Wilhelm Eduard Weber (1804-1891), Sua Vida E Sua Obra A. K. T. Assis*

Total Page:16

File Type:pdf, Size:1020Kb

Wilhelm Eduard Weber (1804-1891), Sua Vida E Sua Obra A. K. T. Assis* WilhelmEduard Weber (1804-1891), sua vida e sua obra A. K.T. Assis* RESUMO - É upr"r"ntada a vida de \ileber, suas na universidade local. Foi aí que iniciou sua principais realizações experimentais e leóricas, e os carreira científica e que desenvolveu seus exí- desenvolvimentosrecentes de sua teoria mios dotes de físico experimental que o torna- riam famoso no futuro. Seu primeiro trabalho cientÍfico é publicado em 1825 e trata de investi- Introdução gações experimentais sobre ondas sonoras e acústicas realizadas com seu irmão Ernst Hein- Faz l0O anos que Wilhelm Weber morïeu. rich. Parüe do trabalho experimental foi realiza- Para rnrcar esta data significativa resolvenÌos do antes que Weber entrasse na Universidade de escrever esta pequena biografia de Weber, de- Halle, fato ocorrido em 1822. talhando um pouco mais suas lealizações na área do eletromagnetismo experimental I Eóri- Cursou físicc e defendeu seu doutorado em co. Apesar da teoria de Weber ter sido um pou- L826, sob a orientação do físico J. S. C. Sch- co esquecida durante este século, mostramcs na weigger. Seu trabalho de tese foi sobre a teoria par0e final deste trabalho alguns motivos pelos do órgão feito de tubos de madeira, e em parti- quais ela tem retornado com grzìnde vigor nos cular estudou o acoplamento da língua e das últimos anos. Esperamos com este trabalho cavidades de ar nesses tubos. Obteve sua habi- contribuir paÍa tornar Weber e sua obra mais litação para exercer o cuìrgo de professor uni- conhecidos e difundidos. versitário em 1827, com um trabalho sobre os- ciladores acoplados. Tanto neste trabalho Vida de lVeber quanto no de tese, V/eber desenvolveu não ape- nÍrs a teoria do processo físico envolvido mas Wilhelm Weber nÍìsceu em Wit0enberg, principalmente realizou experimentos detalha- Alemanha, em Vl de outubro de 18O4. Filho de dos para testar as teorias e modelos. um professor de teologia na Universidade de Começa a dar aulas Wittenberg, lileber teve ao todo l l irmãos, sen- na Universidade de Halle, e logo se torna professor do que apen€ìsele, três outros irmãos, e uma ir- assistente, eD 1828. No final deste mã, chegaram à vida adulta. O mais velho dos ano foi a um congresso em Berlin, oryanizado por Alexander irmãos se tornou pastor, enquanto Ernst Heirich von Humboldt e lá apresentou seu trabalho de tese, gue Weber, quase lO anos mais velho do que W. We- atraiu a atenção de Humboldt ber, se tornou um professor famoso na Univer- e Gauss. C. F. Gauss (1777-1855) já era então um sidade de Leipzig, nas áreas de anatomia e fi- matemático reno- mado internacionalmente, e há 20 siologia. Também seu irmão um ano e meio anos profes- sor na Universidade de Gottingen. mais novo, Eduard, tornou-se professor de Este foi o único congresso cientÍÍico anatomia em Leípzig (V/oodruff, 1980). de que Gauss parti- cipou, e o detestou. Mas este congresso Passou sua infância em Wittenberg até mu- teve um aspecto múto importante, já que dar-se, juntamente com toda a famÍlia, para foi af que Gauss e Weber se conheceram. Humboldt Halle em 1814, onde seu pai passou a lecionar havia interessado Gauss em geomagnetismo e ambos