Engineering Tropane Biosynthetic Pathway in Hyoscyamus Niger Hairy Root Cultures

Total Page:16

File Type:pdf, Size:1020Kb

Engineering Tropane Biosynthetic Pathway in Hyoscyamus Niger Hairy Root Cultures Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures Lei Zhang*†, Ruxian Ding†, Yourong Chai‡§, Mercedes Bonfill¶, Elisabet Moyanoʈ, Kirsi-Marja Oksman-Caldentey**, Tiefeng Xu§, Yan Pi*, Zinan Wang*, Hanming Zhang†, Guoyin Kai§, Zhihua Liao*, Xiaofen Sun*, and Kexuan Tang*†† *State Key Laboratory of Genetic Engineering, Morgan-Tan International Center for Life Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China; †School of Pharmacy, Second Military Medical University, Shanghai 200433, China; ¶Unidad de Fisiologı´aVegetal, Facultad de Farmacia, Universidad de Barcelona, Diagonal 643, E-08028 Barcelona, Spain; ʈDepartament de Cie`ncies Experimentals i de la Salut, Universitat Pompeu Fabra, Avenida Dr. Aiguader 80, E-08003 Barcelona, Spain; **VTT Biotechnology, P.O. Box 1500, FIN-02044 VTT (Espoo), Finland; ‡School of Agronomy and Life Sciences, Southwest Agricultural University, Chongqing 400716, China; and §Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200030, China Communicated by Jiazhen Tan, Fudan University, Shanghai, China, March 2, 2004 (received for review July 10, 2003) Scopolamine is a pharmaceutically important tropane alkaloid methylation of putrescine catalyzed by PMT is the first commit- extensively used as an anticholinergic agent. Here, we report the ted step in the biosynthesis of these alkaloids (7). Scopolamine, simultaneous introduction and overexpression of genes encoding which is the 6,7-␤-epoxide of hyoscyamine, is formed from the rate-limiting upstream enzyme putrescine N-methyltransferase hyoscyamine by means of 6␤-hydroxyhyoscyamine. Hyoscya- (PMT) and the downstream enzyme hyoscyamine 6 ␤-hydroxylase mine 6␤-hydroxylase (H6H, EC 1.14.11.11), a 2-oxo-glutarate- (H6H) of scopolamine biosynthesis in transgenic henbane (Hyoscy- dependent dioxygenase, catalyzes the hydroxylation of hyoscy- amus niger) hairy root cultures. Transgenic hairy root lines express- amine to 6␤-hydroxyhyoscyamine, as well as the epoxidation of ing both pmt and h6h produced significantly higher (P < 0.05) 6␤-hydroxyhyoscyamine to scopolamine (1, 8, 9) (Fig. 1). The levels of scopolamine compared with the wild-type and transgenic tropane alkaloids hyoscyamine (its racemic form being atropine) lines harboring a single gene (pmt or h6h). The best line (T3) and scopolamine are structurally related and are derived from a produced 411 mg͞liter scopolamine, which was over nine times common intermediate, the N-methylpyrrolinium cation. They more than that in the wild type (43 mg͞liter) and more than twice are used medicinally as anticholinergic agents that act on the the amount in the highest scopolamine–producing h6h single-gene parasympathetic nerve system. Because they differ in their transgenic line H11 (184 mg͞liter). To our knowledge, this is the actions on the central nervous system, there is currently a 10-fold highest scopolamine content achieved through genetic engineer- higher commercial demand for scopolamine, in the N- ing of a plant. We conclude that transgenic plants harboring both butylbromide form, than for hyoscyamine and atropine com- pmt and h6h possessed an increased flux in the tropane alkaloid bined (9). Hyoscyamine and scopolamine are mostly synthesized biosynthetic pathway that enhanced scopolamine yield, which was in young root cells and translocated to the aerial parts of the more efficient than plants harboring only one of the two genes. It plant (10). Hence, cultured roots are capable of accumulating seems that the pulling force of the downstream enzyme (the faucet high concentrations of these metabolites. Small-scale jar fer- enzyme) H6H plays a more important role in stimulating scopol- menters for the hairy roots of several Solanaceous