], with resistance resulting from Aminoglycosides such as streptomycin and mutations in the rifampicin resistance-determin- ing region of rpoB, an 81-bp region encoding amino-acids 507–533. The most common (70%) Corresponding author and reprint requests: C. Arnold, mutations are at codons 526 and 531, and Genomics, Proteomics and Bioinformatics Unit, Health Pro- tection Agency, 61 Colindale Avenue, London NW9 5HT, UK are associated with high levels of resist- E-mail: [email protected] ance (> 100 mg ⁄ L). Less frequent mutations, Ó 2004 Copyright by the European Society of Clinical Microbiology and Infectious Diseases Arnold et al. Single-nucleotide polymorphisms in M. tuberculosis 123 particularly in codon 516, are associated with members of the genus Mycobacterium, and spe- lower levels of resistance. The fluoroquinolones cifically the M. tuberculosis complex (MTBC), were considered to be alternative drugs, as they using a composite assay of these three genes. prevent transcription and cell division by sup- As public health intervention strategies and pressing DNA supercoiling [8]. DNA gyrase, transmission models may also benefit from the encoded by gyrAB, catalyses negative supercoil- interpretation of data in the context of phyloge- ing of DNA. Mutations in the short quinolone netically relevant genetic frameworks (geno- resistance-determining region and at codon 94 of types) based on SNPs [14,15], a pyrosequencing gyrA overcome the DNA gyrase-blocking action assay to determine genotype was also developed. of fluoroquinolones [8]. These three composite high-throughput assays, A rapid screening system for these mutations designed to be used on sputum samples and among isolates of M. tuberculosis is essential. A cultures in the early stages of growth to deter- sequence-based method, rather than a DNA mine resistance profile, species and genotype, migration or a hybridisation approach, is ideal were applied to three groups of M. tuberculosis for the development of a fast, accurate and high- isolates to determine their utility in public health throughput system, as this will aid in the identi- microbiology. fication of alternative mutations in the regions analysed, as well as those characterised previ- MATERIALS AND METHODS ously. The present study investigated the possi- bility of detecting the most common mutations Samples by pyrosequencing, a short-read (c. 30–50 bp) In total, 123 samples of mycobacteria were studied, of which 98 sequencing technique based on the quantitative were M. tuberculosis nucleic acid extracts. detection of pyrophosphate released following Group 1 comprised 72 M. tuberculosis DNA extracts from three northwest London hospitals [16]. Seven (9.7%) of these nucleotide incorporation into a growing DNA extracted isolates were isoniazid-resistant (Table 1). There chain. The technology has also been used previ- were six epidemiologically related groups of isolates (100 ously for single-nucleotide polymorphism (SNP) and 203; 113 and 128; 129 and 264; 139 and 140; 232, 251, detection [9]. 252 and 253; 1085 and 1086). Group 2 comprised 20 M. tuberculosis DNA extracts and The slow-growing nature of M. tuberculosis seven inactivated sputum samples containing M. tuberculosis means that several weeks can elapse before the from northeast England (Newcastle) (Table 1). Fourteen of the susceptibility profile of an isolate is known and extracted isolates were isoniazid- or isoniazid- and rifampicin- appropriately guided anti-TB chemotherapy can resistant. The sputum samples, containing > 90 bacilli ⁄ field, were inactivated by boiling in 1 M NaOH for 10 min following be put in place. Although genotypic testing cannot dithiothreitol liquefaction (Sputasol; Oxoid, Basingstoke, UK). wholly replace phenotypic methods for the detec- Four of these samples yielded isoniazid-resistant M. tubercu- tion of antibiotic resistance, as not all mechanisms losis isolates. A further four sputum samples contained of action (and therefore specific mutations) are mycobacterial species other than those causing TB, i.e., known for the different drugs used, a molecular M. avium complex, M. malmoense and M. chelonae, which were isoniazid-resistant. screen capable of use on primary clinical samples Group 3 comprised 24 DNA extracts from 11 different to detect most mutations associated with resist- Mycobacterium spp. (Table 2) obtained from K. Kremer ance could be invaluable. This study therefore (National Institute of Public Health and the Environment, assessed pyrosequencing as a high-throughput, Bilthoven, The Netherlands) [17]. cost-effective genotypic screen for M. tuberculosis isoniazid resistance in which common mutations Primer design associated with resistance were detected in spu- Amplification and pyrosequencing primers were designed by tum samples and early cultures. visual comparison and confirmed with the use of on-line Speciation of mycobacteria has been attempted software (http://www.pyrosequencing.com). The sequence of M. tuberculosis H37Rv, ATCC 27294, was used as an in-silico previously by sequencing all or part of the 16S template. Pyrosequencing primers were designed to detect rRNA gene [10], but this approach has failed to resistance or species-associated SNPs (Fig. 1). Two of the delineate this highly conserved genus. Other regions analysed (katG 463 and gyrA 95) were control regions regions of the genome that are useful for myco- that were not associated with drug resistance, but were associated with genotype assignation of M. tuberculosis [14], bacterial speciation include rpoB [11,12] and gyrB namely: CTG ⁄ ACC = genotype I; CGG ⁄ ACC = genotype II; [13]. Therefore, the present study also assessed and CGG ⁄ AGC = genotype III (Table 1). pyrosequencing as a rapid test for identifying Ó 2004 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 11, 122–130 124 Clinical Microbiology and Infection, Volume 11 Number 2, February 2005 Table 1. Strain information for Mycobacterium tuberculosis isolates in groups 1 and 2: resistance profile, single-nucleotide polymorphism profile and genotype katG 315 rpoB 516 rpoB 526 rpoB 531 gyrA 94 Identifier Resistance (WT = AGC) (WT = GAC) (WT = CAC) (WT = TCG) (WT = GAC) katG 463 gyrA 95 Genogroup Northwest London isolates (DNA extracts) WT profile 1 104, 124, 125, 126, WT AGC
Recommended publications
  • Detection, Survival and Infectious Potential of Mycobacterium Tuberculosis in the Environment: a Review of the Evidence and Epidemiological Implications
    REVIEW TUBERCULOSIS Detection, survival and infectious potential of Mycobacterium tuberculosis in the environment: a review of the evidence and epidemiological implications Leonardo Martinez1, Renu Verma1, Julio Croda2,3, C. Robert Horsburgh Jr4,5, Katharine S. Walter1, Nicholas Degner1, Keren Middelkoop6,7, Anastasia Koch8, Sabine Hermans6,9, Digby F. Warner 8,10, Robin Wood6, Frank Cobelens9 and Jason R. Andrews1 Affiliations: 1Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Stanford, CA, USA. 2Oswaldo Cruz Foundation, Campo Grande and Salvador, Brazil. 3School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil. 4Dept of Medicine, Boston University School of Medicine, Boston, MA, USA. 5Dept of Epidemiology, Biostatistics and Global Health, Boston University School of Public Health, Boston, MA, USA. 6The Desmond Tutu HIV Centre, Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. 7Dept of Medicine, University of Cape Town, Cape Town, South Africa. 8SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Dept of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. 9Dept of Global Health, Amsterdam Institute for Global Health and Development, Academic Medical Center, Amsterdam, The Netherlands. 10Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Diseases
    [Show full text]
  • Mycobacteria in Northern Tanzania: Exposure and Risk of Disease Among Agropastoralists and Programmatic Challenges in Investigation of Re-Treatment Cases
