Luke L. Jensen and R. John Hansman
Total Page:16
File Type:pdf, Size:1020Kb
FUEL EFFICIENCY BENEFITS AND IMPLEMENTATION CONSIDERATIONS FOR CRUISE ALTITUDE AND SPEED OPTIMIZATION IN THE NATIONAL AIRSPACE SYSTEM Luke L. Jensen and R. John Hansman This report is based on the Masters Thesis of Luke L. Jensen submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology. Report No. ICAT-2014-04 May 2014 MIT International Center for Air Transportation (ICAT) Department of Aeronautics & Astronautics Massachusetts Institute of Technology Cambridge, MA 02139 USA Page Intentionally Left Blank - 2 - FUEL EFFICIENCY BENEFITS AND IMPLEMENTATION CONSIDERATIONS FOR CRUISE ALTITUDE AND SPEED OPTIMIZATION IN THE NATIONAL AIRSPACE SYSTEM by Luke L. Jensen Submitted to the Department of Aeronautics and Astronautics on May 22, 2014, in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics ABSTRACT This study examines the potential fuel burn benefits of altitude and speed optimization in the cruise phase of flight for domestic airlines in the United States. Airlines can achieve cost reductions and reduce environmental impact by making small modifications to the cruise phase operating condition. The efficiency of the National Airspace System can be improved with coordination between air traffic controllers, pilots, and airline dispatchers. This study builds off of prior work in this area to establish best-case benefits assuming full implementation of fuel- optimal cruise altitudes and speeds. In order to achieve these objectives, a cruise-phase fuel burn estimator was developed using publicly-available radar tracks and weather data. This estimator was used to examine 217,000 flights from 2012. Maximum benefits from altitude optimization (holding speed constant) were found to be on the order 1.96%. The majority of potential altitude benefits can be achieved using step climb optimization, with only marginal gain from cruise climb implementation. The maximum benefits for speed optimization (holding altitude constant) were found to be 1.94% with an average flight time increase of 3.5 minutes per flight. Simultaneous altitude and speed optimization yielded a potential cruise fuel burn reduction of 3.71%. In practice, operational considerations and barriers to implementation limit likely system fuel reduction to lower levels. High-benefit operations within the NAS are identified and potential implementation considerations are discussed. Thesis Supervisor: Dr. R. John Hansman Title: T. Wilson Professor of Aeronautics and Astronautics - 3 - Page Intentionally Left Blank - 4 - ACKNOWLEDGEMENTS First, I wish to thank Professor Hansman for his practical and academic guidance rooted in years of experience in aviation and engineering. Such perspective is immensely valuable for a graduate researcher and a student of aviation. Second, I am thankful for the support of my collaborators at MIT Lincoln Laboratory (including Tom Reynolds, Joe Venuti, Alan Midkiff, and Yari Rodriguez) and project managers at the FAA AEE (including Pat Moran and Chris Dorbian). Collectively, their weekly feedback kept my research and analysis ideas on track. I wish to acknowledge the long chain of teachers and mentors who have helped me grow academically and personally to meet the present challenge. Each new experience builds on the foundation of what comes before. I especially thank my teachers at the Bainbridge Island Public Schools, my mentors at the Port Townsend Aero Museum, and my professors at the University of Washington. I am grateful for my year of travel between 2011 and 2012 and the impact it had on my present outlook toward academics and life. To all of the people I met on the road in all corners of the world, I pass along a heartfelt thanks. What goes around comes around. Last, but certainly not least, I wish to thank my parents and my brother for being supportive throughout the journey that brought me here. Blue skies! DISCLAIMER This work was sponsored by the Federal Aviation Administration (FAA) under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government. - 5 - Page Intentionally Left Blank - 6 - TABLE OF CONTENTS Chapter 1 Introduction ............................................................................................................... 15 1.1 Motivation................................................................................................................................................. 15 1.2 Research Objective ................................................................................................................................ 17 1.3 Study Scope .............................................................................................................................................. 18 1.4 Thesis Outline ......................................................................................................................................... 18 Chapter 2 Background ................................................................................................................ 21 2.1 Altitude Planning and Assignment in Practice .......................................................................... 21 2.2 Speed Planning and Assignment in Practice .............................................................................. 23 2.2.1 Methods for Cruise Speed Control .................................................................................. 24 2.2.2 Tactical Speed Control ......................................................................................................... 25 2.3 Fuel Efficiency Metric Selection ....................................................................................................... 25 2.4 Aircraft Performance for Fuel-Optimal Cruise .......................................................................... 26 Chapter 3 Methodology .............................................................................................................. 29 3.1 High-Level Approach............................................................................................................................ 29 3.2 Data Sources ............................................................................................................................................ 31 3.2.1 Weather Data ........................................................................................................................... 31 3.2.2 Radar Data ............................................................................................................................... 32 3.2.3 Pre-Processing Trajectory Data ....................................................................................... 32 3.3 Sample Set Definition ........................................................................................................................... 34 3.3.1 Selecting Case Days ............................................................................................................... 35 3.3.2 Selecting Flights Within Case Days ................................................................................. 36 3.4 Weather Correction .............................................................................................................................. 37 3.5 Weight Estimation ................................................................................................................................. 39 3.6 Cruise Trajectory Fuel Estimation .................................................................................................. 42 3.6.1 Aircraft Performance Model .............................................................................................. 43 3.6.2 Climb & Descent Correction .............................................................................................. 45 3.7 Trajectory Optimization: Altitude .................................................................................................. 46 3.7.1 Cruise Climb ............................................................................................................................. 48 3.7.2 Step Climb ................................................................................................................................. 49 3.7.3 Flexible VNAV .......................................................................................................................... 50 - 7 - 3.8 Trajectory Optimization: Speed ....................................................................................................... 52 3.9 Trajectory Optimization: Joint Altitude & Speed ...................................................................... 53 Chapter 4 Results .......................................................................................................................... 55 4.1 Altitude Optimization Results .......................................................................................................... 55 4.1.1 Individual Flight Altitude Results ................................................................................... 55 4.1.2 Aggregate Altitude Results................................................................................................. 59 4.1.3 Differences between Airlines and Aircraft Types ..................................................... 63