Strategies for Development of Green Energy Systems in Mongolia Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Strategies for Development of Green Energy Systems in Mongolia Final Report Strategies for Development of Green Energy Systems in Mongolia Final Report Mongolia Country Program March 2014 i Table of Contents Executive Summary 11 PART I. INTRODUCTION TO MONGOLIA ENERGY SCENARIOS 1 Background 21 2 Mongolia’s Energy System: Overview and Challenges 21 3 Report goals and Objectives 25 PART II. SCENARIO DETAILS AND RESULTS, BY SECTOR 4 Overview of Scenarios and Methodology 26 4.1 Scenarios analyzed 26 4.2 Methodological approach 29 4.3 Energy scenario analysis in the context of green growth 31 5 Power and Heat Supply 32 5.1 Sector Overview 32 5.2 Reference scenario 32 5.3 Recent plans scenario 36 5.4 Expanded green energy scenario 38 5.5 Shift in energy export scenario 43 5.6 Discussion and possible initiatives 47 6 Buildings 50 6.1 Sector Overview 50 6.2 Reference scenario 51 6.3 Recent plans scenario 53 6.4 Expanded green energy scenario 53 6.5 Discussion and possible initiatives 57 7 Transport 58 7.1 Sector Overview 58 7.2 Reference scenario 59 7.3 Recent plans scenario 60 7.4 Expanded green energy scenario 60 7.5 Discussion and possible initiatives 63 ii 8 Industry: Mining and Manufacturing 66 8.1 Sector overview 66 8.2 Reference scenario 67 8.3 Recent plans scenario 71 8.4 Expanded green energy scenario 71 8.5 Shifts in energy export scenario 73 8.6 Discussion and possible initiatives 74 9 Agriculture 75 9.1 Sector overview 75 9.2 Reference scenario 76 9.3 Expanded green energy scenario 78 9.4 Discussion and possible initiatives 78 PART III. OVERALL RESULTS, CONCLUSIONS, AND NEXT STEPS 10 Overall Scenario Results 80 10.1 Electricity generation 81 10.2 Energy demand 81 10.3 Greenhouse gas emissions 85 10.4 Other pollutant emissions 90 10.5 Cost-effectiveness analysis 92 11 Conclusions and Next Steps 95 11.1 Summary of overall findings 95 11.2 Policies for consideration 97 11.3 Potential “next steps” for green energy development: projects, pilots, and further research 98 Data gathering 98 Capacity building 99 Pilot programs 100 Research 100 12 References Cited 104 Appendix A: Listing of the Members of the Project Advisory Committee 110 Appendix B: Approaches to accounting for GHG emissions 111 Appendix C: Possible Green Growth Indicators for Mongolia 118 iii Appendix D. Ministries and Agencies Responsible for Renewable Energy in Mongolia 122 Appendix E: Listing of LEAP Scenarios in Mongolia Data Set 123 Appendix F: Summary Description of LEAP Software Tool 129 iv List of Tables Table 2-2. Primary Energy Production in Mongolia, 1990-2010, TJ2 ...................................... 24 Table 4-1. Overview of Four Scenarios .................................................................................. 28 Table 8-1. Key Drivers, Industry Sector ................................................................................... 67 Table 10-2. Electricity output in the reference recent plans, and expanded green energy scenarios, TWh ................................................................................................................ 81 v List of Figures Figure 2-1. Historical electricity generation, by fuel .............................................................. 22 Figure 5-2. Electricity generation in the reference scenario .................................................. 35 Figure 5-3. District heat demand in the reference scenario .................................................. 35 Figure 5-4. Electricity generation capacity in the recent plans scenario ............................... 37 Figure 5-5. Electricity generation in the recent plans scenario ............................................. 38 Figure 5-6. Electricity capacity in the expanded green energy scenario ............................... 42 Figure 5-7. Electricity generation in the expanded green energy scenario ........................... 42 Figure 5-8. District heat demand in the expanded green energy scenario............................ 43 Figure 5-9. Electricity capacity in the shift in energy export scenario .................................... 46 Figure 5-10. Electricity generation in the shift in energy export scenario .............................. 47 Figure 6-1. Energy demand in the buildings sector in the reference scenario ....................... 52 Figure 6-2. Energy demand in the buildings sector in the recent plans scenario ................... 