    0\FREDFWHULDLQQRUWKHUQ7DQ]DQLD ([SRVXUHDQGULVNRIGLVHDVHDPRQJDJURSDVWRUDOLVWVDQG SURJUDPPDWLFFKDOOHQJHVLQLQYHVWLJDWLRQRIUHWUHDWPHQWFDVHV $QGUHZ0DUWLQ.LODOH Dissertation for the degree of philosophiae doctor (PhD) at the University of Bergen Dissertation date: © Copyright: Andrew Martin Kilale, 2015 The material in this publication is protected by copyright law Title: Mycobacteria in northern Tanzania: Exposure and risk of disease among agropastoralists and programmatic challenges in investigation of re-treatment cases Author: Andrew Martin Kilale Print: AiT Bjerch AS / University of Bergen ii Dedication To the memory of my beloved Father, the late Martin Meza and my Mother, Twingilage Mwandawila Sanga iii Acknowledgements I thank His Almighty God for blessing me with this opportunity and keeping me strong throughout the period of my studies. My heartfelt acknowledgement goes to the University of Bergen, Centre for International Health for providing me the opportunity for this training. I wish to express my deepest sincere gratitude to my supervisors Prof. Sven Gudmund Hinderaker and Dr. Bernard James Ngowi for their tireless efforts, encouragement, support and always being available for the guidance. My special thanks goes to Dr. Godfrey Sayoki Mfinanga the Director at Muhimbili Medical Research Centre and Afrique One Consortium Deputy Director whose love and dedication to health research appointed me to join the consortium as a PhD student. My compliment goes to my family, my wife Elina, my son Audphas, and my daughters Irene and Doris for their intimate love, endless support, encouragement, prayers and endurance during my absence have been essential. I would like to express my earnest thanks to my employer, the National Institute for Medical Research and Welcome Trust through Afrique One Consortium for their financial support for research and my studies.
    [Show full text]
  • Computational Identification of the Proteins Associated with Quorum
    fmicb-10-03011 January 22, 2020 Time: 12:51 # 1 ORIGINAL RESEARCH published: 22 January 2020 doi: 10.3389/fmicb.2019.03011 Computational Identification of the Proteins Associated With Quorum Sensing and Biofilm Formation in Mycobacterium tuberculosis Shubhada R. Hegde* Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India With prolonged therapy and increased instances of drug resistance, tuberculosis is viewed as a serious infectious disease causing high mortality. Emerging concepts in Mycobacterium tuberculosis pathogenicity include biofilm formation, which endows bacterial survival in the host for a long time. To tackle chronic tuberculosis infection, a detailed understanding of the bacterial survival mechanisms is crucial. Using comparative genomics and literature mining, 115 M. tuberculosis proteins were shortlisted for their likely association with biofilm formation or quorum sensing. These include essential genes such as secA2, lpqY-sugABC, Rv1176c, and Rv0195, many of which are also known virulence factors. Furthermore, the functional relationship among these proteins was established by considering known protein-protein interactions, Edited by: regulatory interactions, and gene expression correlation data/information. Graph Rachel Susan Poretsky, centrality and motif analyses predicted the importance of proteins, such as Rv0081, University of Illinois at Chicago, United States DevR, RegX3, Rv0097, and Rv1996 in M. tuberculosis biofilm formation. Analysis Reviewed by: of conservation across other biofilm-forming bacteria suggests that most of these Seyed Ehtesham Hasnain, genes are conserved in mycobacteria. As the processes, such as quorum sensing, Jamia Hamdard University, India Nasreen Zafar Ehtesham, leading to biofilm formation involve diverse pathways and interactions between National Institute of Pathology, India proteins, these system-wide studies provide a novel perspective toward understanding *Correspondence: mycobacterial persistence.
