Mycobacterial Infections in Zoo Animals: Relevance, Diagnosis and Management* A

Total Page:16

File Type:pdf, Size:1020Kb

Mycobacterial Infections in Zoo Animals: Relevance, Diagnosis and Management* A TUBERCULOSIS IN ZOO ANIMALS 183 Int. Zoo Yb. (2011) 45: 183–202 DOI:10.1111/j.1748-1090.2011.00141.x Mycobacterial infections in zoo animals: relevance, diagnosis and management* A. LE´CU1 & R. BALL2 1Parc Zoologique de Paris, M.N.H.N., 53 avenue de St Maurice, 75012 Paris, France, and 2Lowry Park Zoo, 1101 W Sligh Avenue, Tampa, Florida 33604, USA E-mail: [email protected] While the world prevalence of tuberculosis (TB) is (Table 1). One-third of the human population increasing in the human population, TB infection remains is currently infected by TB (World Health a real concern in some animal populations all around the globe. Most mycobacteria of the TB complex are able to Organization, 2010) and in 2008 1 Á 8 million infect zoo and wildlife species, in which the pathogen- people died from the disease (United Nations, esis, receptivity and immune responses vary widely. The 2010). Recent increases of Multi Drug Resis- diagnostic tools usually applied in domestic animals tance (MDR-TB) or even Extreme Drug Re- show limited performance in zoo species, especially sistance (XDR-TB) strains, and co-infection when prevalence is low. Conversely, investigations of cell-mediated immunity through in vitro assay of g- with human immunodeficiency virus (HIV), interferon may have numerous advantages, as long as make the battle against TB more difficult the technical limits are known and can be improved upon. (Hanekom et al., 2010). TB is now placed on Furthermore, recent tools based on the investigation of the ‘most relevant diseases’ list in the health- humoral immunity seem very promising for the detection of antibodies directed against certain immunogenic my- related Millennium Development Goal 6 by cobacterial antigens in a wide range of species. All these the World Health Organization (WHO) and methods are currently evaluated in field studies, despite the United Nations (UN), together with ac- the difficulties to ensure rigorous validation. The devel- quired immune deficiency syndrome (AIDS) opment of these diagnostic tools is also impaired by the and malaria (United Nations, 2001, 2005; prevalence of mycobacteria other than TB also able to infect and create relevant disease in their host. Thus, World Health Organization, 2010). Vigorous decisions on positive and suspicious-animals issues action plans are applied to fight the disease in should be taken based on the evaluation of the risk of developing countries, although these coun- transmission to the rest of the zoological collection, the tries are also facing notable incidences of TB possible treatment options, animal welfare, conservation considerations and, of course, the zoonotic potential of within the animal population. this pathogen. The majority of the mycobacteria from the MTC have the ability to infect wild animals Key-words: interferon-g; mycobacteria; non-tuberculo- (Table 1), whereas the susceptibility, patho- sis mycobacteria; serology; tuberculosis; zoo. geny and immune responses towards myco- bacterial infection vary widely between INTRODUCTION mycobacteria (Mostowy et al., 2005) and Tuberculosis (TB) is the common name of the host-animal species. Although some mam- disease that could be caused by different mals species seem to show a lower incidence species of bacteria belonging to the Myco- rate (e.g. equids, New World monkeys), the bacterium tuberculosis Complex (MTC) predictability of infection outcome is still *An earlier and partial version of this article was published as: EAZWV Tuberculosis Working Group (2010): Tuberculosis in zoo species: diagnostic update and management issues. In Transmissible diseases handbook (4th edn): 1–20. Kaandorp, J. (Ed.). Switzerland: European Association of Zoo and Wildlife Veterinarians Tuberculosis Working Group. This current manuscript is published with kind permission of the European Association of Zoo and Wildlife Veterinarians. Int. Zoo Yb. (2011) 45: 183–202 c 2011 The Authors. International Zoo Yearbook c 2011 The Zoological Society of London 184 RESEARCH IN ZOOS: EPIDEMIOLOGY & CONSERVATION MEDICINE MYCOBACTERIA OF THE MAJOR HISTORICAL KNOWN TUBERCULOSIS COMPLEX HOST OR BURDEN REPORTED WILD AND ZOO HOST M. tuberculosis human, non-human elephant, non-human primates, beisa