species have amine accumulation in H. niger whereas the functioning of the been developed as prospective in vitro systems for commercial upstream enzyme PMT is increased proportionally. This study production of tropane alkaloids, but the scopolamine levels in provides an effective approach for large-scale commercial pro- these systems are often much lower than those of hyoscyamine duction of scopolamine by using hairy root culture systems as (11). Researchers have also carried out genetic engineering of bioreactors. pharmaceutically important tropane alkaloids (12), in which the conversion of hyoscyamine to the much more valuable scopol- Agrobacterium ͉ hyoscyamine 6␤-hydroxylase ͉ putrescine amine is the major goal. Releasing the expression of key N-methyltransferase ͉ scopolamine ͉ transformation enzymatic activities from the strict regulation to which they are normally subjected is expected to increase product formation. A econdary metabolites are low-molecular-weight compounds rough correlation has been found between H6H activity and the Sproduced widely throughout the plant kingdom. Plant alka- ratio of scopolamine to hyoscyamine in scopolamine-producing loids constitute the largest groups of natural products, providing cultured roots (9). H6H, therefore, is a promising target enzyme many pharmacologically active compounds. The in-depth un- that, if overexpressed in hyoscyamine-accumulating tissues, derstanding of biosynthetic pathways, along with the increasing would result in increased scopolamine levels in the transfor- number of cloned genes involved in biosynthesis, enable the mants. Several hyoscyamine-rich but scopolamine-poor plants exploration of metabolic engineering as a potential effective that had been considered unattractive for commercial exploita- approach to increase the yield of specific metabolites by enhanc- tion may now become promising candidates for large-scale ing rate-limiting steps or by blocking competitive pathways. A scopolamine production by means of cultured roots. The hy- few genera of the plant family Solanaceae, including Hyoscyamus, droxylase gene from Hyoscyamus niger has been introduced into Duboisia, Atropa, and Scopolia, are able to produce biologically Atropa belladonna, a typical hyoscyamine-rich tropane alkaloid- active nicotine and tropane alkaloids simultaneously (1–3). Both producing plant species (13). Several transgenic root clones tropane and pyridine alkaloid biosynthetic pathways share a showed 5-fold higher concentrations of scopolamine than the common polyamine metabolism in their early steps. Putrescine wild-type hairy roots. By overexpressing h6h in Hyoscyamus is a common precursor of both polyamines, such as spermidine muticus hairy root cultures, the best transgenic clone had a and spermine, and tropane͞pyridine alkaloids (4–6). Putrescine N-methyltransferase (PMT; EC 2.1.1.53) is the enzyme involved Abbreviations: H6H, hyoscyamine 6 ␤-hydroxylase; PMT, putrescine N-methyltransferase; P, in the removal of putrescine from the polyamine pool because it transgenic hairy root lines generated from pmt single gene transformation; H, transgenic catalyses the N-methylation of this diamine to form N- hairy root lines generated from h6h single gene-transformation; T, transgenic hairy root methylputrescine (mP). Because both the tropane ring moiety of lines generated from pmt͞h6h double gene-transformation. the tropane alkaloids and the pyrrolidine ring of nicotine are ††To whom correspondence should be addressed. E-mail: [email protected]. derived from putrescine by way of mP synthesis, the N- © 2004 by The National Academy of Sciences of the USA 6786–6791 ͉ PNAS ͉ April 27, 2004 ͉ vol. 101 ͉ no. 17 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0401391101 Downloaded by guest on October 1, 2021 genes that control the expression of multiple pathway enzyme genes, or both. A good example is the bioengineering