    [Show full text]
  • Glossery of Tb Terms Acid-Fast Bacilli- (Afb)
    GLOSSERY OF TB TERMS ACID-FAST BACILLI - (AFB) Bacteria which retain certain dyes even when washed with an acid solution. Only rarely are acid-fast bacteria which are seen on smear not mycobacteria. A presumptive diagnosis of tuberculosis is often made on the basis of a positive “AFB smear;” however, the diagnosis is not confirmed until a culture is grown and identified as M. tuberculosis . ACQUIRED DRUG RESISTANCE - Resistance to one or more antituberculous drugs which develops while a patient is on therapy, usually the result of erratic compliance on the part of the patient. ADVERSE REACTIONS - Any undesirable effect of a medication. All drugs may cause such reactions, so that periodic monitoring of tuberculous patients under treatment is necessary to detect any that do occur, even though their occurrence may be common. ALVEOLI - The small air sacs in the lungs which lie at the end of the bronchial tree. The site of gas exchange in the lungs, and the site where tuberculous infection usually begins. ANEMIA - A condition in which there is a decreased volume of red cells in the blood. There are many causes for anemia, including chronic infections such as untreated tuberculosis. ANOREXIA - Loss of appetite. Symptom frequently seen in many illnesses, including tuberculosis. ATTENUATED - Refers to the weakened ability of an infectious agent to cause disease . For example, BCG is an attenuated strain of Mycobacterium bovis . BACTERICIDAL - Capable of killing bacteria. Isoniazid and rifampin are the two most potent bactericidal antituberculous drugs. BACTERIOLOGICAL SPECIMEN - Refers to any body fluid, secretion, or tissue sent to the laboratory where smears and cultures for tubercle bacilli will be performed.
    [Show full text]
  • 7. Smooth Tubercle Bacilli Neglected Opportunistic Tropical Pathogens
    Scien ce et Environnement 30 (2016) 110 -121 110 ISSN 2409 -6245 , http://www.scienceetenvironnement.dj Smooth Tubercle B acilli: Neglected O pportunistic Tropical Pathogens Djaltou Aboubaker Osman 1, 2 ‡, Feriel Bouzid 1, 3 ‡, Stéphane Canaan 3, Michel D rancourt 1* 1. Aix-Marseille Université, URMITE, UMR CNRS 7278, IRD 198, Inserm 1095, Marseille, France. 2. Institut de Recherche Médicinale (IRM), Centre d’Étu des et de Recherche de Djibouti (CERD). 3. Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université - Enzymologie Interfaciale et Phy siologie de la Lipolyse UMR7282. Marseille, France. *Corresponding author: Professor Michel DRANCOURT, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine, 27, Boulevard Jean Moulin, 13385 Mars eille Cedex 5, France. Tel: +33 4 91 32 43 75; Fax: +33 4 91 38 77 72 Email: [email protected] Abstract Smooth tubercle bacilli (STB) including ‘‘Mycobacterium canettii’’ are members of the Mycobacterium tuberculosis complex (MTBC) which cause non-contagious tuberculosis in human. This group compr ise s less than one hundred isolates characterized by smooth colonies and cordless organisms. Most STB isolates have been obtained from patients expo sed to the Republic of Djibouti but seven isolates, including the three seminal ones obtained by Georges Canetti between 1968 and 1970, were recovered from patients in France, Madagascar, Sub-Sahara East Africa and French Polynesia. STB form a genetically heterogeneous group of MT BC organisms with large 4.48 ± 0.05 Mb genomes which may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission suggested a yet unknown environmental reservoir .
    [Show full text]
  • APUTS) Reporting Terminology and Codes Microbiology (V1.0
    AUSTRALIAN PATHOLOGY UNITS AND TERMINOLOGY (APUTS) Reporting Terminology and Codes Microbiology (v1.0) 1 12/02/2013 APUTS Report Information Model - Urine Microbiology Page 1 of 1 Specimen Type Specimen Macro Time Glucose Bilirubin Ketones Specific Gravity pH Chemistry Protein Urobilinogen Nitrites Haemoglobin Leucocyte Esterases White blood cell count Red blood cells Cells Epithelial cells Bacteria Microscopy Parasites Microorganisms Yeasts Casts Crystals Other elements Antibacterial Activity No growth Mixed growth Urine MCS No significant growth Klebsiella sp. Bacteria ESBL Klebsiella pneumoniae Identification Virus Fungi Growth of >10^8 org/L 10^7 to 10^8 organism/L of mixed Range or number Colony Count growth of 3 organisms 19090-0 Culture Organism 1 630-4 LOINC >10^8 organisms/L LOINC Significant growth e.g. Ampicillin 18864-9 LOINC Antibiotics Susceptibility Method Released/suppressed None Organism 2 Organism 3 Organism 4 None Consistent with UTI Probable contamination Growth unlikely to be significant Comment Please submit a repeat specimen for testing if clinically indicated Catheter comments Sterile pyuria Notification to infection control and public health departments PUTS Urine Microbiology Information Model v1.mmap - 12/02/2013 - Mindjet 12/02/2013 APUTS Report Terminology and Codes - Microbiology - Urine Page 1 of 3 RCPA Pathology Units and Terminology Standardisation Project - Terminology for Reporting Pathology: Microbiology : Urine Microbiology Report v1 LOINC LOINC LOINC LOINC LOINC LOINC LOINC Urine Microbiology Report
