Framework for the Development Of

Total Page:16

File Type:pdf, Size:1020Kb

Framework for the Development Of Standards for Pathology Informatics in Australia (SPIA) Reporting Terminology and Codes Microbiology (v3.0) Superseding and incorporating the Australian Pathology Units and Terminology Standards and Guidelines (APUTS) ISBN: Pending State Health Publication Number (SHPN): Pending Online copyright © RCPA 2017 This work (Standards and Guidelines) is copyright. You may download, display, print and reproduce the Standards and Guidelines for your personal, non- commercial use or use within your organisation subject to the following terms and conditions: 1. The Standards and Guidelines may not be copied, reproduced, communicated or displayed, in whole or in part, for profit or commercial gain. 2. Any copy, reproduction or communication must include this RCPA copyright notice in full. 3. No changes may be made to the wording of the Standards and Guidelines including commentary, tables or diagrams. Excerpts from the Standards and Guidelines may be used. References and acknowledgments must be maintained in any reproduction or copy in full or part of the Standards and Guidelines. Apart from any use as permitted under the Copyright Act 1968 or as set out above, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to RCPA, 207 Albion St, Surry Hills, NSW 2010, Australia. This material contains content from LOINC® (http://loinc.org). The LOINC table, LOINC codes, LOINC panels and forms file, LOINC linguistic variants file, LOINC/RSNA Radiology Playbook, and LOINC/IEEE Medical Device Code Mapping Table are copyright © 1995-2016, Regenstrief Institute, Inc. and the Logical Observation Identifiers Names and Codes (LOINC) Committee and is available at no cost under the license at http://loinc.org/terms-of-use.” This material includes SNOMED Clinical Terms® (SNOMED CT®) which is used by permission of the International Health Terminology Standards Development Organisation (IHTSDO®). All rights reserved. SNOMED CT was originally created by The College of American Pathologists. IHTSDO®, SNOMED® and SNOMED CT® are registered trademarks of the IHTSDO. This product includes all or a portion of the UCUM table, UCUM codes, and UCUM definitions or is derived from it, subject to a license from Regenstrief Institute, Inc. and The UCUM Organization. Your use of the UCUM table, UCUM codes, UCUM definitions also is subject to this license, a copy of which is available at http://unitsofmeasure.org. The current complete UCUM table, UCUM Specification are available for download at http://unitsofmeasure.org. The UCUM table and UCUM codes are copyright © 1995-2009, Regenstrief Institute, Inc. and the Unified Codes for Units of Measures (UCUM) Organization. All rights reserved. First published: February, 2013, 1st Edition (version 1.0) Standards for Pathology Informatics in Australia (SPIA) Previously known as the Australian Pathology Units and Terminology Standards and Guidelines (APUTS) Microbiology Report Information Model Terminology Copyright © 2013- 2017 RCPA. All rights reserved. This material contains information which is protected by copyright. You may download, display, print and reproduce any material for your personal, non-commercial use or use within your organisation subject to the following terms and conditions: 1. The material may not be copied, reproduced, communicated or displayed, in whole or in part, for profit or commercial gain. 2. Any copy, reproduction or communication must include this RCPA copyright notice in full. 3. No changes may be made to the wording of the Standards and Guidelines, terminology reference sets and information models including commentary, tables or diagrams. Excerpts from the Standards and Guidelines, terminology reference sets and information models may be used. References and acknowledgments