Targeting Alterations in the RAF–MEK Pathway

Total Page:16

File Type:pdf, Size:1020Kb

Targeting Alterations in the RAF–MEK Pathway Published OnlineFirst February 15, 2019; DOI: 10.1158/2159-8290.CD-18-1321 REVIEW Targeting Alterations in the RAF–MEK Pathway Rona Yaeger1 and Ryan B. Corcoran2 ABSTRACT The MAPK pathway is one of the most commonly mutated oncogenic pathways in cancer. Although RAS mutations are the most frequent MAPK alterations, less fre- quent alterations in downstream components of the pathway, including the RAF and MEK genes, offer promising therapeutic opportunities. In addition to BRAFV600 mutations, for which several approved therapeutic regimens exist, other alterations in the RAF and MEK genes may provide more rare, but tractable, targets. However, recent studies have illustrated the complexity of MAPK signaling and high- lighted that distinct alterations in these genes may have strikingly different properties. Understanding the unique functional characteristics of specific RAF and MEK alterations, reviewed herein, will be criti- cal for developing effective therapeutic approaches for these targets. Significance: Alterations in the RAF and MEK genes represent promising therapeutic targets in multi- ple cancer types. However, given the unique and complex signaling biology of the MAPK pathway, the diverse array of RAF and MEK alterations observed in cancer can possess distinct functional character- istics. As outlined in this review, understanding the key functional properties of different RAF and MEK alterations is fundamental to selecting the optimal therapeutic approach. INTRODUCTION RAS to its inactive GDP-bound state (2). In its active, GTP- bound state, a conformational change occurs in the switch The MAPK signaling pathway is critically involved in I and II regions of RAS, which facilitate interactions with a many important cellular processes. Its dysregulation leads variety of downstream effectors, including the RAF family to uncontrolled cellular proliferation, survival, and dediffer- of kinases (ARAF, BRAF, and CRAF, the latter of which is entiation. As a consequence, the MAPK pathway is altered or encoded by the RAF1 gene; refs. 3–5). The association of RAF inappropriately activated in a majority of cancers. proteins with activated RAS through their conserved RAS- Under physiologic conditions, MAPK signaling is trig- binding domains leads to the formation of RAF homodimers gered through activation of RAS proteins (KRAS, NRAS, and (i.e., CRAF–CRAF) or heterodimers (i.e., BRAF–CRAF) with HRAS), a family of small guanine triphosphatases (GTPases) activated RAF kinase activity. For example, prior to binding that integrate signals from a variety of upstream sources, activated RAS, BRAF is in an autoinhibited conformation in most commonly from activated receptor tyrosine kinases which a short α helix in its activation loop associates and dis- (RTK; ref. 1). These upstream signals lead to activation of places the critical αC helix in the kinase domain in an inactive guanine nucleotide exchange factors, such as son-of-sevenless “out” state. BRAF dimerization and activation loop phospho- (SOS), which catalyze the exchange of RAS-bound guanine rylation destabilizes this autoinhibitory interaction to move diphosphate (GDP) for guanine triphosphate (GTP). RAS the BRAF kinase into the helix “αC-in” active conformation activity is negatively regulated by GTPase-activating proteins, (6). Once activated, RAF kinases phosphorylate and activate such as neurofibromin 1 (NF1), which augment the GTPase MEK kinases (MEK1 and MEK2, encoded by the MAP2K1 activity of RAS to hydrolyze GTP to GDP, thus reverting and MAP2K2 genes, respectively), which in turn phosphoryl- ate and activate ERK kinases (ERK1 and ERK2). The activated 1Memorial Sloan Kettering Cancer Center, New York, New York. ERK kinases then phosphorylate a host of critical substrates 2 Massachusetts General Hospital Cancer Center and Department of that regulate key cellular processes. Medicine, Harvard Medical