    [Show full text]
  • Mycobacteriology
    Mycobacteriology Margie Morgan, PhD, D(ABMM) Mycobacteria ◼ Acid Fast Bacilli (AFB) Kinyoun AFB stain Gram stain ❑ Thick outer cell wall made of complex mycolic acids (mycolates) and free lipids which contribute to the hardiness of the genus ❑ Acid Fast for once stained, AFB resist de-colorization with acid alcohol (HCl) ❑ AFB stain vs. modified or partial acid fast (PAF) stain ◼ AFB stain uses HCl to decolorize Mycobacteria (+) Nocardia (-) ◼ PAF stain uses H2SO4 to decolorize Mycobacteria (+) Nocardia (+) ◼ AFB stain poorly with Gram stain / beaded Gram positive rods ◼ Aerobic, no spores produced, and rarely branch Identification of the Mycobacteria ◼ For decades, identification started by determining the ability of a mycobacteria species to form yellow cartenoid pigment in the light or dark; followed by performing biochemical reactions, growth rate, and optimum temperature for growth. Obsolete ◼ With expanding taxonomy, biochemical reactions were unable to identify newly recognized species, so High Performance Liquid Chromatography (HPLC) became useful. Now also obsolete ◼ Current methods for identification: ❑ Genetic probes (DNA/RNA hybridization) ❑ MALDI-TOF Mass Spectrometry to analyze cellular proteins ❑ Sequencing 16 sRNA for genetic sequence information Mycobacteria Taxonomy currently >170 species ◼ Group 1 - TB complex organisms ❑ Mycobacterium tuberculosis ❑ M. bovis ◼ Bacillus Calmette-Guerin (BCG) strain ❑ Attenuated strain of M. bovis used for vaccination ❑ M. africanum ❑ Rare species of mycobacteria ◼ Mycobacterium microti ◼ Mycobacterium canetti ◼ Mycobacterium caprae ◼ Mycobacterium pinnipedii ◼ Mycobacterium suricattae ◼ Mycobacterium mungi ◼ Group 2 - Mycobacteria other than TB complex (“MOTT”) also known as the Non-Tuberculous Mycobacteria Disease causing Non-tuberculous mycobacteria (1) Slowly growing non tuberculosis mycobacteria ◼ M. avium-intracullare complex ◼ M. genavense ◼ M. haemophilum ◼ M. kansasii (3) Mycobacterium leprae ◼ M.
    [Show full text]
  • Developing Methodologies for the Investigation of Free-Living Amoeba As a Tool for Pathogen Surveillance on Dairy Farms and Aquaculture
    Developing Methodologies for the Investigation of Free-living Amoeba as a Tool for Pathogen Surveillance on Dairy Farms and Aquaculture by John McLean A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Master of Science in Molecular and Cellular Biology Guelph, Ontario, Canada © John McLean, April, 2014 ABSTRACT DEVELOPING METHODOLOGIES FOR THE INVESTIGATION OF FREE-LIVING AMOEBA AS A TOOL FOR PATHOGEN SURVEILLANCE ON DAIRY FARMS AND FISHERIES John M. McLean Advisor: University of Guelph, 2014 Dr. Lucy Mutharia Free-living amoeba are phagocytic protozoans that act as environmental reservoirs, a protective niche, and a vehicle for transmission for amoeba-resistant bacterial pathogens. Many amoeba-resistant bacteria have been identified using only laboratory-adapted Acanthamoeba. We isolated resident amoeba from target environments of dairy farms and aquaculture settings to evaluate their use as a pathogen detection tool. Amoeba were only isolated from 3 of 23 (13%) environmental samples using established methods. A two-step sample decontamination protocol was developed and led to the isolation of 14 additional amoeba. An amoeba co-culture method was developed to assess the survival of 12 mycobacterial species within environmental and laboratory-adapted amoeba. Major strain differences were observed at the amoeba level which had drastic effects on the survival of different bacterial species within individual amoeba. Targeted isolation of resident bacteria from soils and feces using amoebal enrichment protocols were unsuccessful. However, the methodologies developed in this study provide a valid technical starting point for future studies. Acknowledgments First and foremost I would like to thank my advisor, Dr.