oryx, addax, goats, primates birds, lowland tapir, giraffes, springboks, mongoose, rhinoceros, addra gazelle M. bovis cattle (1buffalo, bison) all ruminants, badgers, possums, meerkats, big cats, canids, rodents, non-human primates, wild boars elephants, camelids, rhinoceros, onager, horse, birds M. africanum human cattle, swine, non-human primates M. microti vole, camelids New World monkeys, big cats M. pinnipedii pinnipeds camel, tapir, big cats M. caprae goat, sheep, swine swine, cattle wild boars, red deer, white-tailed deer, camel, bison M. canetti human ? Dassie bacillus variant hyraxes meerkats Table 1. Tuberculosis complex Mycobacteria and their reported hosts. hard to guess and, therefore, the eradication immunopathological mechanisms of lympho- of TB is potentially linked to the capacity of cytes in a way that allows them to stay within early diagnosis in domestic and wild host the macrophage they infect. There are four species. Genetic key factors [e.g. interferon- groups of T-helper lymphocytes (Th). The g (IFN-g) receptor or vitamin D genotypes] Th1 group participates in cell-mediated im- are likely contributing towards these differ- munity (CMI) by producing cytokines such ences (Rhodes et al., 2003; Schluger, 2005). as IFN-g, and then activating other immune The course of the disease and occurrence of cells participating in the fight against the latent infection versus active infection are mycobacteria. The Th2 group provides help variable among species, from extremely sen- to B lymphocytes, which are in charge of sitive Old World monkeys to apparently more producing humoral responses (immunoglo- resistant equids. bulins). During the course of the disease, the Species of mycobacteria out of the MTC Th2 pathway is also activated, although hu- and other than Mycobacterium leprae (caus- moral protection seems to be poorly effective ing leprosy) are known as mycobacteria other against this intracellular pathogen. These im- than tuberculosis (MOTT), non-tuberculous munological mechanisms normally lead to mycobacteria (NTM) or atypical mycobacter- the eradication or the containment of the ia. These are mainly environmental mycobac- mycobacteria, and their systemic local effects teria found in water and soil, but they are also could be tracked to assess previous or current able to contaminate vertebrates, although the presence of mycobacteria. When the Th1 occurrence of disease seems to be more pathway fails, it could lead to active disease related to the immune status of host or to very with active replication of mycobacteria in the close or repeated contact. surrounding cells (macrophage, dendritic Except for M. leprae, all mycobacteria are cells) or, more often, to containment within a facultative intracellular pathogens, often in- granuloma, which is the specific latency vading macrophages as the first host cell. phase of mycobacterial infection that is able Thus, a direct diagnostic will require cellular to last for years. The probability of latency samples and techniques to highlight the pre- depends on the host species, the mycobacteria sence of mycobacteria (stains) or their DNA. species, the infection dose and the route of For their survival, mycobacteria are driving transmission. Int. Zoo Yb. (2011) 45: 183–202 c 2011 The Authors. International Zoo Yearbook c 2011 The Zoological Society of London TUBERCULOSIS IN ZOO ANIMALS 185 TRANSMISSION AND ZOONOTIC mycobacteria already reported within zoolo- RISK FROM ZOO ANIMALS gical collections, whereas ‘dassie bacillus’ was found in Meerkats Suricata suricatta Interspecific transmission can occur between and hyraxes Procavia sp but never reported taxonomically distant species as has been in humans. Atypical mycobacteria found in recorded in the literature (Lewerin et al., zoo species may also infect humans (espe- 2005; Jurcynski et al., 2007; Moser et al., cially if immunosuppressed) but they cannot 2008). Thus, silent extension of TB into a be named as truly ‘zoonotic’ as they are zoological collection owing to an increase of mainly acquired from the environment. latent-form cases should be a real concern for Third, the route of absorption will have a zoo managers. Transmission routes between bearing on the zoonotic risk of any mycobac- animals are directly associated with the loca- terial disease. Respiratory shedding of any lization of granulomas in shedding indivi- mycobacterial pathogens will have greater duals: pulmonary