viram no jovem e habilidoso físico experimental * Departamento de Raios Cósmicos e Cronologia, Instiurto de Weber, um grande aliado. Gauss tinha entjio FÍsica, Universidade Estadual de Campinas, Caixa Postal praticamente o dobro da idade de Weber (54 e 6165 - 13081- Çampinas,gP. quase 27). Revista da SBHC, V. 5, p. 53-59, l99Ír 53 André K. T. Assis Para que a colaboração entre ambos pudes- Weber permaneceu em l-eipzig entre 1843 e se ser efetivada era necessário obter uma posi- 1848, sendo este o perÍodo em que desenvolve pesquisas teóricas em eletricida- çáo para \ileber em Gottingen. Isto ocorreu em suas principais 1831 quando foi aberta uma vaga de professor de. Parece que seu contato mais próximo com @m a morte de Tobias Mayer Jr. Durante seis Fechner teve grande importância para isto, entre mos, de 183 | a 1837, Weber ficou trabalhando outras coisas por Fechner ser um ferrenho ato- gm Gottingen juntamente com Gauss, e além do mista, e é neste período que Weber desenvolve excelente relacionamento pessoal desenvolve- sua teoria corpuscular da eletricidade, das cor- ram uma colaboração cienúfica importantíssima, rentes elétricas e até mesmo do éter. Em 1846 que descreveremos a seguir. A grande arntzade publicou o primeiro dos seus Elelorodyrutnis- que estabeleceram é curiosa, já que eram duas che Maassbestimmungen (Medições Eletrodi- personalidades bem distintas. Gauss sempre foi nârnicas), no qual apresenta sua famosa lei de descrito como uma pessoa ambiciosa, extrema- força entre cargas elétricas. mente frio e glacial, sem amigos. Weber' por Esta lei é essencialmente a de Coulomb, outro lado, sempre foi tido como uma pessoa adicionada de termos que dependem da veloci- modesta, amigável e sociável. dade e aceleração relativa entre as cargas inte- Em 1836, Weber publica com seu irmão ragentes. Com esta lei conseguiu deduzir a lei Eduard um trabalho sobre a locomoção humana' de Ampère prìra a força entre elementos de cor- em seus aspectos físicos e fisiológicos. rente, e também a lei de indução de Faraday. Em 1837, Victoria tornou-se rainha da tn- Ao todo publicou, entre 1846 e 1878, sete glaterra, e seu tio, Ernst August, passou a go- grandes trabalhos com o título geral de "Medi- vernzrr Hannover. Imediatamente o novo rei, ções Eletrodinâmicas", além de deixar mais um Ernst August, revogou a consütuição liberal volume manuscrito, publicado postumamente. então existente e isto provocou uma reação de A revolução de 1848 na Alemanha Í.orçou protesto por parte de alguns professores. Weber uma liberalização maior do regime e Weber pô estava entre sete professores de Gottingen que de voltar a seu anti.go posto na Universidade de assinaram uma declaração de protesto, e isto fez Gottingen. Bernhard Riemann (1826-1866) foi com que estes sete professores, a pedido do rei, um de seus estudantes, assistente e amrgo neste perdessem seus cargos. Apesar dos esforços de período, assim como Riemann também o foi de Gauss e de Humboldt, Weber não retomou logo Gauss (Wise, l98l). Neste período, Weber tor- seu ca.rgo, pois se recusou a fazer uma retratação nou-se clrretor do observatório astronômico e pública. passou a trabalhar em colaboração mais ativa Permaneceu morando e trabalhando em com Rudolph Kohlrausch, um antrgo amigo. Gottingen em medições geomagnéticas, sem Com Kohlrausch