School, Boston, Massachusetts. Given the many important roles of MAPK pathway signal- Corresponding Authors: Ryan B. Corcoran, Harvard Medical School, ing, activation of the pathway is tightly regulated. There are 149 13th Street, 7th Floor, Boston, MA 02129. Phone: 617-726-8599; Fax: 617-643-0798; E-mail: [email protected]; and Rona Yaeger, several levels of negative feedback controls that limit physi- Memorial Sloan Kettering Cancer Center, 300 East 66th Street, 10th Floor, ologic activation of MAPK signaling. For instance, negative New York, NY 10065. Phone: 646-888-5109; Fax: 646-888-4254; E-mail: feedback loops from ERK include direct inhibitory phospho- [email protected] rylation of CRAF and BRAF and induction of expression of doi: 10.1158/2159-8290.CD-18-1321 multiple MAPK phosphatases, such as DUSPs (7). ERK also ©2019 American Association for Cancer Research. inhibits the activation of RAS by RTKs by phosphorylating MARCH 2019 CANCER DISCOVERY | OF1 Downloaded from cancerdiscovery.aacrjournals.org on October 1, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst February 15, 2019; DOI: 10.1158/2159-8290.CD-18-1321 REVIEW Yaeger and Corcoran Mutant activator of signaling Mutant amplifier of signaling RTK/RAS RTK/RAS signaling signaling Mutant Mutant ERK ERK Figure 1. Function of activator and amplifier mutations in the MAPK signaling pathway. Schema showing the effect of “activator” versus “amplifier” mutants in the MAPK pathway. Activator alterations lead to constitutive MAPK signaling through ERK activation that is independent of upstream path- way activity. Activator mutants strongly activate ERK and lead to negative feedback suppression of upstream signaling. Amplifier mutants augment the downstream signal to ERK and commonly co-occur with other activating mutations upstream in the pathway. They lead to modest activation of ERK and consequently cause minimal negative feedback inhibition of upstream signaling. SOS and a variety of RTKs and by inducing the expression characterized into two groups: activators and amplifiers of members of the Sprouty family of proteins (8). These (Fig. 1). “Activator” alterations lead to constitutive MAPK feedback signals modulate the output of oncogenic altera- pathway signaling through ERK activation that is independ- tions within the pathway, affecting the spectrum of recurrent ent of upstream pathway activity. Conversely, “amplifier” oncogenic alterations at each level of the pathway with impli- alterations are dependent on upstream activity and augment cations for targeted therapy response and drug resistance. the downstream signal to ERK. Activating alterations strongly The frequency of genomic alterations in the MAPK pathway activate ERK and are usually mutually exclusive with each decreases in incidence as one moves further downstream in the other, whereas amplifying alterations commonly co-occur pathway: across human tumors, RAS mutations occur in 22%, with other activating mutations upstream in the pathway. BRAF in 7%, and MEK in <1% of cases, and ERK mutations Interestingly, the incidence of activating mutations decreases are exceptionally rare. The degree of ERK activation produced further downstream in the pathway, and the proportion of by alterations upstream in the pathway (e.g., RAS mutations) amplifying alterations increases; activating alterations in is often susceptible to constraint by negative feedback signals, downstream components of the pathway, such as MEK or whereas those further downstream escape negative feedback ERK, would lead to very high levels of output as they evade regulation and can lead to more profound activation of path- feedback signals and may thus have a selective disadvantage. way output. In papillary thyroid cancers, where expression of Understanding the unique signaling properties of specific ERK-responsive genes important in iodide transport can be RAF and MEK alterations is key to devising strategies to over- readily assayed, differences in expression of ERK-responsive come them. Here, we summarize our current understanding