lesions generally lead to zoonotic potential than oral absorption of airborne transmission, whereas mesenteric mycobacteria. lymph-node lesions may lead to intestinal Fourth, exposure is another essential com- excretion of mycobacteria. Horizontal trans- ponent of any zoonotic spread of mycobac- mission is the most significant means of teria. Prolonged exposure and close contact contamination but vertical transmission could will increase the likelihood of zoonotic trans- also occur through placental or umbilical mission. The risk for TB transmission from infection (Kaneene & Pfeiffer, 2006). an animal with a case of active TB is higher The potential for a human to acquire any for daily handlers than for people with only mycobacterial disease from a zoo animal brief contact, such as members of the viewing requires a combination of several events. public. Trained elephants (Furley,
Recommended publications
  • Role of the Laboratory in TB Diagnosis and Management
    Role of the Laboratory in TB Diagnosis and Management Michael Pentella, Ph.D., D(ABMM), CIC Associate Director University Hygienic Lab Clinical Associate Professor, College of Public Health, University of Iowa Objectives • At the completion of this TB webinar, participants will: – Be familiar with the tests to diagnose latent tuberculosis and active tuberculosis – Recognize the tests available to detect Mycobacterium tuberculosis in clinical specimens – Understand the value of molecular tests to detect TB History of TB Diagnostics • Robert Koch announced in 1882 that he had found a microbe, Mycobacterium tuberculosis, that was the cause of "White Death", a disease responsible for one-seventh of all deaths in Europe in the late part of the 1800's. 1 Timeline of TB Infection Exposure 4-6 wks Latent Lifelong Adaptive Yrs-decades Containment T cell TB response (LTBI)* Active TB *Prevention efforts focus on detecting LTBI, most LTBI do not advance to active disease but those patients are at high risk particularly if they become immunocompromised. TB Infection vs. TB Disease TB in the body TB in the body Chest X-ray normal Chest X-ray abnormal Sputum not done Sputum smear and culture positive No symptoms Symptoms: cough, fever, weight loss Not infectious Infectious Not a case of TB Case of TB TB Algorithm • Collect sputum specimens at 3 different times and 8 hours apart (at least one must be a first morning specimen) for AFB smear and mycobacterial culture. • Perform MTD or NAAT test on the first smear positive sputum specimen 2 Diagnosis of
    [Show full text]
  • Mycobacterium Caprae – the First Case of the Human Infection in Poland
    Annals of Agricultural and Environmental Medicine 2020, Vol 27, No 1, 151–153 CASE REPORT www.aaem.pl Mycobacterium caprae – the first case of the human infection in Poland Monika Kozińska1,A-D , Monika Krajewska-Wędzina2,B , Ewa Augustynowicz-Kopeć1,A,C-E 1 Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute (NTLD), Warsaw, Poland 2 Department of Microbiology, National Veterinary Research Institute (NVRI), Puławy, Poland A – Research concept and design, B – Collection and/or assembly of data, C – Data analysis and interpretation, D – Writing the article, E – Critical revision of the article, F – Final approval of article Kozińska M, Augustynowicz-Kopeć E, Krajewska-Wędzina M. Mycobacterium caprae – the first case of the human infection in Poland. Ann Agric Environ Med. 2020; 27(1): 151–153. doi: 10.26444/aaem/108442 Abstract The strain of tuberculous mycobacteria called Mycobacterium caprae infects many wild and domestic animals; however, because of its zoonotic potential and possibility of transmission between animals and humans, it poses a serious threat to public health. Due to diagnostic limitations regarding identification of MTB strains available data regarding the incidence of M. caprae, human infection does not reflect the actual size of the problem. Despite the fact that the possible routes of tuberculosis transmission are known, the epidemiological map of this zoonosis remains underestimated. The progress in diagnostic techniques, application of advanced methods of mycobacterium genome differentiation and cooperation between scientists in the field of veterinary medicine and microbiology, have a profound meaning for understanding the phenomenon of bovine tuberculosis and its supervise its incidence. This is the first bacteriologically confirmed case of human infection of M.