of the ␤-carotene biosynthetic pathway in the major staple food crop rice (Oryza sativa). By overexpressing the combination of genes encoding for three key enzymes (phytoene synthase, phytoene desaturase, and lycopene ␤-cyclase), a final ␤-carotene (previ- tamin A) concentration of 2 mg͞kg was detected in dry rice endosperm (18). So far, explants of H. niger have not been used for scopolamine bioengineering. Commercial cultivars of H. niger contain the natural amounts of scopolamine, which are not very high. Hence, there is a very strong need to increase scopolamine production rates for commercial production. Here, we report the introduc- tion of gene constructs containing cDNA clones of pmt and h6h, driven by the constitutive cauliflower mosaic virus 35S promoter, into H. niger, either one gene at a time, or both genes together. The morphology, growth rate, activities of alkaloid pathway enzymes, and alkaloid production capacities of these engineered hairy root lines were investigated. Materials and Methods Construction of pmt and h6h Binary Expression Vector. The mono- valent pmt expression plasmid pBMI was previously constructed (16). Disarmed Agrobacterium tumefaciens strain C58C1 harbor- ing both pBMI and Agrobacterium rhizogenes Ri plasmid pRiA4, containing a single pmt gene, were used for plant transformation (16, 19). The monovalent h6h expression plasmid pLAL21, constructed by Jouhikainen et al. (14), was used in the study. Plasmid LAL21 was isolated from Escherichia coli strain DH5␣ and transformed into A. rhizogenes LBA9402 by electroporation (20). A positive clone, after confirmation by PCR and enzymatic digestion analysis for the presence of the h6h gene, was used for plant transformation. The pBMI and pLAL21 were used to construct a bivalent expression plasmid containing both pmt and h6h genes. The pBMI
Recommended publications
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Nightshade”—A Hierarchical Classification Approach to T Identification of Hallucinogenic Solanaceae Spp
    Talanta 204 (2019) 739–746 Contents lists available at ScienceDirect Talanta journal homepage: www.elsevier.com/locate/talanta Call it a “nightshade”—A hierarchical classification approach to T identification of hallucinogenic Solanaceae spp. using DART-HRMS-derived chemical signatures ∗ Samira Beyramysoltan, Nana-Hawwa Abdul-Rahman, Rabi A. Musah Department of Chemistry, State University of New York at Albany, 1400 Washington Ave, Albany, NY, 12222, USA ARTICLE INFO ABSTRACT Keywords: Plants that produce atropine and scopolamine fall under several genera within the nightshade family. Both Hierarchical classification atropine and scopolamine are used clinically, but they are also important in a forensics context because they are Psychoactive plants abused recreationally for their psychoactive properties. The accurate species attribution of these plants, which Seed species identifiction are related taxonomically, and which all contain the same characteristic biomarkers, is a challenging problem in Metabolome profiling both forensics and horticulture, as the plants are not only mind-altering, but are also important in landscaping as Direct analysis in real time-mass spectrometry ornamentals. Ambient ionization mass spectrometry in combination with a hierarchical classification workflow Chemometrics is shown to enable species identification of these plants. The hierarchical classification simplifies the classifi- cation problem to primarily consider the subset of models that account for the hierarchy taxonomy, instead of having it be based on discrimination between species using a single flat classification model. Accordingly, the seeds of 24 nightshade plant species spanning 5 genera (i.e. Atropa, Brugmansia, Datura, Hyocyamus and Mandragora), were analyzed by direct analysis in real time-high resolution mass spectrometry (DART-HRMS) with minimal sample preparation required.