53 Figure 6-3. Energy demand in the buildings sector in the expanded green energy scenario 55 Figure 7-1. Energy demand in the transport sector in the reference scenario ...................... 60 Figure 7-2. Energy demand by vehicle type in the transport sector in the expanded green energy scenario ............................................................................................................... 62 Figure 8-1. Energy demand by subsector type in the industrial sector, reference scenario . 70 Figure 8-2. Energy demand by fuel in the Industrial sector, reference scenario .................... 70 Figure 8-3. Energy demand by subsector type in the industrial sector, expanded green energy scenario ............................................................................................................... 72 Figure 8-4. Energy demand by fuel in the industrial sector, expanded green energy scenario ......................................................................................................................................... 73 Figure 9-2. Energy demand by fuel type in the agriculture sector, reference scenario ........ 77 Figure 10-2. Overall energy demand by fuel group, recent plans scenario ............................ 82 Figure 10-3. Overall energy demand by fuel group, expanded green energy scenario ......... 83 Figure 10-4. Electricity demand by sector, reference scenario .............................................. 84 Figure 10-5. Electricity demand by sector, recent plans scenario .......................................... 84 Figure 10-6. Electricity demand by sector, expanded green energy scenario ....................... 85 vi Figure 10-7. GHG emissions by sector, reference scenario .................................................... 86 Figure 10-8. GHG emissions by fuel, reference scenario ....................................................... 86 Figure 10-9. GHG emissions by sector, recent plans scenario ................................................ 87 Figure 10-10. GHG emissions by fuel, recent plans scenario ................................................. 87 Figure 10-11. GHG emissions by sector, expanded green energy scenario ........................... 88 Figure 10-12. GHG emissions by fuel, expanded green energy scenario ............................... 88 Figure 10-13. Extraction-based emissions under the shift in energy exports scenario, relative to the reference scenario ................................................................................................ 90 Figure 10-14. Sulfur Oxide Emissions under Three Scenarios ............................................... 91 Figure 10-15. Nitrogen Oxide Emissions under Three Scenarios ........................................... 91 Figure 10-16. “Cost Curve” showing GHG savings and cost per tonne of CO2e reduced in 2035................................................................................................................................. 94 vii List of Abbreviations ADB – Asian Development Bank CCS – Carbon Capture and Storage CES – Central Energy System CHP – Combined Heat and Power CH4 – Methane CNG – Compressed Natural Gas CO2 – Carbon Dioxide GDP – Gross Domestic Product GEF – Global Environmental Facility Gg – Gigagram GGGI - The Global Green Growth Institute GHG – Greenhouse Gas Gcal – Gigacalories (109 calories) GJ – Gigajoules (109 Joules) GSHP – Ground-source Heat Pumps GTI – Greater Tumen Initiative GW – Kilowatts (billion Watts) GWh – Gigawatt-hours (109 Watt-hours) GWP – Global Warming Potential HOB – Heat-only Boilers IEA – International Energy Agency IMF – International Monetary Fund IPCC – Intergovernmental Panel on Climate Change kcal – Kilocalories kg – Kilograms kW – Kilowatts (thousand Watts) kWh – Kilowatt-hours (103 Watt-hours) LPG – Liquefied Petroleum Gas LEAP – Long Range Energy Alternatives Planning software tool MEGD – Mongolian Ministry of Environment and Green Development viii MOE – Mongolian Ministry of Energy MW – Megawatts (million Watts) MWh – Megawatt-hours (106 Watt-hours) NGO – non-government organization NOx – Nitrogen Oxides O&M – Operating and Maintenance OECD – Organization for Economic Cooperation and Development PJ – Petajoules (1015 Joules) pkm – Passenger-kilometers PM – Particulate Matter PM2.5 – Particulate Matter under 2.5 micrometers in diameter PV – Photovoltaic (solar) SEI-US – Stockholm Environment Institute—US