    [Show full text]
  • Species of Mycobacterium Tuberculosis Complex and Nontuberculous Mycobacteria in Respiratory Specimens from Serbia
    Arch. Biol. Sci., Belgrade, 66 (2), 553-561, 2014 DOI:10.2298/ABS1402553Z SPECIES OF MYCOBACTERIUM TUBERCULOSIS COMPLEX AND NONTUBERCULOUS MYCOBACTERIA IN RESPIRATORY SPECIMENS FROM SERBIA IRENA ŽIVANOVIĆ1, DRAGANA VUKOVIĆ1, IVANA DAKIĆ1 and BRANISLAVA SAVIĆ1 1 Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia Abstract - This study aimed to provide the first comprehensive report into the local pattern of mycobacterial isolation. We used the GenoType MTBC and CM/AS assays (Hain Lifescience) to perform speciation of 1 096 mycobacterial cultures isolated from respiratory specimens, one culture per patient, in Serbia over a 12-month period. The only species of the Mycobacterium tuberculosis complex (MTBC) identified in our study was M. tuberculosis, with an isolation rate of 88.8%. Ten different species of nontuberculous mycobacteria (NTM) were recognized, and the five most frequently isolated spe- cies were, in descending order, M. xenopi, M. peregrinum, M. gordonae, M. avium and M. chelonae. In total, NTM isolates accounted for 11.2% of all isolates of mycobacteria identified in pulmonary specimens. Our results suggest that routine differentiation among members of the MTBC is not necessary, while routine speciation of NTM is required. Key words: Mycobacterium tuberculosis, nontuberculous mycobacteria, identification, GenoType MTBC, GenoType CM/AS INTRODUCTION M. mungi in banded mongooses (Alexander et al., 2010), and M. orygis in animals of the Bovidae family Currently, the genus Mycobacterium encompasses (van Ingen et al., 2012) have recently been described. 163 species and 13 subspecies described in the list of Although all members of the complex are considered bacterial species with approved names (www.bacte- tubercle bacilli, the most important causative agent rio.cict.fr/m/mycobacterium.html).
    [Show full text]
  • Bison Bonasus
    Annals of Agricultural and Environmental Medicine ORIGINAL ARTICLE www.aaem.pl Microbiological and molecular monitoring for ONLINE FIRST bovine tuberculosis inONLINE the Polish population FIRST of European bison (Bison bonasus) Anna Didkowska1,A-F , Blanka Orłowska1,A-C,F , Monika Krajewska-Wędzina2,A,C,F , Ewa Augustynowicz-Kopeć3,A-C,F , Sylwia Brzezińska3,B-C,E-F , Marta Żygowska1,A-B,D,F , Jan Wiśniewski1,B-C,F , Stanisław Kaczor4,B,F , Mirosław Welz5,A,C,F , Wanda Olech6,A,E-F , Krzysztof Anusz1,A-F 1 Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, University of Life Sciences (SGGW), Warsaw, Poland 2 Department of Microbiology, National Veterinary Research Institute, Puławy, Poland ONLINE FIRST ONLINE3 FIRST Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland 4 County Veterinary Inspectorate, Sanok, Poland 5 General Veterinary Inspectorate, Warsaw, Poland 6 Department of Animal Genetics and Conservation, Institute of Animal Sciences, University of Life Sciences (SGGW), Warsaw, Poland A – Research concept and design, B – Collection and/or assembly of data, C – Data analysis and interpretation, D – Writing the article, E – Critical revision of the article, F – Final approval of article Didkowska A, Orłowska B, Krajewska-Wędzina M, Augustynowicz-Kopeć E, Brzezińska S, Żygowska M, Wiśniewski J, Kaczor S, Welz M, Olech W, Anusz K. Microbiological and molecular monitoring for bovine tuberculosis in the Polish population of European bison (Bison bonasus). Ann Agric Environ Med. doi: 10.26444/aaem/130822 Abstract Introduction and objective. In recent years, bovine tuberculosis (BTB) has become one of the major health hazards facing the European bison (EB, Bison bonasus), a vulnerable species that requires active protection, including regular and effective health monitoring.