mede, em 1856, a razão entre uma posição universitária atÉ 1843, quando en- as unidades eletromagnéticas e eletrosúticas de tão assumiu o cargo de professor de física na caÍga, ccisa qur, nunca havia sido feita antes. O Universidade de l*tpzig, onde já trabalhavam valor obtido, 3.1 x lO8 m./s, essencialmenteo seus dois irmãos. A vaga que ele ocupou era mesmo valor que a velocidade da luz, que já era manüda por G. T. Fechner, físico e filósofo conhecida desde os tempos de Roemer (1675)' alemão, que era amigo da famflia Weber. foi a primeira indicação quantitativa precisa so- que haver entre o Fechner teve de deixar seu cargo por pro- bre a ligação profunda devia e a ópúca. Este valor foi usa- blemas na vista, que lhe causavam cegueira eletromagnetismo temporária, problemas estes ocasionados por do por Maxwell em favor de sua própria teoria (Maxwell, 1954, Y. 2, p. 4I7, experimentos psicofísicos que realizou em si eletromagnéüca que na mesmo. Fechner e o irmão de Weber, Ernst, ha- 436). Isto porque a constante c aparece de Weber, e que tem este valor, é a mesma viam iniciado um trabalho pioneiro de psicolo- força por Maxwell em equações. gia empírica, denominada psicofísica por Fech- introduzida suas ner, no qual estudavam o aumento da resposta Weber continuou trabalhando com eletrodi- subjetiva de uma pessoa (por exemplo através nâmica e a estrutura da matéria (origem da re- da dor, ou percepção da intensidade luminosa), sistência e da condutividade elétrica, diamag- quando o estÍmulo objetivo externo é aumenta- netismo, etc.) atê, se aposentar, na década de do (Wise, 1981). 187G.80. Revista da SBHC, V. 5, p. 53-59, 19D1 54 WilhelmEduard Weber (1804-1991), sua üda e suaobra Weber nunca se cÍìsou. Sempre gostou de sensíveis magnetômetros e outros instrumentos longas carninhadas. Morreu aos 86 anos, em 23 de medidas magnéücas. de junho de 1891, enquanto passeava calma- E a partir de sua ida a Leipzig, em 1843, mente no jardim de sua casa em Goningen. que se inicia a fase mais importante e criativa As obras completas de Weber, em 6 volu- da carreira cientÍfica de Weber. Já eram conhe- ll9st forarn coligidas e editadas entre 1892 e 94 cidas na época a lei de Coulomb para a eletr,os- (weber, 1892). tática (tzds), a lei de Ampère parã a força entre elementos de corrente (1823) - com a qual se pode derivar a famosa lei circuital de Ampère - Sua obra cientÍÍica e a lei de indução de Faraday (1831). Alei de Ampère, em particular, pode ser escrita como: Neste trabalho viìmos nos concentrar nÍìs pesqúsas de Weber relacionadas com o eletro 04,: -+! Lt r,\r L 12(4 I .oú* magnetismo. Não entraremos em detalhes nos 4'Í !f. seÌrs trabalhos de hidrodinâmica, acústica e fi- -3(i.oirG.dDl. siologia. Nesta expressão,r = l4 - e a.distâncig Suas pesqúsas em eletromagneüsmo têm il entre os elementos de conente i, di? e I" dj"'. inÍcio com sua primeira estadia em Gottingen, i = ({ -?r!n e dF2'1 é a força no perÍodo de 183I a 1837, com Gauss. elemento 2 sobre o elemento l. "*"i"iau'peÍ,iNa época de Em 1832 Gauss escreve um trabalho famo- Weber não se sabia qual era a natureza íntima so, no qual foi auxiliado por Weber, e que in- da corrente elétrica de condução em metais, e troduz Írs unidades de medidas absolutas no para muitos esta era um fluido elétrico que nada rnagnetismo (Woodruff, 1980).