must be maintained in any reproduction or copy in full or part of the material. Apart from any use as permitted under the Copyright Act 1968 or as set out above, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to RCPA, 207 Albion St, Surry Hills, NSW 2010, Australia. Copyright © 1995-2017 Regenstrief Institute, Inc. and the LOINC Committee. All rights reserved. This material contains content from LOINC® (http://loinc.org). The LOINC table, LOINC codes, LOINC panels and forms file, LOINC linguistic variants file, LOINC/RSNA Radiology Playbook, and LOINC/IEEE Medical Device Code Mapping Table are copyright © 1995-2015, Regenstrief Institute, Inc. and the Logical Observation Identifiers Names and Codes (LOINC) Committee and is available at no cost under the license at http://loinc.org/terms-of-use. Copyright © 1999-2017 Regenstrief Institute, Inc. and the UCUM Organization. All rights reserved. This product includes all or a portion of the UCUM table, UCUM codes, and UCUM definitions or is derived from it, subject to a license from Regenstrief Institute, Inc. and The UCUM Organization. Your use of the UCUM table, UCUM codes, UCUM definitions also is subject to this license, a copy of which is available at http://unitsofmeasure.org. The current complete UCUM table, UCUM Specification are available for download at http://unitsofmeasure.org. The UCUM table and UCUM codes are copyright © 1995-2009, Regenstrief Institute, Inc. and the Unified Codes for Units of Measures (UCUM) Organization. All rights reserved. TRIM Document #: D156352 Document History: Version Reason for Change Author Date 1.0 Initial Terminology for Microbiology: Organisms mapped to SNOMED CT, published by the RCPA Pathology Michael Legg / Dr 12-Feb-13 Units and Terminology Standardisation Project. Christiaan Swanepoel 2.0 Changed the name of this spreadsheet from "PUTS Microbiology Urine Microbiology LOINC subset " to Donna Moore 06-Jun-14 "APUTS Microbiology terminology reference set ". Added Document Revision History worksheet. The following are the updates to the 'Terminology for Urine MCS' worksheet: Corrected "15 Flucytosine" should have been "5 Flucytosine" on the Terminology for Urine MCS worksheet. Updated 'Yeast' to now say 'Yeasts'. Removed "RCPA Pathology Units and Terminology Standardisation Project - Terminology for Reporting Pathology: Microbiology : Urine Microbiology Report v1" title from Urine MCS LOINC subset. Removed columns that were used during reviewing the SNOMED codes. Added Terminlogy for Salmonella worksheet, compiled by PITUS-14 WG5. 2.1 Add licence information. Donna Moore 2-May-16 3.0 Added 'LongName' column for LOINC LongName. Some LongName data were placed in the Method Field, Donna Moore 16-Jan-17 mainly for the Antibiotics, this has now been rectified. Added 'Ver' and 'History' columns. Standards for Pathology Informatics in Australia (SPIA) Microbiology reporting terminology reference set Urine Microbiology Report Information Model Terminology RCPA Preferred term LOINC Component Property Timing System Scale Method LongName Ver History Specimen Collection Method 19159-3 Urinalysis specimen collectionPrid method Pt Urine Nom * Urinalysis specimen collection method 3.0 3.0 - Moved data in Method field to LongName field 1.0 - Added by PUTS project Dipstick/Chemistry Glucose 25428-4 Glucose PrThr Pt Urine Ord Test strip Glucose [Presence] in Urine by Test strip 3.0 3.0 - Changed Property field from Acnc 1.0 - Added by PUTS project Bilirubin 5770-3 Bilirubin PrThr Pt Urine Ord Test strip Bilirubin.total [Presence] in Urine by Test strip 3.0 3.0 - Changed Property field from Acnc 1.0 - Added by PUTS project Ketones 2514-8 Ketones PrThr Pt Urine Ord Test strip Ketones [Presence] in Urine by Test strip 3.0 3.0 - Changed Property field from Acnc 1.0 - Added by PUTS project Specific Gravity 5811-5 Specific