    [Show full text]
  • Detection, Survival and Infectious Potential of Mycobacterium Tuberculosis in the Environment: a Review of the Evidence and Epidemiological Implications
    REVIEW TUBERCULOSIS Detection, survival and infectious potential of Mycobacterium tuberculosis in the environment: a review of the evidence and epidemiological implications Leonardo Martinez1, Renu Verma1, Julio Croda2,3, C. Robert Horsburgh Jr4,5, Katharine S. Walter1, Nicholas Degner1, Keren Middelkoop6,7, Anastasia Koch8, Sabine Hermans6,9, Digby F. Warner 8,10, Robin Wood6, Frank Cobelens9 and Jason R. Andrews1 Affiliations: 1Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Stanford, CA, USA. 2Oswaldo Cruz Foundation, Campo Grande and Salvador, Brazil. 3School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil. 4Dept of Medicine, Boston University School of Medicine, Boston, MA, USA. 5Dept of Epidemiology, Biostatistics and Global Health, Boston University School of Public Health, Boston, MA, USA. 6The Desmond Tutu HIV Centre, Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. 7Dept of Medicine, University of Cape Town, Cape Town, South Africa. 8SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Dept of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. 9Dept of Global Health, Amsterdam Institute for Global Health and Development, Academic Medical Center, Amsterdam, The Netherlands. 10Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Diseases
    [Show full text]
  • Epidemiological Characterization of Mycobacterium Caprae Strains
    Orłowska et al. BMC Veterinary Research (2020) 16:362 https://doi.org/10.1186/s12917-020-02581-3 RESEARCH ARTICLE Open Access Epidemiological characterization of Mycobacterium caprae strains isolated from wildlife in the Bieszczady Mountains, on the border of Southeast Poland Blanka Orłowska1*, Monika Krajewska-Wędzina2, Ewa Augustynowicz-Kopeć3, Monika Kozińska3, Sylwia Brzezińska3, Anna Zabost3, Anna Didkowska1, Mirosław Welz4, Stanisław Kaczor5, Piotr Żmuda6 and Krzysztof Anusz1 Abstract Background: The majority of animal tuberculosis (TB) cases reported in wildlife in Poland over the past 20 years have concerned the European bison inhabiting the Bieszczady Mountains in Southeast Poland: an area running along the border of Southeast Poland. As no TB cases have been reported in domestic animals in this region since 2005, any occurrence of TB in the free-living animals inhabiting this area might pose a real threat to local livestock and result in the loss of disease-free status. The aim of the study was to describe the occurrence of tuberculosis in the wildlife of the Bieszczady Mountains and determine the microbiological and molecular characteristics of any cultured strains. Lymph node samples were collected for analysis from 274 free-living animals, including European bison, red foxes, badgers, red deer, wild boar and roe deer between 2011 and 2017. Löwenstein–Jensen and Stonebrink media were used for culture. Molecular identification of strains was performed based on hsp65 sequence analysis, the GenoType®MTBC (Hain Lifescience, Germany) test, spoligotyping and MIRU-VNTR analysis. Results: Mycobacterium caprae was isolated from the lymph nodes of 21 out of 55 wild boar (38.2%; CI 95%: 26.5%, 51.4%) and one roe deer.