    [Show full text]
  • The Mandrake and the Ancient World,” the Evangelical Quarterly 28.2 (1956): 87-92
    R.K. Harrison, “The Mandrake And The Ancient World,” The Evangelical Quarterly 28.2 (1956): 87-92. The Mandrake and the Ancient World R.K. Harrison [p.87] Professor Harrison, of the Department of Old Testament in Huron College, University of Western Ontario, has already shown by articles in THE EVANGELICAL QUARTERLY his interest and competence in the natural history of the Bible. Here he examines one of the more curious Biblical plants. The mandrake is one of the plants which still grows widely in the Middle East, and which has claimed magical associations from a very remote period. It is generally assigned the botanical name of Mandragora officinarum L..1 and is a perennial of the order Solanaceae. It claims affinity with the potato and eggplant, and is closely allied to the Atropa belladonna L.,2 with which it is not infrequently confused by some writers. The modern Arab knows it by a number of names, including Tuffah£ el Majanin (‘Madmen’s Apple) and Beid el Jinn (Eggs of the Jinn), apparently a reference to the ability of the plant to invigorate and stimulate the senses even to the point of mental imbalance. The former name may perhaps be a survival of the belief found in Oriental folk-lore regarding the magical herb Baaras, with which the mandrake is identified by some authorities.3 According to the legends associated with this plant, it was highly esteemed amongst the ancients on account of its pronounced magical properties. But because of the potency of these attributes it was an extremely hazardous undertaking for anyone to gather the plant, and many who attempted it were supposed to have paid for their daring with [p.88] sickness and death.4 Once the herb had been gathered, however, it availed for a number of diseases, and in antiquity it was most reputed for its ability to cure depression and general disorders of the mind.
    [Show full text]
  • Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com
    Hallucinogens And Dissociative Drug Use And Addiction Introduction Hallucinogens are a diverse group of drugs that cause alterations in perception, thought, or mood. This heterogeneous group has compounds with different chemical structures, different mechanisms of action, and different adverse effects. Despite their description, most hallucinogens do not consistently cause hallucinations. The drugs are more likely to cause changes in mood or in thought than actual hallucinations. Hallucinogenic substances that form naturally have been used worldwide for millennia to induce altered states for religious or spiritual purposes. While these practices still exist, the more common use of hallucinogens today involves the recreational use of synthetic hallucinogens. Hallucinogen And Dissociative Drug Toxicity Hallucinogens comprise a collection of compounds that are used to induce hallucinations or alterations of consciousness. Hallucinogens are drugs that cause alteration of visual, auditory, or tactile perceptions; they are also referred to as a class of drugs that cause alteration of thought and emotion. Hallucinogens disrupt a person’s ability to think and communicate effectively. Hallucinations are defined as false sensations that have no basis in reality: The sensory experience is not actually there. The term “hallucinogen” is slightly misleading because hallucinogens do not consistently cause hallucinations. 1 ce4less.com ce4less.com ce4less.com ce4less.com ce4less.com ce4less.com ce4less.com How hallucinogens cause alterations in a person’s sensory experience is not entirely understood. Hallucinogens work, at least in part, by disrupting communication between neurotransmitter systems throughout the body including those that regulate sleep, hunger, sexual behavior and muscle control. Patients under the influence of hallucinogens may show a wide range of unusual and often sudden, volatile behaviors with the potential to rapidly fluctuate from a relaxed, euphoric state to one of extreme agitation and aggression.