gravity Rden Pt Urine Qn Test strip Specific gravity of Urine by Test strip 1.0 pH 5803-2 pH LsCnc Pt Urine Qn Test strip pH of Urine by Test strip 1.0 Protein 20454-5 Protein PrThr Pt Urine Ord Test strip Protein [Presence] in Urine by Test strip 3.0 3.0 - Changed Property field from Acnc 1.0 - Added by PUTS project Urobilinogen 5818-0 Urobilinogen PrThr Pt Urine Ord Test strip Urobilinogen [Presence] in Urine by Test strip 3.0 3.0 - Changed Property field from Acnc 1.0 - Added by PUTS project Nitrites 5802-4 Nitrite PrThr Pt Urine Ord Test strip Nitrite [Presence] in Urine by Test strip 3.0 3.0 - Changed Property field from Acnc 1.0 - Added by PUTS project Haemoglobin 5794-3 Hemoglobin PrThr Pt Urine Ord Test strip Hemoglobin [Presence] in Urine by Test strip 3.0 3.0 - Changed Property field from Acnc 1.0 - Added by PUTS project Leucocyte Esterase 5799-2 Leukocyte esterase PrThr Pt Urine Ord Test strip Leukocyte esterase [Presence] in Urine by 3.0 3.0 - Changed Property field from Acnc Test strip 1.0 - Added by PUTS project Microscopy Cells White blood cell count 30405-5 Leukocytes NCnc Pt Urine Qn Leukocytes [#/​volume] in Urine 3.0 3.0 - Moved data in Method field to LongName field 1.0 - Added by PUTS project Red blood cell count 30391-7 Erythrocytes NCnc Pt Urine Qn Erythrocytes [#/​volume] in Urine 3.0 3.0 - Moved data in Method field to LongName field 1.0 - Added by PUTS project Red blood cell morphology 53974-2 Erythrocyte morphology Imp Pt Urine sed Nar Microscopy.light Erythrocyte morphology [Interpretation] in 1.0 Urine sediment by Light microscopy Narrative Epithelial cells 30383-4 Epithelial cells NCnc Pt Urine Qn Epithelial cells [#/​volume] in Urine 3.0 3.0 - Moved data in Method field to LongName field 1.0 - Added by PUTS project Microorganisms Bacteria 50221-1 Bacteria PrThr Pt Urine Ord Automated Bacteria
Recommended publications
  • Structural Characterization of Helicobacter Pylori Proteins Contributing to Stomach Colonization
    Università degli Studi di Padova Dipartimento di Biologia Scuola di Dottorato di Ricerca in Bioscienze e Biotecnologie Indirizzo: Biotecnologie Ciclo XXVIII STRUCTURAL CHARACTERIZATION OF HELICOBACTER PYLORI PROTEINS CONTRIBUTING TO STOMACH COLONIZATION Direttore della Scuola: Ch.mo Prof. Paolo Bernardi Coordinatore di Indirizzo: Ch.ma Prof.ssa Fiorella Lo Schiavo Supervisore: Ch.mo Prof. Giuseppe Zanotti Dottorando: Maria Elena Compostella 31 Gennaio 2016 Università degli Studi di Padova Department of Biology School of Biosciences and Biotechnology Curriculum: Biotechnology XXVIII Cycle STRUCTURAL CHARACTERIZATION OF HELICOBACTER PYLORI PROTEINS CONTRIBUTING TO STOMACH COLONIZATION Director of the Ph.D. School: Ch.mo Prof. Paolo Bernardi Coordinator of the Curriculum: Ch.ma Prof.ssa Fiorella Lo Schiavo Supervisor: Ch.mo Prof. Giuseppe Zanotti Ph.D. Candidate: Maria Elena Compostella 31 January 2016 Contents ABBREVIATIONS AND SYMBOLS IV SUMMARY 9 SOMMARIO 15 1. INTRODUCTION 21 1.1 HELICOBACTER PYLORI 23 1.2 GENETIC VARIABILITY 26 1.2.1 GENOME COMPARISON 26 1.2.1.1 HELICOBACTER PYLORI 26695 26 1.2.1.2 HELICOBACTER PYLORI J99 28 1.2.2 CORE GENOME 30 1.2.3 MECHANISMS GENERATING GENETIC VARIABILITY 31 1.2.3.1 MUTAGENESIS 32 1.2.3.2 RECOMBINATION 35 1.2.4 HELICOBACTER PYLORI AS A “QUASI SPECIES” 37 1.2.5 CLASSIFICATION OF HELICOBACTER PYLORI STRAINS 38 1.3 EPIDEMIOLOGY 40 1.3.1 INCIDENCE AND PREVALENCE OF HELICOBACTER PYLORI INFECTION 40 1.3.2 SOURCE AND TRANSMISSION 42 1.4 ADAPTATION AND GASTRIC COLONIZATION 47 1.4.1 ACID ADAPTATION 49 1.4.2 MOTILITY AND CHEMIOTAXIS 60 1.4.3 ADHESION 65 1.5 PATHOGENESIS AND VIRULENCE FACTORS 72 1.5.1 VACUOLATING CYTOTOXIN A 78 1.5.2 CAG PATHOGENICITY ISLAND AND CYTOTOXIN-ASSOCIATED GENE A 83 1.5.3 NEUTROPHIL-ACTIVATING PROTEIN 90 1.6 HELICOBACTER PYLORI AND GASTRODUODENAL DISEASES 92 1.7 ERADICATION AND POTENTIAL BENEFITS 97 2.