    [Show full text]
  • Mycobacterium Caprae Is a Pathogen That Can Infect Animals and Humans
    DISPATCHES spoligotyping (9). The relative contribution of each animal Mycobacterium and its role in animal tuberculosis are discussed. caprae Infection in The Study This study included 791 M. caprae isolates from Livestock and domestic goats (Capra aegagrus hircus, n = 542), sheep (Ovis aries, n = 2), cattle (Bos taurus, n = 229), domestic Wildlife, Spain pigs (S. scrofa domestica, n = 2), wild boars (S. scrofa, n Sabrina Rodríguez, Javier Bezos, = 14), red deer (Cervus elaphus, n = 1), and a fox (Vulpes Beatriz Romero, Lucía de Juan, Julio Álvarez, vulpes, n = 1). The samples originated from skin test– Elena Castellanos, Nuria Moya, positive animals identifi ed within the national or regional Francisco Lozano, M. Tariq Javed, eradication programs, from abattoir surveillance, and from José L. Sáez-Llorente, Ernesto Liébana, postmortem inspections of wildlife, and were collected Ana Mateos, Lucas Domínguez, Alicia Aranaz, from 1992 through June 2009 in different geographic and The Spanish Network on Surveillance and areas in Spain (Figure 1). Spoligotyping was performed Monitoring of Animal Tuberculosis1 as described (9), and authoritative names for spoligotype Mycobacterium caprae is a pathogen that can infect animals and humans. To better understand the epidemiology of M. caprae, we spoligotyped 791 animal isolates. Results suggest infection is widespread in Spain, affecting 6 domestic and wild animal species. The epidemiology is driven by infections in caprids, although the organism has emerged in cattle. ycobacterium caprae is a cluster within the M. M tuberculosis complex (online Technical Appendix, www.cdc.gov/EID/content/17/3/532-Techapp.pdf). This pathogen has been recognized mainly in central Europe, where it has been occasionally isolated from tuberculous lesions from cattle (1–5), pigs (4), red deer (Cervus elaphus) (4,5), and wild boars (Sus scrofa) (3).
    [Show full text]
  • Mycobacteria in Northern Tanzania: Exposure and Risk of Disease Among Agropastoralists and Programmatic Challenges in Investigation of Re-Treatment Cases
    0\FREDFWHULDLQQRUWKHUQ7DQ]DQLD ([SRVXUHDQGULVNRIGLVHDVHDPRQJDJURSDVWRUDOLVWVDQG SURJUDPPDWLFFKDOOHQJHVLQLQYHVWLJDWLRQRIUHWUHDWPHQWFDVHV $QGUHZ0DUWLQ.LODOH Dissertation for the degree of philosophiae doctor (PhD) at the University of Bergen Dissertation date: © Copyright: Andrew Martin Kilale, 2015 The material in this publication is protected by copyright law Title: Mycobacteria in northern Tanzania: Exposure and risk of disease among agropastoralists and programmatic challenges in investigation of re-treatment cases Author: Andrew Martin Kilale Print: AiT Bjerch AS / University of Bergen ii Dedication To the memory of my beloved Father, the late Martin Meza and my Mother, Twingilage Mwandawila Sanga iii Acknowledgements I thank His Almighty God for blessing me with this opportunity and keeping me strong throughout the period of my studies. My heartfelt acknowledgement goes to the University of Bergen, Centre for International Health for providing me the opportunity for this training. I wish to express my deepest sincere gratitude to my supervisors Prof. Sven Gudmund Hinderaker and Dr. Bernard James Ngowi for their tireless efforts, encouragement, support and always being available for the guidance. My special thanks goes to Dr. Godfrey Sayoki Mfinanga the Director at Muhimbili Medical Research Centre and Afrique One Consortium Deputy Director whose love and dedication to health research appointed me to join the consortium as a PhD student. My compliment goes to my family, my wife Elina, my son Audphas, and my daughters Irene and Doris for their intimate love, endless support, encouragement, prayers and endurance during my absence have been essential. I would like to express my earnest thanks to my employer, the National Institute for Medical Research and Welcome Trust through Afrique One Consortium for their financial support for research and my studies.