genes are seen between BRAFV600E mutants (strongly activat- of recurrent alterations in RAF and MEK and their effects on ing) and RAS mutants (less activating; ref. 9). signaling, targeted therapy response, and drug resistance. On RAS mutations are by far the most common MAPK altera- the basis of this mechanistic framework, we outline rational tions observed in human cancer, and RAS signaling and strategies to target these specific alterations. strategies for targeting RAS have been reviewed extensively elsewhere (10). This review focuses on downstream altera- tions in the MAPK pathway, including alterations in the RAF ALTERATIONS RAF and MEK genes. Given the unique signaling biology BRAF is by far the most frequently altered gene in the of this pathway, recent studies have suggested that down- MAPK pathway downstream of RAS, altered in 7% to 10% of stream alterations in the MAPK pathway can be broadly all cancers (11). Point mutations are the most common mode OF2 | CANCER DISCOVERY MARCH 2019 www.aacrjournals.org Downloaded from cancerdiscovery.aacrjournals.org on October 1, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst February 15, 2019; DOI: 10.1158/2159-8290.CD-18-1321 Targeting RAF and MEK Alterations REVIEW Class I Class II Class III RTK RASmut NF1 GDP RAS GDP RAS RAS RAS GDP GDP GTP RAS GTP RAS GDP RAS GDP RAS GTP RAS GTP RAS GTP RAS GTP RAS GT GT GT GT P P P P RA RA RA RA S S S B S mut Bmut Bmut Bmut C Bmut C MEK/ERK MEK/ERK MEK/ERK MEK/ERK V600E/K/D/R/M P367L/S D287H G464V/E V459L G469A/V/R G466A/E/V
Recommended publications
  • Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling
    G C A T T A C G G C A T genes Review Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling Aoife A. Nolan 1, Nourhan K. Aboud 1, Walter Kolch 1,2,* and David Matallanas 1,* 1 Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; [email protected] (A.A.N.); [email protected] (N.K.A.) 2 Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland * Correspondence: [email protected] (W.K.); [email protected] (D.M.) Abstract: Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharma- cological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration. Keywords: RAF kinase-independent; RAS; MST2; ASK; PLK; RHO-α; apoptosis; cell cycle; cancer therapy Citation: Nolan, A.A.; Aboud, N.K.; Kolch, W.; Matallanas, D. Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling.
    [Show full text]
  • Product Data Sheet
    Product Data Sheet ExProfileTM Human AMPK Signaling Related Gene qPCR Array For focused group profiling of human AMPK signaling genes expression Cat. No. QG004-A (4 x 96-well plate, Format A) Cat. No. QG004-B (4 x 96-well plate, Format B) Cat. No. QG004-C (4 x 96-well plate, Format C) Cat. No. QG004-D (4 x 96-well plate, Format D) Cat. No. QG004-E (4 x 96-well plate, Format E) Plates available individually or as a set of 6. Each set contains 336 unique gene primer pairs deposited in one 96-well plate. Introduction The ExProfile human AMPK signaling related gene qPCR array profiles the expression of 336 human genes related to AMPK-mediated signal transduction. These genes are carefully chosen for their close pathway correlation based on a thorough literature search of peer-reviewed publications, mainly including genes that encode AMP-activated protein kinase complex,its regulators and targets involved in many important biological processes, such as glucose uptake, β-oxidation of fatty acids and modulation of insulin secretion. This array allows researchers to study the pathway-related genes to gain understanding of their roles in the different biological processes. QG004 plate 01: 84 unique gene PCR primer pairs QG004 plate 02: 84 unique gene PCR primer pairs QG004 plate 03: 84 unique gene PCR primer pairs QG004 plate 04: 84 unique gene PCR primer pairs Shipping and storage condition Shipped at room temperate Stable for at least 6 months when stored at -20°C Array format GeneCopoeia provides five qPCR array formats (A, B, C, D, and E) suitable for use with the following real- time cyclers.