SOx – Sulfur Oxides SWH – Solar Water Heating T&D – Transmission and Distribution TCE – Tonnes of Coal Equivalent TCO2e – Tonnes of CO2 Equivalent TJ – Terajoules (1012 Joules) tkm – Tonne-kilometers TWh – Terawatt-hours (1012 Watt-hours) TOE – Tonnes of Oil Equivalent UB – Ulaan Baatar UN – United Nations UNDP – United Nations Development Programme UNEP – United Nations Environment Programme UNESCAP – United Nations Economic and Social Commission for Asia and the Pacific UNFCCC – United Nations Framework Convention on Climate Change USGS – US Geological Survey ix Acknowledgments Special thanks are due to all the members of the project’s guidance team: Mr. Tovuudorj Purevjav, Mr. Bekhbat Sodnom, Mr. Angarag Myagmar, Ms. Tsendsuren Batsuuri, Mr. Enebish Namjil, and especially to Mr. Chimeddorj Demchigjav,
Recommended publications
  • Experience, Prospects and Social Implications of Solar PV in Mongolia
    ERINA REPORT Vol. 50 Small-Scale Energy Development in Northeast Asia: Experience, Prospects and Social Implications of Solar PV in Mongolia D. Nachin Visiting Researcher, Research Division, ERINA The priority for small-energy development in many are under consideration. cases is economic growth and the alleviation of poverty. As Smaller 50W windmills manufactured by the domestic of today, one-third of the world's population has no access company Monmar Co., Ltd. are available for 167,000 to commercial energy. Many live in low-income developing togrog (MNT)2, for use in pastoral livestock farming, but countries, including some in Northeast Asia. not in sufficient quantity. 3-5 kW windmills have been Small-scale energy development may play a key role approved for use in activities involving greater in the eradication of disparities in standards of living, per consumption, such as water pumping and powering some capita electricity consumption, access to information and facilities at summer settlements. Winter settlements are modern communications, and medical and educational usually established on windless, sunny sites. The services. On the other hand, it is necessary to develop publication of the Wind Energy Atlas of Mongolia by the renewable energy resources. The development of small- National Renewable Energy Laboratory (2001) of the U.S. scale energy systems may play a part in increasing social Department of Energy will be very useful for designing stability. Government subsidies, incentives encouraging the wind power generators. utilization of renewable energy sources and the inclusion of Solar energy: Mongolia, the "Land of Blue Sky", these in the national energy policy portfolio are needed.
    [Show full text]
  • How to Create Efficient, Reliable and Clean Electricity Markets: a Regulatory Design for Mongolia and Northeast Asia
    MASTER’S THESIS HOW TO CREATE EFFICIENT, RELIABLE AND CLEAN ELECTRICITY MARKETS: A REGULATORY DESIGN FOR MONGOLIA AND NORTHEAST ASIA Working title: Beyond Mining: Barriers to Renewable Energy Investments in Mongolia Paul Maidowski International Relations (B.A.) University of Dresden, 2010 Thesis Advisor: Professor William Moomaw SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE: MASTER OF ARTS IN LAW AND DIPLOMACY THE FLETCHER SCHOOL OF LAW AND DIPLOMACY SEPTEMBER 13, 2012 Version history V 1. Original: September 13, 2012 V 2. Updated: December 7, 2012 V 2.1. Slightly edited: December 8, 2012 Abstract This paper develops a comprehensive proposal for how Mongolia’s domestic power sector could be made more efficient, reliable and sustainable. The analysis is based on inter- views in Ulaanbaatar. It reviews the literature on power sector reforms in small developing countries and regional electricity markets. In a second step, a framework is proposed for a re- gional electricity market between Mongolia, Russia and China. In principle, this framework is applicable also to South Korea and Japan. The findings include that inadequate regulation has contributed to performance prob- lems in every aspect of Mongolia’s power sector, which remains a horizontally integrated monopoly. A lack of generation capacity was ignored for decades; as a result, supply is ex- pected to fall critically short of demand for the coming 3 to 5 years. Mongolia possesses rich coal resources, but water scarcity, harmful emissions, high vulnerability to the effects of cli- mate change, social constraints and the need for economic diversification will limit the future role of conventional technologies.