    [Show full text]
  • Whole Genome Sequence Analysis of Mycobacterium Bovis Cattle Isolates, Algeria
    pathogens Article Whole Genome Sequence Analysis of Mycobacterium bovis Cattle Isolates, Algeria Fatah Tazerart 1,2,3, Jamal Saad 3,4, Naima Sahraoui 2, Djamel Yala 5, Abdellatif Niar 6 and Michel Drancourt 3,4,* 1 Laboratoire d’Agro Biotechnologie et de Nutrition des Zones Semi Arides, Université Ibn Khaldoun, Tiaret 14000, Algeria; [email protected] 2 Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria; [email protected] 3 Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France; [email protected] 4 Faculté de Médecine, Aix-Marseille-Université, IHU Méditerranée Infection, 13005 Marseille, France 5 Laboratoire National de Référence pour la Tuberculose et Mycobactéries, Institut Pasteur d’Algérie, Alger 16015, Algeria; [email protected] 6 Laboratoire de Reproduction des Animaux de la Ferme, Université Ibn Khaldoun, Tiaret 14000, Algeria; [email protected] * Correspondence: [email protected] Abstract: Mycobacterium bovis (M. bovis), a Mycobacterium tuberculosis complex species responsible for tuberculosis in cattle and zoonotic tuberculosis in humans, is present in Algeria. In Algeria however, the M. bovis population structure is unknown, limiting understanding of the sources and transmission of bovine tuberculosis. In this study, we identified the whole genome sequence (WGS) of 13 M. bovis strains isolated from animals exhibiting lesions compatible with tuberculosis, which were slaughtered and inspected in five slaughterhouses in Algeria. We found that six isolates were grouped together with reference clinical strains of M. bovis genotype-Unknown2. One isolate was related to M. Citation: Tazerart, F.; Saad, J.; bovis genotype-Unknown7, one isolate was related to M. bovis genotype-Unknown4, three isolates Sahraoui, N.; Yala, D.; Niar, A.; belonged to M.
    [Show full text]
  • Computational Identification of the Proteins Associated with Quorum
    fmicb-10-03011 January 22, 2020 Time: 12:51 # 1 ORIGINAL RESEARCH published: 22 January 2020 doi: 10.3389/fmicb.2019.03011 Computational Identification of the Proteins Associated With Quorum Sensing and Biofilm Formation in Mycobacterium tuberculosis Shubhada R. Hegde* Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India With prolonged therapy and increased instances of drug resistance, tuberculosis is viewed as a serious infectious disease causing high mortality. Emerging concepts in Mycobacterium tuberculosis pathogenicity include biofilm formation, which endows bacterial survival in the host for a long time. To tackle chronic tuberculosis infection, a detailed understanding of the bacterial survival mechanisms is crucial. Using comparative genomics and literature mining, 115 M. tuberculosis proteins were shortlisted for their likely association with biofilm formation or quorum sensing. These include essential genes such as secA2, lpqY-sugABC, Rv1176c, and Rv0195, many of which are also known virulence factors. Furthermore, the functional relationship among these proteins was established by considering known protein-protein interactions, Edited by: regulatory interactions, and gene expression correlation data/information. Graph Rachel Susan Poretsky, centrality and motif analyses predicted the importance of proteins, such as Rv0081, University of Illinois at Chicago, United States DevR, RegX3, Rv0097, and Rv1996 in M. tuberculosis biofilm formation. Analysis Reviewed by: of conservation across other biofilm-forming bacteria suggests that most of these Seyed Ehtesham Hasnain, genes are conserved in mycobacteria. As the processes, such as quorum sensing, Jamia Hamdard University, India Nasreen Zafar Ehtesham, leading to biofilm formation involve diverse pathways and interactions between National Institute of Pathology, India proteins, these system-wide studies provide a novel perspective toward understanding *Correspondence: mycobacterial persistence.