    [Show full text]
  • Susceptibility and Resistance Data
    toku-e logo For a complete list of references, please visit antibiotics.toku-e.com Imipenem Microorganism Genus, Species, and Strain (if shown) Concentration Range (μg/ml)Susceptibility and Achromobacter xylosoxidans subsp. denitrificans 0.25 - 4 Minimum Inhibitory Acinetobacter anitratus ≤0.008 ­ 128 Acinetobacter baumannii Concentration0.008 - 512 (MIC) Data Acinetobacter calcoaceticus 0.016 - >8 Issue date 01/06/2020 Acinetobacter haemolyticus ≤0.008 ­ >16 Acinetobacter junii ≤0.12 ­ >8 Acinetobacter lwoffii ≤0.008 ­ >16 Acinetobacter spp. 0.008 - >64 Actinomyces gerencseriae ≤0.015 ­ 8 Actinomyces graevenitzii ≤0.015 ­ 0.25 Actinomyces israelii ≤0.015 ­ 8 Actinomyces meyeri ≤0.015 ­ 8 Actinomyces naeslundii 0.015 - 8 Actinomyces neuii ≤0.015 ­ 0.25 Actinomyces odontolyticus ≤0.015 ­ 8 Actinomyces radingae ≤0.015 ­ 0.25 Actinomyces schalii ≤0.015 ­ 0.25 Actinomyces spp. ≤0.008 ­ 8 Actinomyces turicensis ≤0.015 ­ 0.25 Actinomyces viscosus ≤0.015 ­ 0.5 Aerococcus spp. ≤0.008 ­ 4 Aerococcus urinae ≤0.008 ­ 4 Aeromonas caviae 0.25 - 4 Aeromonas hydrophila 0.25 - 16 Aeromonas spp. 0.12 - 4 Agrobacterium radiobacter 0.06 - 1 Alcaligenes faecalis 0.06 - >16 Alcaligenes odorans 0.25 - 1 Anaerococcus prevotii ≤0.016 ­ 0.25 Anaerococcus tetradius ≤0.016 ­ 0.03 Arcanobacterium pyogenes ≤0.03 ­ 0.25 Atopobium parvulum 0.25 Bacillus proteus 4 Bacillus spp. ≤0.008 ­ 4 Bacillus subtilis <0.025 Bacteroides caccae ≤0.06 ­ 8 Bacteroides capillosus 0.06 - 0.25 Bacteroides distasonis 0.03 - 8 Bacteroides eggerthii ≤0.125 ­ 0.5 Bacteroides fragilis ≤0.008 ­ >128 Bacteroides fragilis gr. 0.03 - 4 Bacteroides levii 0.06 - 0.25 Bacteroides merdae ≤0.06 ­ 4 Bacteroides ovatus 0.03 - 16 Bacteroides splanchnicus 0.06 - 0.25 Bacteroides spp.