    [Show full text]
  • Mongolia Master Plan Study for Coal Development and Utilization
    Ministry of Mining Mongolia Mongolia Master Plan Study for Coal Development and Utilization November 2013 Japan International Cooperation Agency (JICA) Japan Coal Energy Center IL JR 13-164 Table of contents Chapter 1 Introduction .................................................................................................................................... 1 1.1 Background of the study ....................................................................................................................... 1 1.1.1 Outline of Mongolia ....................................................................................................................... 1 1.1.2 Present condition of industry and economic growth of Mongolia ................................................. 2 1.2 Purpose of study .................................................................................................................................... 4 1.3 Flow of study ........................................................................................................................................ 4 1.4 Study system ......................................................................................................................................... 4 1.4.1 Counterpart mechanism ................................................................................................................. 4 1.4.2 Old and New Government organizations ....................................................................................... 6 1.4.3 Structure and allotment
    [Show full text]
  • 48030-001: Strategy for Northeast Asia Power System Interconnection
    Technical Assistance Consultant’s R eport Project Number: 48030-001 February 2020 Mongolia: S trategy for Northeast Asia Power S ystem Interconnection (Cofinanced by the Climate Change Fund, the People’s R epublic of China R egional Cooperation and Poverty R eduction Fund, and the R epublic of Korea e-Asia and Knowledge Partnership Fund) Prepared by E lectricite de France Paris, France For the Ministry of E nergy, Mongolia This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. TA 9001-MON: Strategy for Northeast Asia Power S ystem Interconnections EDF References: CIST – DCO – PhL – 18 - 208 This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. Module 4 report on Mongolia Energy Sector Profile and Projections FOREWORD The project Team would like to thank: - The Ministry of Energy of Mongolia for easing direct discussions with the National Dispatching Center, TRANSCO and Public Entities in Mongolia - The ADB’s Country Coordinators of Mongolia, People’s Republic of China, Republic of Korea, Japan for their support: Mongolia: Mr. Byambasaikhan PRC: Ms. Geng Dan (Danna) ROK: Mr. Jung-Hwan Kim Japan: Mr. Omatsu Ryo and Mr. Shota Ichimura Here is a reminder of the place of the Module 4 in the Project organization: 1 EDF ELECTRICITE DE FRANCE – with a capital of 1 006 625 696.50 euros – TA-9001 MON: Strategy for Northeast Asia Power System Interconnection 552 081 371 R.C.S.
    [Show full text]
  • Net Electricity Generation in Mongolia by Fuel Type (Twh)
    Additional information on calculating the conservative emission factor of Mongolia It is concluded that net emission reductions are achieved by applying the following emission factors in Mongolia: An emission factor of 0.797 tCO2/MWh, which is the emission factor of the most efficient coal-fired CHP (Combined Heat and Power) plant in Mongolia, is applied in case the PV system in a proposed project activity is connected to the Mongolian national grid (supplied by the Central Energy System (CES), Western Energy System (WES), Altai-Uliastai Energy System (AUES), Eastern Energy System (EES), and/or Southern Energy Systems (SES)) including internal grid which is not connected to a captive power generator. An emission factor of 0.533 tCO2/MWh, which is the emission factor of the most efficient diesel power generator in the world, is applied in case the PV system in a proposed project activity is connected to internal grid which is connected to both the national grid (CES, WES, AUES, EES, and/or SES) and a captive power generator or in case the PV system in a proposed project activity is connected to an internal grid which is not connected to the national grid. 1. Current status of electricity mix in Mongolia There are five types of fuel used for the national electricity generation: coal (lignite), wind, hydro, diesel, and imported electricity1. The share of the overall electricity generated from 2013 to 2015 by the type of fuel used is shown in Table 1 and Figure 1. The amount of electricity from wind and hydro power plants, regarded as low cost/must run (LCMR) power sources, was 0.11 TWh (2% of total) in 2013, 0.18 TWh (3% of total) in 2014 and 0.22 TWh (4% of total) in 2015.