    [Show full text]
  • (Continued) Linkage Mapping and Polymorphisms
    Inborn Errors of Metabolism (continued) 965 966 Re-institution of dietary treatment in a PKU adult patient: cdinical and MRI Common point mutations in four patients with the late infantile form of improvement after one yer. (( E. Z h, A. Morronel, M.A DonatiI, E. galosialidosis. ((X.Y. Zhoul6, R. Willemsen2, N. Gillemans', A. Morroe3, Psquni', C Fonda2.)) 'Dept. of Pediatrica, University of Florence and 2Unit of P. Strisciuglo', G. Andria4, D.A. Applegarths and A. d'Azlzo.)) 'Dept. of Neuroradlology, Prato, Italy. Intro by: Luciano Felicetti Cell Biology and 2Clinical Genetics, Erasmus University, Rotterdam, The Retrospective and prospective studies Indicate deteroration of cognition and Netherlands; 3Dept. of Pediatrics, University of Florence, Italy; 'Dept. of neurpsyololcal performance in some PKU patients after treatment Pediatrics, University of Naples, Italy; and Dept. of Pediatrics, University of withdrawL. We report the results ofrestitution ofdiet low in pbenylalanine in Britiach Columbia, Vancouver, Canada. Intro. by E.F. Neufeld. a adult PKU patient with progreulve demyelinating clopathy. The dia of classical PKU was made at age of 4 years and d Uatment was Galactosialidosis is a lysosomal storage disorder caused by mutations in the sarted At 11 years the therapy was stopped: he was able to walk alone, to run, gene encoding the protective protein/cathepsin A. Patienta with the late to cycle, to climb stairs, to write. Since the age of 19 years be had seizures. At 21 infantile phenotype differ from early infantile or juvenile/adult types in that yeas he showed weakness, stiffness, dysarthria, difficulty in gait and swallowing. they have a better prognosis and no mental retration We have analyzed four Later ewas wheelchair-bound and his mother noted gradual deterioration in these his perforannce and behaviour.
    [Show full text]
  • Drosophila and Human Transcriptomic Data Mining Provides Evidence for Therapeutic
    Drosophila and human transcriptomic data mining provides evidence for therapeutic mechanism of pentylenetetrazole in Down syndrome Author Abhay Sharma Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research Delhi University Campus, Mall Road Delhi 110007, India Tel: +91-11-27666156, Fax: +91-11-27662407 Email: [email protected] Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 Running head: Pentylenetetrazole mechanism in Down syndrome 1 Abstract Pentylenetetrazole (PTZ) has recently been found to ameliorate cognitive impairment in rodent models of Down syndrome (DS). The mechanism underlying PTZ’s therapeutic effect is however not clear. Microarray profiling has previously reported differential expression of genes in DS. No mammalian transcriptomic data on PTZ treatment however exists. Nevertheless, a Drosophila model inspired by rodent models of PTZ induced kindling plasticity has recently been described. Microarray profiling has shown PTZ’s downregulatory effect on gene expression in fly heads. In a comparative transcriptomics approach, I have analyzed the available microarray data in order to identify potential mechanism of PTZ action in DS. I find that transcriptomic correlates of chronic PTZ in Drosophila and DS counteract each other. A significant enrichment is observed between PTZ downregulated and DS upregulated genes, and a significant depletion between PTZ downregulated and DS dowwnregulated genes. Further, the common genes in PTZ Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 downregulated and DS upregulated sets show enrichment for MAP kinase pathway. My analysis suggests that downregulation of MAP kinase pathway may mediate therapeutic effect of PTZ in DS. Existing evidence implicating MAP kinase pathway in DS supports this observation.
    [Show full text]
  • Inhibition of ERK 1/2 Kinases Prevents Tendon Matrix Breakdown Ulrich Blache1,2,3, Stefania L
    www.nature.com/scientificreports OPEN Inhibition of ERK 1/2 kinases prevents tendon matrix breakdown Ulrich Blache1,2,3, Stefania L. Wunderli1,2,3, Amro A. Hussien1,2, Tino Stauber1,2, Gabriel Flückiger1,2, Maja Bollhalder1,2, Barbara Niederöst1,2, Sandro F. Fucentese1 & Jess G. Snedeker1,2* Tendon extracellular matrix (ECM) mechanical unloading results in tissue degradation and breakdown, with niche-dependent cellular stress directing proteolytic degradation of tendon. Here, we show that the extracellular-signal regulated kinase (ERK) pathway is central in tendon degradation of load-deprived tissue explants. We show that ERK 1/2 are highly phosphorylated in mechanically unloaded tendon fascicles in a vascular niche-dependent manner. Pharmacological inhibition of ERK 1/2 abolishes the induction of ECM catabolic gene expression (MMPs) and fully prevents loss of mechanical properties. Moreover, ERK 1/2 inhibition in unloaded tendon fascicles suppresses features of pathological tissue remodeling such as collagen type 3 matrix switch and the induction of the pro-fbrotic cytokine interleukin 11. This work demonstrates ERK signaling as a central checkpoint to trigger tendon matrix degradation and remodeling using load-deprived tissue explants. Tendon is a musculoskeletal tissue that transmits muscle force to bone. To accomplish its biomechanical function, tendon tissues adopt a specialized extracellular matrix (ECM) structure1. Te load-bearing tendon compart- ment consists of highly aligned collagen-rich fascicles that are interspersed with tendon stromal cells. Tendon is a mechanosensitive tissue whereby physiological mechanical loading is vital for maintaining tendon archi- tecture and homeostasis2. Mechanical unloading of the tissue, for instance following tendon rupture or more localized micro trauma, leads to proteolytic breakdown of the tissue with severe deterioration of both structural and mechanical properties3–5.