    [Show full text]
  • Food Or Beverage Product, Or Probiotic Composition, Comprising Lactobacillus Johnsonii 456
    (19) TZZ¥¥¥ _T (11) EP 3 536 328 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 11.09.2019 Bulletin 2019/37 A61K 35/74 (2015.01) A61K 35/66 (2015.01) A61P 35/00 (2006.01) (21) Application number: 19165418.5 (22) Date of filing: 19.02.2014 (84) Designated Contracting States: • SCHIESTL, Robert, H. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Encino, CA California 91436 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • RELIENE, Ramune PL PT RO RS SE SI SK SM TR Los Angeles, CA California 90024 (US) • BORNEMAN, James (30) Priority: 22.02.2013 US 201361956186 P Riverside, CA California 92506 (US) 26.11.2013 US 201361909242 P • PRESLEY, Laura, L. Santa Maria, CA California 93458 (US) (62) Document number(s) of the earlier application(s) in • BRAUN, Jonathan accordance with Art. 76 EPC: Tarzana, CA California 91356 (US) 14753847.4 / 2 958 575 (74) Representative: Müller-Boré & Partner (71) Applicant: The Regents of the University of Patentanwälte PartG mbB California Friedenheimer Brücke 21 Oakland, CA 94607 (US) 80639 München (DE) (72) Inventors: Remarks: • YAMAMOTO, Mitsuko, L. This application was filed on 27-03-2019 as a Alameda, CA California 94502 (US) divisional application to the application mentioned under INID code 62. (54) FOOD OR BEVERAGE PRODUCT, OR PROBIOTIC COMPOSITION, COMPRISING LACTOBACILLUS JOHNSONII 456 (57) The present invention relates to food products, beverage products and probiotic compositions comprising Lacto- bacillus johnsonii 456. EP 3 536 328 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 536 328 A1 Description CROSS-REFERENCE TO RELATED APPLICATIONS 5 [0001] This application claims the benefit of U.S.
    [Show full text]
  • Genomics 98 (2011) 370–375
    Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc.
    [Show full text]
  • Expanding the Knowledge on the Skillful Yeast Cyberlindnera Jadinii
    Journal of Fungi Review Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii Maria Sousa-Silva 1,2 , Daniel Vieira 1,2, Pedro Soares 1,2, Margarida Casal 1,2 and Isabel Soares-Silva 1,2,* 1 Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; [email protected] (M.S.-S.); [email protected] (D.V.); [email protected] (P.S.); [email protected] (M.C.) 2 Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal * Correspondence: [email protected]; Tel.: +351-253601519 Abstract: Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation.
    [Show full text]
  • A Focus on Protein Glycosylation in Lactobacillus
    International Journal of Molecular Sciences Review How Sweet Are Our Gut Beneficial Bacteria? A Focus on Protein Glycosylation in Lactobacillus Dimitrios Latousakis and Nathalie Juge * Quadram Institute Bioscience, The Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UA, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)-160-325-5068; Fax: +44-(0)-160-350-7723 Received: 22 November 2017; Accepted: 27 December 2017; Published: 3 January 2018 Abstract: Protein glycosylation is emerging as an important feature in bacteria. Protein glycosylation systems have been reported and studied in many pathogenic bacteria, revealing an important diversity of glycan structures and pathways within and between bacterial species. These systems play key roles in virulence and pathogenicity. More recently, a large number of bacterial proteins have been found to be glycosylated in gut commensal bacteria. We present an overview of bacterial protein glycosylation systems (O- and N-glycosylation) in bacteria, with a focus on glycoproteins from gut commensal bacteria, particularly Lactobacilli. These emerging studies underscore the importance of bacterial protein glycosylation in the interaction of the gut microbiota with the host. Keywords: protein glycosylation; gut commensal bacteria; Lactobacillus; glycoproteins; adhesins; lectins; O-glycosylation; N-glycosylation; probiotics 1. Introduction Protein glycosylation, i.e., the covalent attachment of a carbohydrate moiety onto a protein, is a highly ubiquitous protein modification in nature, and considered to be one of the post-translational modifications (PTM) targeting the most diverse group of proteins [1]. Although it was originally believed to be restricted to eukaryotic systems and later to archaea, it has become apparent nowadays that protein glycosylation is a common feature in all three domains of life.