Recommended publications
  • On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch
    Andre Koch Torres Assis On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch Abstract The electrostatic, electrodynamic and electromagnetic systems of units utilized during last century by Ampère, Gauss, Weber, Maxwell and all the others are analyzed. It is shown how the constant c was introduced in physics by Weber's force of 1846. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic units of charge. Weber and Kohlrausch's experiment of 1855 to determine c is quoted, emphasizing that they were the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff in 1857 and Weber (1857-64) independently of one another obtained the fact that an electromagnetic signal propagates at light velocity along a thin wire of negligible resistivity. They obtained the telegraphy equation utilizing Weber’s action at a distance force. This was accomplished before the development of Maxwell’s electromagnetic theory of light and before Heaviside’s work. 1. Introduction In this work the introduction of the constant c in electromagnetism by Wilhelm Weber in 1846 is analyzed. It is the ratio of electromagnetic and electrostatic units of charge, one of the most fundamental constants of nature. The meaning of this constant is discussed, the first measurement performed by Weber and Kohlrausch in 1855, and the derivation of the telegraphy equation by Kirchhoff and Weber in 1857. Initially the basic systems of units utilized during last century for describing electromagnetic quantities is presented, along with a short review of Weber’s electrodynamics.
    [Show full text]
  • Weberˇs Planetary Model of the Atom
    Weber’s Planetary Model of the Atom Bearbeitet von Andre Koch Torres Assis, Gudrun Wolfschmidt, Karl Heinrich Wiederkehr 1. Auflage 2011. Taschenbuch. 184 S. Paperback ISBN 978 3 8424 0241 6 Format (B x L): 17 x 22 cm Weitere Fachgebiete > Physik, Astronomie > Physik Allgemein schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Weber’s Planetary Model of the Atom Figure 0.1: Wilhelm Eduard Weber (1804–1891) Foto: Gudrun Wolfschmidt in der Sternwarte in Göttingen 2 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Band 19 Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt Weber’s Planetary Model of the Atom Ed. by Gudrun Wolfschmidt Hamburg: tredition science 2011 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Hg. von Gudrun Wolfschmidt, Geschichte der Naturwissenschaften, Mathematik und Technik, Universität Hamburg – ISSN 1610-6164 Diese Reihe „Nuncius Hamburgensis“ wird gefördert von der Hans Schimank-Gedächtnisstiftung. Dieser Titel wurde inspiriert von „Sidereus Nuncius“ und von „Wandsbeker Bote“. Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt: Weber’s Planetary Model of the Atom. Ed. by Gudrun Wolfschmidt. Nuncius Hamburgensis – Beiträge zur Geschichte der Naturwissenschaften, Band 19. Hamburg: tredition science 2011. Abbildung auf dem Cover vorne und Titelblatt: Wilhelm Weber (Kohlrausch, F. (Oswalds Klassiker Nr. 142) 1904, Frontispiz) Frontispiz: Wilhelm Weber (1804–1891) (Feyerabend 1933, nach S.
    [Show full text]
  • History (From Wikipedia)
    History (from Wikipedia) November 13, 2019 There’s a reason math things are named after physicists: 1. Friedrich Wilhelm Bessel was a German astronomer, mathematician, physicist and geodesist. He was the first astronomer who determined reliable values for the distance from the sun to another star by the method of parallax. A special type of mathematical functions were named Bessel functions after Bessel’s death, though they had originally been discovered by Daniel Bernoulli and then generalised by Bessel. 2. Pierre-Simon, marquis de Laplace: was a French scholar whose work was important to the devel- opment of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized and extended the work of his predecessors in his five-volume Mécanique Céleste (Celestial Mechanics) (1799–1825). This work translated the geometric study of classical mechanics to one based on calculus, opening up a broader range of problems. In statistics, the Bayesian interpretation of probability was developed mainly by Laplace. 3. Adrien-Marie Legendre: Whoops, he’s a mathemetician. But much of his work was completed by Gauss. Legendre is known for the Legendre transformation, which is used to go from the Lagrangian to the Hamiltonian formulation of classical mechanics. In thermodynamics it is also used to obtain the enthalpy and the Helmholz and Gibbs (free) energies from the internal energy. He is also the namesake of the Legendre polynomials, solutions to Legendre’s differential equation, which occur frequently in physics and engineering applications, e.g. electrostatics. 4. Carl Gottfried Neumann, while in Königsberg, studied physics with his father, and later as a working mathematician, dealt almost exclusively with problems arising from physics.