    [Show full text]
  • ARAF Acts As a Scaffold to Stabilize BRAF:CRAF Heterodimers
    Oncogene (2013) 32, 3207–3212 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc SHORT COMMUNICATION ARAF acts as a scaffold to stabilize BRAF:CRAF heterodimers AP Rebocho1,2 and R Marais1,3 The RAF proteins are cytosolic protein kinases that regulate cell responses to extracellular signals. There are three RAF proteins in cells, ARAF, BRAF and CRAF, and recent studies have shown that the formation of complexes by these different isoforms has an important role in their activation, particularly in response to RAF inhibitors. Here, we investigated the role of ARAF in cancer cell signaling and examined the role of ARAF in mediating paradoxical activation of the MAPK pathway in cells treated with RAF inhibitors. We show that two mutations that occur in ARAF in cancer inactivate the kinase. We also show that ARAF is not functionally redundant with CRAF and cannot substitute for CRAF downstream of RAS. We further show that ARAF binds to and is activated by BRAF and that ARAF also forms complexes with CRAF. Critically, ARAF seems to stabilize BRAF:CRAF complexes in cells treated with RAF inhibitors and thereby regulate cell signaling in a subtle manner to ensure signaling efficiency. Oncogene (2013) 32, 3207–3212; doi:10.1038/onc.2012.330; published online 27 August 2012 Keywords: ARAF; BRAF; CRAF; protein complexes; paradoxical activation INTRODUCTION dimerization, leading to the formation of BRAF:CRAF heterodimers The RAF proteins are serine-threonine-specific protein kinases that and CRAF:CRAF homodimers containing a drug-bound and a activate the MEK/ERK cascade downstream of RAS.
    [Show full text]
  • WO 2017/083562 Al 18 May 20 17 (18.05.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/083562 Al 18 May 20 17 (18.05.2017) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12Q 1/68 (2006.01) C12N 15/10 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US2016/061395 KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 10 November 2016 (10.1 1.2016) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/254,1 10 11 November 2015 ( 11. 11.2015) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: RESOLUTION BIOSCIENCE, INC. TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, [US/US]; 2023 120th Avenue Northeast, Suite 100, Bel- TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, levue, Washington 98005 (US).