    [Show full text]
  • Archives of Veterinary and Animal Sciences
    Review Article Volume 2 • Issue 1 • 2020 Archives of Veterinary and Animal Sciences Copyright © All rights are reserved by Beksisa Urge Hurrisa. New Evolutionary Scenario and Molecular Diagnostic Methods in typing of Mycobacterium Tuberculosis Complex strains Beksisa Urge Hurrisa* Ethiopian institute of Agricultural Research, Holeta Agricultural Research Center, Oromia Region, Ethiopia *Corresponding Author: Beksisa Urge Hurrisa, Ethiopian institute of Agricultural Research, Holeta Agricultural Research Center, Oromia Region, Ethiopia. Received: February 08, 2020; Published: May 04, 2020 Abstract Tuberculosis is one of the major health problems responsible for morbidity and mortality particularly in developing countries. It is a bacterial disease caused by a group of closely related species of Mycobacterium tuberculosis complex such as M. tuberculosis, Mycobacterium Canetti, Mycobacterium Africanum, Mycobacterium microti, M. bovis, Mycobacterium caprae and Mycobacterium pinnipedii have genetic similarity. The Mycobacterium Tuberculosis Complex (MTBC) species are closely related taxonomic group of bacteria contributing to hundred-percent chromosomal homology between each other. The genome of MTBC is about 4.4 M bp and contains 0.01-0.3 percent synonymic nucleotide polymorphisms. It is characterized by 99.9% similarity at the nucleotide level and from a common origin through DNA deletion and insertion mechanisms which resulted in the present Mycobacterium species. These identical 16S rRNA sequences but differs widely in host related tropisms, phenotypes, and pathogenicity. MBTC strains have emerged insertion –deletion in the variable region of genomes or region of difference (RD) of the MBTC is used to identify the phylogenetic RD or evolutionary lineages of M. africanum, M. microti and M. bovis that diverged from the progenitor of the present M.
    [Show full text]
  • No Need for Metadata Here
    DOI: 10.3310/hta17370 Health Technology Assessment 2013; Vol. 17: No. 37 205 The search strategies for all databases and websites consulted are detailed below. MEDLINE Database: MEDLINE Ovid 1950 to present 1. exp Tuberculosis/ (131,795) 2. tb.tw. (14038) 3. tuberculous.tw. (20,272) 4. tuberculos$2.tw. (106,603) 5. tubercular.tw. (1989) 6. phthisis.tw. (552) 7. tuberculoma$1.tw. (1796) 8. pott$ disease.tw. (526) 9. tuberculid$1.tw. (230) 10. scrofuloderma$1.tw. (135) 11. scrofula$1.tw. (88) 12. Mycobacterium bovis/ (7156) 13. Mycobacterium tuberculosis/ (26,004) 14. tubercle bacill$.tw. (3059) 15. mycobacterium africanum.tw. (96) 16. mycobacterium microti.tw. (105) 17. mycobacterium canetti.tw. (3) 18. mycobacterium bovis.tw. (3937) 19. or/1-18 (169,014) 20. BCG Vaccine/ (14,856) 21. BCG.tw. (15,276) 22. (bacill$ adj3 Calmette$).tw. (4601) 23. tubercul$ vaccin$.tw. (448) 24. Calmette Vaccin$.tw. (14) 25. or/20-24 (21,429) 26. 19 and 25 (12,143) 27. exp animals/ not humans/ (3,377,110) 28. 26 not 27 (8768) 29. limit 25 to yr=‘1945 - 1965’ (2571) 30. 29 not 27 (2383) 31. 28 or 30 (10,087) © Queen’s Printer and Controller of HMSO 2013. This work was produced by Abubakar et al. under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising.