    [Show full text]
  • Weber Quoting Maxwell
    Weber quoting Maxwell Zur Anseinandcrsetzun!!; zwit;chen der Weberschen Theorie del" Elektrizitat lind der emfkommenden lVIaxwelIschen Elektrodynaillik Andf(~ Koch Torres Assis, Campinas, Sao Paulo, Brasil, and Karl Heinrich \Vicdcrkehr, Hamburg Zusamrnenfassung Die Abhandlllllg spt7:t sidl mit del' Ablos\lll!-\ der iilterPIl Ekktrodynamik vou \Vilhdill \Ve­ bef und Fran;. Npumunll durch die .\laxwf'lJschr Theoric im lebten Drittel des 19. .lahr­ h\llldf'rt~ aus!'inClIHirr. AuflliingrT fiir die Darst.ellllng der Pl'oblcl11<Jtik sind <iiI" w€nigen i':ltatp, dk sidl bci VI/ilhe]m \Ve!wr findcn. Di(' Diskuf'sioll wUrci(' daIllals h,mpt~iicblich (lurch Carl Nculllanu lind Johann Karl Friedrich Z;ii1hwr gcfUhrt" Ikidc warell cngagienE' und !eidpIIschaftlidlP AnhiiTlger lind Vertei<iiger (\r-~r \\"f'bcr~dlPII Sieht uml Darstl'lluIlg der Thl'orie von d('r ElekLrb:iUit" Streit,pnnkte waf(~n (1) dk N<l,hwirkungHtlH'orie, die mit dem \laxwell~c1wn Feldkoll7Ppt identiHch illt unci 1m Gegel1H<l,tz zur FermvirkUllg-~theorie (Pro­ toLyp: ~ewtonscheH Gravitati()lI~gesetz) c,t,anli, und (2) die Annalilne der ExiSlenz piner ~ub~tant.iellen EkktrizitiiL \V("\H'r beharrte his ;;ulpt7.t auf scinPHl Konzept nnt! entwickeite ein ,\t,omnH)(\ell, d,u.; ab Vor~tufe des Jlutherford-Hohr~chE'n At()lllIllOdcJl~ angesehen wer­ den kalln. Konsen~ bestand Lei den absoluten eiektrischpn :'\,Ia.i;sYHt,emen. J_ Cl. lvI~wel1 Ii\..'; au~ d('lll Kohlransch-\VclwT-E::qJPrinwnt die LirhtgeHthwindigkeit heraU'" die flir ~eine ('lektnJInagnl'tiHthc l .. ichttheorie cine wiehtige Stiitze war. Da.s absolnte elektrornagneLi~che I\IaJ~SVHr,em (\icnLe <lh Crul1dlagp fur die InternaLionalen 'l\Iar~einheiten 1881.
    [Show full text]
  • The Double Helix Theory of the Magnetic Field
    The Double Helix Theory of the Magnetic Field Frederick David Tombe Belfast, Northern Ireland, United Kingdom [email protected] 15th February 2006, Philippine Islands Abstract. The historical linkage between optics and electromagnetism can be traced back to a paper published in the year 1856 by Wilhelm Eduard Weber and Rudolf Kohlrausch. By discharging a Leyden Jar (a capacitor), they showed that the ratio of the electromagnetic and electrostatic units of charge is numerically equal to the directly measured speed of light. Weber interpreted this result as meaning that the speed of light is a kind of escape velocity for electricity in motion, such as would enable the associated magnetic force to overcome the electrostatic force. An alternative interpretation was advanced a few years later by James Clerk-Maxwell who connected the result to the elasticity in an all pervading solid medium that serves as the carrier of light waves. As a consequence, he concluded that light waves are electromagnetic undulations. These two perspectives can be reconciled by linking the speed of light to the circumferential speed of the molecular vortices which Maxwell believed to be the constituent particles of the solid luminiferous medium. If we consider these molecular vortices to be tiny electric current circulations, magnetic repulsion can then be explained in terms of centrifugal force. And if these molecular vortices should take the form of an electron and a positron in mutual orbit, we can then also explain magnetic attraction in terms of the more fundamental electrostatic force being channeled through space along double helix chains that constitute magnetic lines of force.