    [Show full text]
  • ESP2-PAD-P152343-05262017.Pdf
    Document of The World Bank FOR OFFICIAL USE ONLY Public Disclosure Authorized Report No: PAD1996 INTERNATIONAL DEVELOPMENT ASSOCIATION PROJECT APPRAISAL DOCUMENT ON A PROPOSED IDA CREDIT . Public Disclosure Authorized IN THE AMOUNT OF SDR 30.70 MILLION (US$42 MILLION EQUIVALENT) . AND . STRATEGIC CLIMATE FUND GRANT IN THE AMOUNT OF US$12.4 MILLION TO Public Disclosure Authorized MONGOLIA FOR THE . SECOND ENERGY SECTOR PROJECT . MAY 24, 2017 Energy & Extractives Global Practice East Asia and Pacific Region Public Disclosure Authorized This document has a restricted distribution and may be used by recipients only in the performance of their official duties. Its contents may not otherwise be disclosed without World Bank authorization. CURRENCY EQUIVALENTS (Exchange Rate Effective 04/30/2017) Currency Unit = Mongolian Tugrik (MNT) US$1 = MNT 2,411 SDR1 = US$1.371 FISCAL YEAR January 1 – December 31 ABBREVIATIONS AND ACRONYMS ABC Aerial Bundled Cables EMP Environmental Management ADB Asian Development Bank Plans AMI Advanced Metering Infrastructure ENPV Economic Net Present Value AMP Avian Monitoring Program EPC Engineering Procurement and AMR Advanced Meter Reading Construction ERC Energy Regulatory Commission ASTAE Asia Sustainable and Alternative Energy Program ESMAP Energy Sector Management AuES Altai-Uliastai Energy System Assistance Program ESMF Environmental and Social BSEDN Baganuur-Southeastern Region Management Framework Electricity Distribution Network ESP1 Energy Sector Project CEO Chief Executive Officer FIRR Financial Internal
    [Show full text]
  • Mongolia's Energy Efficiency Indicators 2019
    Study conducted by Mongolian Energy Economics Institute Supported by Economic Research Institute for ASEAN and East Asia Mongolia’s Energy Efficiency Indicators 2019 Economic Research Institute for ASEAN and East Asia (ERIA) Sentral Senayan II 6th Floor Jalan Asia Afrika no.8, Gelora Bung Karno Senayan, Jakarta Pusat 10270 Indonesia ©Economic Research Institute for ASEAN and East Asia, 2021 ERIA Research Project FY2020 No. 17 Published in January 2021 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means electronic or mechanical without prior written notice to and permission from ERIA. The findings, interpretations, and conclusions expressed herein do not necessarily reflect the views and policies of the Economic Research Institute for ASEAN and East Asia, its Governing Board, Academic Advisory Council, or the institutions and governments they represent. The findings, interpretations, conclusions, and views expressed in their respective chapters are entirely those of the author/s and do not reflect the views and policies of the Economic Research Institute for ASEAN and East Asia, its Governing Board, Academic Advisory Council, or the institutions and governments they represent. Any error in content or citation in the respective chapters is the sole responsibility of the author/s. Material in this publication may be freely quoted or reprinted with proper acknowledgement. Preface Mongolia has achieved remarkably high economic growth. Its average gross domestic product (GDP) growth rate was 7.2% during the period 2008–2018, the second-fastest amongst East Asian countries over that period. In 2018, Mongolia’s real GDP per capita amounted to US$4,017.