    [Show full text]
  • Framework for the Development Of
    Standards for Pathology Informatics in Australia (SPIA) Reporting Terminology and Codes Microbiology (v3.0) Superseding and incorporating the Australian Pathology Units and Terminology Standards and Guidelines (APUTS) ISBN: Pending State Health Publication Number (SHPN): Pending Online copyright © RCPA 2017 This work (Standards and Guidelines) is copyright. You may download, display, print and reproduce the Standards and Guidelines for your personal, non- commercial use or use within your organisation subject to the following terms and conditions: 1. The Standards and Guidelines may not be copied, reproduced, communicated or displayed, in whole or in part, for profit or commercial gain. 2. Any copy, reproduction or communication must include this RCPA copyright notice in full. 3. No changes may be made to the wording of the Standards and Guidelines including commentary, tables or diagrams. Excerpts from the Standards and Guidelines may be used. References and acknowledgments must be maintained in any reproduction or copy in full or part of the Standards and Guidelines. Apart from any use as permitted under the Copyright Act 1968 or as set out above, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to RCPA, 207 Albion St, Surry Hills, NSW 2010, Australia. This material contains content from LOINC® (http://loinc.org). The LOINC table, LOINC codes, LOINC panels and forms file, LOINC linguistic variants file, LOINC/RSNA Radiology Playbook, and LOINC/IEEE Medical Device Code Mapping Table are copyright © 1995-2016, Regenstrief Institute, Inc. and the Logical Observation Identifiers Names and Codes (LOINC) Committee and is available at no cost under the license at http://loinc.org/terms-of-use.” This material includes SNOMED Clinical Terms® (SNOMED CT®) which is used by permission of the International Health Terminology Standards Development Organisation (IHTSDO®).
    [Show full text]
  • Mycobacterial Infections in Zoo Animals: Relevance, Diagnosis and Management* A
    TUBERCULOSIS IN ZOO ANIMALS 183 Int. Zoo Yb. (2011) 45: 183–202 DOI:10.1111/j.1748-1090.2011.00141.x Mycobacterial infections in zoo animals: relevance, diagnosis and management* A. LE´CU1 & R. BALL2 1Parc Zoologique de Paris, M.N.H.N., 53 avenue de St Maurice, 75012 Paris, France, and 2Lowry Park Zoo, 1101 W Sligh Avenue, Tampa, Florida 33604, USA E-mail: [email protected] While the world prevalence of tuberculosis (TB) is (Table 1). One-third of the human population increasing in the human population, TB infection remains is currently infected by TB (World Health a real concern in some animal populations all around the globe. Most mycobacteria of the TB complex are able to Organization, 2010) and in 2008 1 Á 8 million infect zoo and wildlife species, in which the pathogen- people died from the disease (United Nations, esis, receptivity and immune responses vary widely. The 2010). Recent increases of Multi Drug Resis- diagnostic tools usually applied in domestic animals tance (MDR-TB) or even Extreme Drug Re- show limited performance in zoo species, especially sistance (XDR-TB) strains, and co-infection when prevalence is low. Conversely, investigations of cell-mediated immunity through in vitro assay of g- with human immunodeficiency virus (HIV), interferon may have numerous advantages, as long as make the battle against TB more difficult the technical limits are known and can be improved upon. (Hanekom et al., 2010). TB is now placed on Furthermore, recent tools based on the investigation of the ‘most relevant diseases’ list in the health- humoral immunity seem very promising for the detection of antibodies directed against certain immunogenic my- related Millennium Development Goal 6 by cobacterial antigens in a wide range of species.
    [Show full text]