    [Show full text]
  • Dema and Faust Et Al., Suppl. Material 2020.02.03
    Supplementary Materials Cyclin-dependent kinase 18 controls trafficking of aquaporin-2 and its abundance through ubiquitin ligase STUB1, which functions as an AKAP Dema Alessandro1,2¶, Dörte Faust1¶, Katina Lazarow3, Marc Wippich3, Martin Neuenschwander3, Kerstin Zühlke1, Andrea Geelhaar1, Tamara Pallien1, Eileen Hallscheidt1, Jenny Eichhorst3, Burkhard Wiesner3, Hana Černecká1, Oliver Popp1, Philipp Mertins1, Gunnar Dittmar1, Jens Peter von Kries3, Enno Klussmann1,4* ¶These authors contributed equally to this work 1Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert- Rössle-Strasse 10, 13125 Berlin, Germany 2current address: University of California, San Francisco, 513 Parnassus Avenue, CA 94122 USA 3Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany 4DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Oudenarder Strasse 16, 13347 Berlin, Germany *Corresponding author Enno Klussmann Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC) Robert-Rössle-Str. 10, 13125 Berlin Germany Tel. +49-30-9406 2596 FAX +49-30-9406 2593 E-mail: [email protected] 1 Content 1. CELL-BASED SCREENING BY AUTOMATED IMMUNOFLUORESCENCE MICROSCOPY 3 1.1 Screening plates 3 1.2 Image analysis using CellProfiler 17 1.4 Identification of siRNA affecting cell viability 18 1.7 Hits 18 2. SUPPLEMENTARY TABLE S4, FIGURES S2-S4 20 2 1. Cell-based screening by automated immunofluorescence microscopy 1.1 Screening plates Table S1. Genes targeted with the Mouse Protein Kinases siRNA sub-library. Genes are sorted by plate and well. Accessions refer to National Center for Biotechnology Information (NCBI, BLA) entries. The siRNAs were arranged on three 384-well microtitre platres.
    [Show full text]
  • Network Impact of the SERT Ala56 Coding Variant
    fnmol-13-00089 June 8, 2020 Time: 16:4 # 1 ORIGINAL RESEARCH published: 08 June 2020 doi: 10.3389/fnmol.2020.00089 Ex vivo Quantitative Proteomic Analysis of Serotonin Transporter Interactome: Network Impact of the SERT Ala56 Coding Variant Meagan A. Quinlan1,2,3, Matthew J. Robson4, Ran Ye2, Kristie L. Rose5, Kevin L. Schey5 and Randy D. Blakely2,6* 1 Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States, 2 Department of Pharmacology, Vanderbilt University, Nashville, TN, United States, 3 Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States, 4 Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States, 5 Department of Biochemistry, Vanderbilt University, Nashville, TN, United States, 6 Brain Institute, Florida Atlantic University, Jupiter, FL, United States Altered serotonin (5-HT) signaling is associated with multiple brain disorders, including major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and autism spectrum disorder (ASD). The presynaptic, high-affinity 5-HT transporter (SERT) tightly regulates 5-HT clearance after release from serotonergic neurons in the brain and enteric nervous systems, among other sites. Accumulating evidence suggests that SERT is dynamically regulated in distinct activity states as a result of environmental and Edited by: Raul R. Gainetdinov, intracellular stimuli, with regulation perturbed by disease-associated coding variants. Saint Petersburg State University, Our lab identified a rare, hypermorphic SERT coding substitution, Gly56Ala, in Russia subjects with ASD, finding that the Ala56 variant stabilizes a high-affinity outward- Reviewed by: facing conformation (SERT∗) that leads to elevated 5-HT uptake in vitro and in vivo.
    [Show full text]
  • Supporting Information
    Supporting Information Faltermeier et al. 10.1073/pnas.1521674112 A. FU-R1-R2-V5-SV40-BlasƟ-CGW UbiquiƟn-C CMV 5’ LTR R1 Kinase R2 V5 SV40 BlastiR 3’ LTR promoter promoter GFP B. Kinase (kDa) 210 CMV GFP WPR 105 promot E er 78 49 38 28 V5 293t cells Fig. S1. Lentivirus-mediated overexpression of V5-tagged kinases. (A) Full-length kinases were cloned into the FU-R1-R2-V5-SV40-Blasti-CGW lentiviral vector shown. R1 and R2 represent recombination sites required for recombination-based Gateway cloning. LTR, Long-terminal repeat. (B) Western blot showing expression of selected kinases in 293t cells detected by a V5 antibody. The molecular mass of each kinase is indicated in parentheses. A. vector SrcY529F 3 Cap8 cells 2 weeks 2 x107 Tail vein Y529F Src injecƟon SCID 1 Luciferase reporter BLI Radiance (p/sec/cm3/sr) B. Lungs from mice injected with Cap8-SrcY529F cells Mouse 1 Mouse 2 Fig. S2. SrcY529F promotes lung colonization when overexpressed in murine prostate cells. (A) Experimental design to demonstrate that expression of mu- tationally activated kinase SrcY529F in Cap8 cells promotes lung colonization. (B) Bright-field images of lungs removed from mice 3 wk after being injected with Cap8-SrcY529F cells. (Scale bars, 5 mm.) Faltermeier et al. www.pnas.org/cgi/content/short/1521674112 1of5 A. Lungs-NTRK2 210 105 NTRK2 78 49 38 V5 293t cells Metastases Ɵssue Lungs-EGFR 210 EGFR 105 78 49 38 V5 293t cells Metastases Ɵssues Lungs-Her2 210 105 HER2 78 49 38 V5 293t cells Metastases Ɵssues B.