    [Show full text]
  • Rural Electrification & Renewable Energy Utilization in Mongolia
    December 2005 Rural electrification & Renewable Energy utilization in Mongolia Rural Electrification & Renewable Energy Utilization in Mongolia Introduction The Government of Mongolia has identified rural development and rural living standards as having a high priority and acknowledged the drawbacks played by a lack of rural electricity access. Background Energy access in rural areas of Mongolia is minimal and delivered services leave much room for improvement. Of the 314 Soum centers, 55% operate diesel generators to satisfy minimal electricity needs: about half do not operate during the summer, continuous operation is carried out by only 13% of the Soum centers during summer and only 34% of the centers during the winter. The remainder operate only at about 2-4 hours per day during the winter. Soum centers are sparsely populated during the summer when herders move to pasture lands, but provide essential services (such as health and education) during the winter when many herders temporarily settle to survive the cold. The systems are owned and operated by the Soum governments and are not financially or operationally sustainable. The main problems are the inability to generate revenues needed to purchase diesel for plant operation and poor institutional capability of operating Soum utilities. The herders have no possibility of getting electricity service other than by an individual supply source. Under such conditions, cost recovery and maintenance of investments in conventional electricity supply infrastructure have proven to be difficult and alternative delivery mechanisms need to be looked at. It is expected that a combination of institutional reforms, establishing public-private partnerships, and the expanded use of renewable energy will greatly improve living conditions of the rural population as well as improve the delivery of rural services.
    [Show full text]
  • Geothermal Resources in Mongolia and Potential Uses
    GEOTHERMAL TRAINING PROGRAMME Reports 2001 Orkustofnun, Grensásvegur 9, Number 15 IS-108 Reykjavík, Iceland GEOTHERMAL RESOURCES IN MONGOLIA AND POTENTIAL USES Batbayar Tseesuren Renewable Energy Corporation, P.O. Box 479, Ulaanbaatar 210136, MONGOLIA ABSTRACT This paper presents an overview of surveys on geothermal energy that have been made in Mongolia to date and explores possibilities for its use. Mongolia has geothermal resources but geothermal utilization is not widely developed. Hot springs are though used for bathing, health resorts (balneology) and to a small amount for greenhouse heating. The main region of geothermal activity is Khangai, where there are 3 aimag (province) centres and 44 soum (village) centres, with approximately 241,000 people. Most of them are without electricity, using diesel generation in the evenings for 5-6 hours because of high oil costs. Coal and wood are used for heating. Using geothermal energy for heating, electrical generation and industrial purposes are the main incentives for developing a geothermal infrastructure in the rural areas of Mongolia. Bearing in mind that the Mongolian main gross domestic products come from animal husbandry, good possibilities are also to use geothermal energy for wool and cashmere washing and drying. 1. INTRODUCTION Mongolia is situated in the northern part of Central Asia, far from the oceans, on a high plateau surrounded by mountain ridges. The mountainous country’s mean elevation is 1580m above sea level. Mongolia consists of 22 aimags or province (approx. 50,000-110,000 people in each aimag), and each aimag consists of 12-22 soums (each soum or village has approx. 4,000-5,000 people).
    [Show full text]
  • Regional Power Grid Connectivity for Sustainable Development in North-East Asia
    Regional Power Grid Connectivity for Sustainable Development in North-East Asia Policies and Strategies Note: The shaded areas of the map indicate ESCAP members and associate members.* The Economic and Social Commission for Asia and the Pacific (ESCAP) serves as the United Nations’ regional hub promoting cooperation among countries to achieve inclusive and sustainable development. The largest regional intergovernmental platform with 53 Member States and 9 Associate Members, ESCAP has emerged as a strong regional think- tank offering countries sound analytical products that shed insight into the evolving economic, social and environmental dynamics of the region. The Commission’s strategic focus is to deliver on the 2030 Agenda for Sustainable Development, which it does by reinforcing and deepening regional cooperation and integration to advance connectivity, financial cooperation and market integration. ESCAP’s research and analysis coupled with its policy advisory services, capacity building and technical assistance to governments aims to support countries’ sustainable and inclusive development ambitions. Note: *The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Regional Power Grid Connectivity for Sustainable Development in North-East Asia Policies and Strategies United Nations publication Copyright © United Nations 2020 All rights reserved ST/ESCAP/2920 This publication may be reproduced in whole or in part for educational or nonprofit purposes without special permission from the copyright holder, provided that the source is acknowledged.