    [Show full text]
  • The Advisability and Feasibility of Developing USP Standards for Medical Cannabis Gabriel I
    STIMULI TO THE REVISION PROCESS Stimuli articles do not necessarily reflect the policies of the USPC or the USP Council of Experts The Advisability and Feasibility of Developing USP Standards for Medical Cannabis Gabriel I. Giancaspro, Nam-Cheol Kim, Jaap Venema, Susan de Mars, Jennifer Devine, Carlos Celestino, Christine E. Feaster, Ben A. Firschein, Mary S. Waddell, Stephen M. Gardner, and Earl Jones Jr.a ABSTRACT This Stimuli article analyzes the need for public quality standards for medical cannabis (defined herein as marijuana used for medical purposes under state laws) and the potential role of the U.S. Pharmacopeial Convention (USP) in addressing that need.1 Following legalization of the medical use of cannabis in several U.S. states and internationally, USP has received requests to investigate the advisability and feasibility of developing quality standards for medical cannabis. Development of quality standards for medical cannabis requires consideration of a wide range of scientific, legal, and policy issues that reach far beyond its classification as a botanical drug or herbal medicine. This article discusses the current regulatory and scientific landscape regarding medical cannabis, identifies issues related to the lack of quality standards for medical cannabis, and explores potential options for developing quality standards. USP seeks input from stakeholders on whether USP should proceed with development of quality standards for medical cannabis and if so, what approaches should be utilized to establish such standards. LEGAL AND REGULATORY LANDSCAPE The federal and state regulatory environment surrounding the medical use of cannabis involves many federal agencies and various different state laws. The evolving legal environment is an important consideration when evaluating the advisability and feasibility of USP developing a public standard for cannabis.
    [Show full text]
  • Tropane and Granatane Alkaloid Biosynthesis: a Systematic Analysis
    Office of Biotechnology Publications Office of Biotechnology 11-11-2016 Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Neill Kim Texas Tech University Olga Estrada Texas Tech University Benjamin Chavez Texas Tech University Charles Stewart Jr. Iowa State University, [email protected] John C. D’Auria Texas Tech University Follow this and additional works at: https://lib.dr.iastate.edu/biotech_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biotechnology Commons Recommended Citation Kim, Neill; Estrada, Olga; Chavez, Benjamin; Stewart, Charles Jr.; and D’Auria, John C., "Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis" (2016). Office of Biotechnology Publications. 11. https://lib.dr.iastate.edu/biotech_pubs/11 This Article is brought to you for free and open access by the Office of Biotechnology at Iowa State University Digital Repository. It has been accepted for inclusion in Office of Biotechnology Publicationsy b an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Abstract The tropane and granatane alkaloids belong to the larger pyrroline and piperidine classes of plant alkaloids, respectively. Their core structures share common moieties and their scattered distribution among angiosperms suggest that their biosynthesis may share common ancestry in some orders, while they may be independently derived in others. Tropane and granatane alkaloid diversity arises from the myriad modifications occurring ot their core ring structures. Throughout much of human history, humans have cultivated tropane- and granatane-producing plants for their medicinal properties. This manuscript will discuss the diversity of their biological and ecological roles as well as what is known about the structural genes and enzymes responsible for their biosynthesis.
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • Chapter I - Introduction
    CHAPTER I - INTRODUCTION Forensic toxicology is a multidisciplinary field that involves the detection and interpretation of the presence of drugs and other potentially toxic compounds in bodily tissues and fluids. This acts as defensible evidence in the court of law. Forensic toxicology continues to be a dynamic field with evolving technology applications. Forensic toxicologists take care of the science of poison detection in human organs and body fluids. Datura is a genus of nine species of vespertive flowering plants that belongs to the family of Solanaceae. They are commonly known as Datura but also known as Devil’s trumpet, and also Jimsonweed, Devil’s weed, Thorn apple and moonflower. There are nine species of Datura worldwide of which Datura metel is distributed widely in Asia and in Africa. As all Datura plants contain tropane alkaloids such as Atropine, Scopolamine, and Hyoscamine which are primarily present in the seeds and flowers. The word Datura comes from the early Sanskrit word dhattūra or Sanskrit Dustural or dahatura meaning white thorn apple originally published by Linnaeus in 1753.[18] There are several species of Datura that belong to the Solanaceae family and those species are as follows:- Datura metel commonly known as devils trumpet Datura stramonium also called as jimsonweed or thorn apple Datura innoxia also known as toloache, moonflower Datura wrightii also called as sacred datura Datura ferox commonly known as long spined thorn apple Datura discolor called as desert thorn apple Datura ceratocaula called as torna loco Datura leichhardtii also called as Leichhardt’s Datura quercifolia known as oak leaf thorn apple [13] In ancient Indian literature Datura is referred to as Shivashehara because the flowers are believed to be associated with Lord Shiva also used in rituals and prayers to Shiva.