    [Show full text]
  • 14-3-3 Proteins Associate with Cdc25 Phosphatases DOUGLAS S
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 7892-7896, August 1995 Cell BioIlogy 14-3-3 proteins associate with cdc25 phosphatases DOUGLAS S. CONKLIN, KONSTANTIN GALAKTIONOV, AND DAVID BEACH* Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 Communicated by Marc W Kirschner, Harvard Medical School, Boston, MA, May 19, 1995 ABSTRACT The cdc25 phosphatases play key roles in cell onset of mitosis by cdc2-cyclin B phosphorylation (27). Since cycle progression by activating cyclin-dependent kinases. Two cdc25C phosphatase activity stimulates cdc2 kinase activity, members of the 14-3-3 protein family have been isolated in a phosphorylation by cdc2-cyclin B may result in the formation yeast two-hybrid screen designed to identify proteins that of an auto-amplification loop with increased cdc25C activity interact with the human cdc25A and cdc25B phosphatases. further activating cdc2 kinase activity. cdc25A, which plays a Genes encoding the human homolog ofthe 14-3-3e protein and crucial role early in the cell cycle (28), has been shown to be the previously described 14-3-3f8 protein have been isolated in phosphorylated by cdk2-cyclin E at the G1/S transition (29). this screening. 14-3-3 proteins constitute a family of well- Recently, the Raf-1 protooncogene kinase has been found to conserved eukaryotic proteins that were originally isolated in form a tight complex with cdc25 phosphatases both in somatic mammalian brain preparations and that possess diverse cells and in Xenopus oocytes (30). Raf-1-dependent kinase biochemical activities related to signal transduction. We activity phosphorylates and stimulates cdc25A activity.
    [Show full text]
  • Oncogenic and Sorafenib-Sensitive ARAF Mutations in Lung Adenocarcinoma
    Oncogenic and sorafenib-sensitive ARAF mutations in lung adenocarcinoma Marcin Imielinski, … , Matthew Meyerson, David P. Carbone J Clin Invest. 2014;124(4):1582-1586. https://doi.org/10.1172/JCI72763. Brief Report Oncology Targeted cancer therapies often induce “outlier” responses in molecularly defined patient subsets. One patient with advanced-stage lung adenocarcinoma, who was treated with oral sorafenib, demonstrated a near-complete clinical and radiographic remission for 5 years. Whole-genome sequencing and RNA sequencing of primary tumor and normal samples from this patient identified a somatic mutation, ARAF S214C, present in the cancer genome and expressed at high levels. Additional mutations affecting this residue of ARAF and a nearby residue in the related kinase RAF1 were demonstrated across 1% of an independent cohort of lung adenocarcinoma cases. The ARAF mutations were shown to transform immortalized human airway epithelial cells in a sorafenib-sensitive manner. These results suggest that mutant ARAF is an oncogenic driver in lung adenocarcinoma and an indicator of sorafenib response. Find the latest version: https://jci.me/72763/pdf Brief report Oncogenic and sorafenib-sensitive ARAF mutations in lung adenocarcinoma Marcin Imielinski,1,2,3 Heidi Greulich,2,3,4 Bethany Kaplan,2,3 Luiz Araujo,5 Joseph Amann,5 Leora Horn,6 Joan Schiller,7 Miguel A. Villalona-Calero,5 Matthew Meyerson,2,3,8 and David P. Carbone5 1Molecular Pathology Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA. 2Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. 3Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. 4Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
    [Show full text]