    [Show full text]
  • Genome Sequencing of Mycobacterium Pinnipedii Strains
    Silva-Pereira et al. BMC Genomics (2019) 20:1030 https://doi.org/10.1186/s12864-019-6407-5 RESEARCH ARTICLE Open Access Genome sequencing of Mycobacterium pinnipedii strains: genetic characterization and evidence of superinfection in a South American sea lion (Otaria flavescens) Taiana T. Silva-Pereira1,2, Cássia Y. Ikuta2, Cristina K. Zimpel1,2, Naila C. S. Camargo1,2, Antônio F. de Souza Filho2, José S. Ferreira Neto2, Marcos B. Heinemann2 and Ana M. S. Guimarães1,2* Abstract Background: Mycobacterium pinnipedii, a member of the Mycobacterium tuberculosis Complex (MTBC), is capable of infecting several host species, including humans. Recently, ancient DNA from this organism was recovered from pre-Columbian mummies of Peru, sparking debate over the origin and frequency of tuberculosis in the Americas prior to European colonization. Results: We present the first comparative genomic study of this bacterial species, starting from the genome sequencing of two M. pinnipedii isolates (MP1 and MP2) obtained from different organs of a stranded South American sea lion. Our results indicate that MP1 and MP2 differ by 113 SNPs (single nucleotide polymorphisms) and 46 indels, constituting the first report of a mixed-strain infection in a sea lion. SNP annotation analyses indicate that genes of the VapBC family, a toxin-antitoxin system, and genes related to cell wall remodeling are under evolutionary pressure for protein sequence change in these strains. OrthoMCL analysis with seven modern isolates of M. pinnipedii shows that these strains have highly similar proteomes. Gene variations were only marginally associated with hypothetical proteins and PE/PPE (proline-glutamate and proline-proline-glutamate, respectively) gene families.
    [Show full text]
  • Mycobacterium Caprae Infection in Livestock and Wildlife, Spain
    Article DOI: 10.3201/eid1703.100618 Mycobacterium caprae Infection in Livestock and Wildlife, Spain Technical Appendix Specific Characteristics Mycobacterium caprae (1), formerly known as M. tuberculosis subsp. caprae (2), and M. bovis subsp. caprae (3) forms a genetically distinct cluster within the M. tuberculosis complex. The main features differentiating these isolates from the other members are a special combination of polymorphisms at pyrazinamidase (pncA), catalase (katG), and subunits A and B of the gyrase (gyrA and gyrβ) genes (4,5); the pattern of regions of difference (presence of RD4 and absence of RD5 to 10) (6–8); and specific patterns obtained by direct variable repeat spacer oligonucleotide typing technique (spoligotyping); and restriction fragment length polymorphism associated with IS6110, polymorphic GC-rich sequences, and direct repeat elements (9,10). Bacteriology Tissue samples consisted usually of retropharyngeal, mediastinal, bronchial, and mesenteric lymph nodes, lung and liver. All samples were maintained at –20oC until culture. Samples from each animal were pooled, homogenized with sterile distilled water, decontaminated with 0.35% hexadecylpyridinium chloride for 30 min (11), centrifuged at 1,068 × g for 30 min, and cultured on Coletsos and 0.2% (w/v) pyruvate-enriched Löwenstein-Jensen media (bioMérieux España and Biomedics, Madrid, Spain) at 37oC for 3 mo. The isolates were identified as members of the M. tuberculosis complex by PCR amplification of Mycobacterium genus–specific 16S rRNA fragment (12) and MPB70 sequences (13) (primers used in the study are listed in the Table). All PCRs were performed on heat-killed cell suspensions. Spoligotyping and Data Analysis The spacer oligonucleotide typing (spoligotyping) method was performed as described by Kamerbeek et al.
    [Show full text]