    [Show full text]
  • In Silico Evolutionary Analysis of Helicobacter Pylori Outer Membrane Phospholipase a (OMPLA) Hilde S Vollan1*, Tone Tannæs1, Yoshio Yamaoka2 and Geir Bukholm3,4
    Vollan et al. BMC Microbiology 2012, 12:206 http://www.biomedcentral.com/1471-2180/12/206 RESEARCH ARTICLE Open Access In silico evolutionary analysis of Helicobacter pylori outer membrane phospholipase A (OMPLA) Hilde S Vollan1*, Tone Tannæs1, Yoshio Yamaoka2 and Geir Bukholm3,4 Abstract Background: In the past decade, researchers have proposed that the pldA gene for outer membrane phospholipase A (OMPLA) is important for bacterial colonization of the human gastric ventricle. Several conserved Helicobacter pylori genes have distinct genotypes in different parts of the world, biogeographic patterns that can be analyzed through phylogenetic trees. The current study will shed light on the importance of the pldA gene in H. pylori. In silico sequence analysis will be used to investigate whether the bacteria are in the process of preserving, optimizing, or rejecting the pldA gene. The pldA gene will be phylogenetically compared to other housekeeping (HK) genes, and a possible origin via horizontal gene transfer (HGT) will be evaluated through both intra- and inter- species evolutionary analyses. Results: In this study, pldA gene sequences were phylogenetically analyzed and compared with a large reference set of concatenated HK gene sequences. A total of 246 pldA nucleotide sequences were used; 207 were from Norwegian isolates, 20 were from Korean isolates, and 19 were from the NCBI database. Best-fit evolutionary models were determined with MEGA5 ModelTest for the pldA (K80 + I + G) and HK (GTR + I + G) sequences, and maximum likelihood trees were constructed. Both HK and pldA genes showed biogeographic clustering. Horizontal gene transfer was inferred based on significantly different GC contents, the codon adaptation index, and a phylogenetic conflict between a tree of OMPLA protein sequences representing 171 species and a tree of the AtpA HK protein for 169 species.
    [Show full text]
  • M.Sc. Dissertation
    2 ACKNOWLEDGEMENTS I wish to thank the following: God , for giving me the strength and guidance to start each day with new hope. Prof. J. L. F. Kock , for his guidance, understanding and passion for research. Prof. P. W. J. van Wyk and Miss B. Janecke for their patience and assistance with the SEM, TEM and CLSM. Dr. C. H. Pohl , for her encouragement and assistance. Mrs. A. van Wyk , for providing the yeast cultures used during this study and also for her encouragement and support. Mr. S. F. Collett , for assisting with the graphical design of this dissertation. My colleagues in Lab 28 , for always being supportive and helpful. My mother, Mrs. M. M. Swart and grandmother, Mrs. M. M. Coetzer , for their patience, love and encouragement. My family for their encouragement and for believing in me. Mr. P. S. Delport , for his love, understanding and patience. 3 CONTENTS Page Title Page 1 Acknowledgements 3 Contents 4 CHAPTER 1 Literature Review 1.1 Motivation 9 1.2 Automictic yeasts 10 1.2.1 Definition of a yeast 10 1.2.2 Automixis 11 1.3 Oxylipins 19 1.3.1 Background 19 1.3.2 3-OH oxylipins 19 1.3.2.1 Chemical structure and production 19 1.3.2.2 Distribution 20 1.3.2.3 Function 23 1.3.2.4 ASA inhibition 23 1.4 Purpose of research 24 1.5 References 26 4 CHAPTER 2 Oxylipin accumulation and acetylsalicylic acid sensitivity in fermentative and non-fermentative yeasts 2.1 Abstract 38 2.2 Introduction 40 2.3 Materials and Methods 41 2.3.1 Strains used and cultivation 41 2.3.2 Ultrastructure 42 2.3.2.1 Scanning electron microscopy (SEM)
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Genomics of Helicobacter Species 91