    [Show full text]
  • World Bank Document
    Public Disclosure Authorized The World Bank Asia Sustainable and Alternative Energy Program ASTAE Public Disclosure Authorized Public Disclosure Authorized Annual Status Report 18 Fiscal Year 2010 July 1, 2009 – June 30, 2010 Public Disclosure Authorized © 2010 The International Bank for Reconstruction and Development/The World Bank Group 1818 H Street NW Washington, D.C. 20433 All rights reserved First printing: December 2010 This document is a product of the staff of the World Bank Group. The findings, interpretations, and conclusions expressed herein do not necessarily reflect the views of the Board of Executive Directors of the World Bank Group or the governments they represent. Photo © ASTAE Photo credits: Cover photo, pages i, iv, 18, 30, 32, 34, 40, 44, 48, 54, 89 iStockphoto; pages 6 Frederic Asseline, 28 Michael Wild, 36 Shawna Fei Li, 38 Shawna Fei Li, 40 Yan Li, 46 and 50 Frederic Asseline, 62, 80 Yan Li, and inside covers Frederic Asseline; pages ii, 52, 76 Hung Tien Van; page 56 Egis; page 42 Tiare Scott, Flickr; page 60 Ricky Qi, Flickr Design: Marti Betz Design Contents Acronyms, Abbreviation, and Units of Measure i 3. ASTAE Performance Assessment - Fiscal 2007-10 Extended Business Plan 62 Foreword iii ASTAE Activities and Disbursements in Business Plan Period 2007–10 63 Executive Summary 1 Status of 2007–10 Performance Indicators 68 ASTAE at a Glance 1 ASTAE-Supported World Bank Operations ASTAE-Supported Activities in Fiscal 2010 2 in Fiscal 2010 73 Program Outputs and Impacts Over the Fiscal 2007-10 Extended Business Plan Period 4 4. Outlook for ASTAE, Fiscal 2011 and Beyond 76 ASTAE Indicative Pipeline for Fiscal 2011 77 1.
    [Show full text]
  • C. Group C Countries (Armenia, Azerbaijan, Belarus, Kazakhstan, the Kyrgyz Republic, Mongolia, Russia, Tajikistan, Turkmenistan and Uzbekistan)
    C. Group C Countries (Armenia, Azerbaijan, Belarus, Kazakhstan, the Kyrgyz Republic, Mongolia, Russia, Tajikistan, Turkmenistan and Uzbekistan) Referred to herein as Group C, this group is made up of Armenia, Azerbaijan, Belarus, Russia, Mongolia, Kazakhstan, the Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan. It is a complex grouping, made up of countries with widely disparate natural resources, infrastructure, size and economic development. The grouping recognises the historical links between these countries, which all (except from Mongolia) formed part of the former Soviet Union’s integrated power system, and the absence of any overarching treaty that defines a collective framework for the countries, as is the case with Group A and Group B, though again, voluntary and indicative only with respect to the observers in Group B. The individual country profiles provide an understanding of the level of development each energy sector has undergone and needs to undertake. Unlike Groups A and B above, Group C countries have no external pressure towards the modernisation and liberalisation of their energy regulatory sector. It is thus particularly interesting to observe the progress they may have accomplished in this area. The three highest-performing countries in this group – Armenia, Mongolia and Russia – have made significant efforts over the last five to 10 years to reform their energy markets and regulatory frameworks. In the electricity sector Russia is the best-performing country by a considerable margin. In the six lowest-performing countries, the least-developed indicator is the absence (or low level) of a wholesale market, while limited transparency and the absence or limited independence of the regulator are other critical factors.
    [Show full text]