    [Show full text]
  • Plant Tropane Alkaloid Biosynthesis Evolved Independently in the Solanaceae and Erythroxylaceae
    Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae Jan Jirschitzkaa, Gregor W. Schmidta, Michael Reichelta, Bernd Schneiderb, Jonathan Gershenzona, and John Charles D’Auriaa,1 aDepartment of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany; and bNMR Research Group, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved May 4, 2012 (received for review January 11, 2012) The pharmacologically important tropane alkaloids have a scat- Studies of the biosynthesis of tropane alkaloids have been tered distribution among angiosperm families, like many other predominantly performed with members of the Solanaceae and groups of secondary metabolites. To determine whether tropane to a lesser extent with cultivated species of the Erythroxylaceae. alkaloids have evolved repeatedly in different lineages or arise The majority of these studies used in vivo feeding of radiolabeled from an ancestral pathway that has been lost in most lines, we precursors (4–6) to elucidate the outlines of a general tropane investigated the tropinone-reduction step of their biosynthesis. In alkaloid biosynthetic pathway (7, 8). Biosynthesis is initiated species of the Solanaceae, which produce compounds such as from the polyamine putrescine, which is derived from the amino atropine and scopolamine, this reaction is known to be catalyzed acids ornithine or arginine (Fig. S1). Putrescine becomes N- by enzymes of the short-chain dehydrogenase/reductase family. methylated via the action of putrescine methyltransferase in what However, in Erythroxylum coca (Erythroxylaceae), which accumu- is generally considered to be the first committed step in tropane lates cocaine and other tropane alkaloids, no proteins of the short- alkaloid production (9).
    [Show full text]
  • Metabolic Engineering of Medicinal Plants
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 11799-11803, December 1992 Applied Biological Sciences Metabolic engineering of medicinal plants: Transgenic Atropa belladonna with an improved alkaloid composition (scoolamlne/hyoscyamine 61-hydroxylase) DAE-JIN YUN, TAKASHI HASHIMOTO*, AND YASUYUKI YAMADA Department of Agricultural Chemistry, Faculty of Agriculture, Kyoto University, Kyoto 606-01, Japan Communicated by Marc Van Montagu, September 15, 1992 ABSTRACT The tropane alkaloid scopolamine is a medic- inally important anticholinergic drug present in several solan- |N-CH3),' hyoscyamine aceous plants. Hyoscyamine 6l-hydroxylase (EC 1.14.11.11) catalyzes the oxidative reactions in the biosynthetic pathway leading from hyoscyamine to scopolamine. We introduced the hyoscyamine 6 P-hydroxylase hydroxylase gene from Hyoscyamus niger under the control of (H6H) the cauliflower mosaic virus 35S promoter into hyoscyamine- rich Atropa belladonna by the use of an Agrobacterum- 1~ mediated transformation system. A transgenic plant that con- Ho N-CHa;0, 60-hydroxyhyoscyamine stitutively and strongly expressed the transgene was selected, OR first by screening for kanamycin resistance and then by im- munoscreening leaf samples with an antibody specific for the H6H hydroxylase. In the primary transformant and its selfed prog- eny that inherited the transgene, the alkloid contents of the leaf and stem were almost exclusively scopolamine. Such metabolically engineered plants should prove useful as breed- 0Q jN-CH3)> scopolamine ing materials for obtaining improved medicinal components. OR The use of recombinant DNA technology for the manipula- H tion of metabolic processes in cells promises to provide R= -COWC-uPh important contributions to basic science, agriculture, and medicine (1). Secondary metabolism is a particularly attrac- CH20H tive target for the improvement of yields of desirable prod- ucts, without markedly affecting basic cellular functions.
    [Show full text]