    Genomics of Helicobacter Species 91 6 Genomics of Helicobacter Species Zhongming Ge and David B. Schauer Summary Helicobacter pylori was the first bacterial species to have the genome of two independent strains completely sequenced. Infection with this pathogen, which may be the most frequent bacterial infec- tion of humanity, causes peptic ulcer disease and gastric cancer. Other Helicobacter species are emerging as causes of infection, inflammation, and cancer in the intestine, liver, and biliary tract, although the true prevalence of these enterohepatic Helicobacter species in humans is not yet known. The murine pathogen Helicobacter hepaticus was the first enterohepatic Helicobacter species to have its genome completely sequenced. Here, we consider functional genomics of the genus Helico- bacter, the comparative genomics of the genus Helicobacter, and the related genera Campylobacter and Wolinella. Key Words: Cytotoxin-associated gene; H-Proteobacteria; gastric cancer; genomic evolution; genomic island; hepatobiliary; peptic ulcer disease; type IV secretion system. 1. Introduction The genus Helicobacter belongs to the family Helicobacteriaceae, order Campylo- bacterales, and class H-Proteobacteria, which is also known as the H subdivision of the phylum Proteobacteria. The H-Proteobacteria comprise of a relatively small and recently recognized line of descent within this extremely large and phenotypically diverse phy- lum. Other genera that colonize and/or infect humans and animals include Campylobac- ter, Arcobacter, and Wolinella. These organisms are all microaerophilic, chemoorgano- trophic, nonsaccharolytic, spiral shaped or curved, and motile with a corkscrew-like motion by means of polar flagella. Increasingly, free living H-Proteobacteria are being recognized in a wide range of environmental niches, including seawater, marine sedi- ments, deep-sea hydrothermal vents, and even as symbionts of shrimp and tubeworms in these environments.
    [Show full text]
  • Co-Infection Associated with Diarrhea in a Colony of <I>Scid
    Laboratory Animal Science Vol 48, No 5 Copyright 1998 October 1998 by the American Association for Laboratory Animal Science Helicobacter bilis/Helicobacter rodentium Co-Infection Associated with Diarrhea in a Colony of scid Mice Nirah H. Shomer,* Charles A. Dangler, Robert P. Marini, and James G. Fox† Abstract _ An outbreak of diarrhea spanning 3 months occurred in a breeding colony of scid/Trp53 knockout mice. Approximately a third of the 150 mice were clinically affected, with signs ranging from mucoid or watery diarrhea to severe hemorrhagic diarrhea with mortality. Helicobacter bilis and the newly recognized urease-negative organ- ism H. rodentium were isolated from microaerobic culture of feces or cecal specimens from affected mice. Dual infection with H. bilis and H. rodentium were confirmed by culture and polymerase chain reaction (PCR) in several animals. Both Helicobacter species rapidly colonized immunocompetent sentinel mice exposed to bedding from cages containing affected mice, but the sentinel remained asymptomatic. Mice with diarrhea had multifocal to segmental proliferative typhlitis, colitis, and proctitis. Several affected mice had multifocal mucosal necrosis with a few focal ulcers in the cecum, colon, and rectum. Mice with diarrhea were treated with antibiotic food wafers (1.5 mg of amoxicillin, 0.69 mg of metronidazole, and 0.185 mg of bismuth/mouse per day) previously shown to eradi- cate H. hepaticus in immunocompetent mice. Antibiotic treatment resulted in resolution of diarrhea, but not eradication of H. bilis and H. rodentium; mice continued to have positive PCR results after a 2-week treatment regimen, and clinical signs of diarrhea returned in some mice when treatment was suspended.
    [Show full text]