    [Show full text]
  • Research Papers-Mechanics / Electrodynamics/Download/7797
    The Full Significance of the Speed of Light Frederick David Tombe, Northern Ireland, United Kingdom, [email protected] 15th June 2019 Abstract. In the year 1855, German physicists Wilhelm Eduard Weber and Rudolf Kohlrausch performed a landmark experiment of profound significance. By discharging a Leyden jar (a capacitor), they linked the speed of light to the ratio between electrostatic and electrodynamic units of charge. This experiment was electromagnetism’s Rosetta Stone because the result can be used to, (i) identify the speed of light as the speed of circulation of electric current, (ii) identify the speed of light as the speed of electromagnetic waves through a dielectric solid that pervades all of space, while noting that inertial centrifugal force and dipole fields share in common an inverse cube law in distance. The result can also be used to, (iii) identify magnetic repulsion as a centrifugal force, and hence to establish the double helix pattern that characterizes magnetic lines of force. Weber’s Interpretation I. Weber and Kohlrausch’s 1855 experiment involved discharging a Leyden jar (a capacitor) that had been storing a known amount of charge in electrostatic units, and then seeing how long it took for a unit of electric current, as measured in electrodynamic units, to produce the same deflection in a galvanometer [1]. From these readings they discovered that the ratio of the two systems of units was equal to c√2 where c is the directly measured speed of light, although it’s not clear that they immediately noticed the numerical value of c explicitly. Had they however used electromagnetic units instead of electrodynamic units for the electric current, the result would have stood out as c exactly.
    [Show full text]
  • Applied Electromagnetics
    Dan Sievenpiper - UCSD, 858-822-6678,[email protected] Applied Electromagnetics Dan Sievenpiper, 2018-10-29 1 Dan Sievenpiper - UCSD, 858-822-6678,[email protected] History: A Few of the Early Pioneers in Electromagnetics Andre-Marie Ampere Michael Faraday James C. Maxwell Heinrich Hertz Invented telegraph Invented electric motor Unified electricity, magnetism Proved existence of (among many other things) (among many other things) and light into one theory electromagnetic waves Guglielmo Many, many others: Nicola Tesla Marconi • Alessandro Volta • James Prescott Joule • Georg Simon Ohm • Charles William Siemens • Charles-Augustin Coulomb • Joseph Henry • Wilhelm Eduard Weber • Hans Christian Orsted Invented AC, wireless Invented radio • … communication 2 power transfer Dan Sievenpiper - UCSD, 858-822-6678,[email protected] Courses in Applied Electromagnetics • Undergrad Courses – ECE107 – Electromagnetism – ECE123 – Antenna Systems Engineering – ECE166 – Microwave Systems and Circuits – ECE182 – Electromagnetic Optics, Guided-wave and Fiber Optics • Graduate Courses – ECE221 – Magnetic Materials Principles and Applications – ECE222A – Antennas and their System Applications – ECE222B – Electromagnetic Theory – ECE222C – Computational Methods for Electromagnetics – ECE222D – Advanced Antenna Design 3 Dan Sievenpiper - UCSD, 858-822-6678,[email protected] ECE107 Electromagnetism • Electrostatics, magnetostatics • Vector analysis • Maxwell’s equations • Plane waves, reflection, refraction • Electromagnetic
    [Show full text]
  • – by Julia Cipo, Holger Kersten –
    THE GAS DISCHARGE PHYSICS IN THE 19th CENTURY (PART I) – by Julia Cipo, Holger Kersten – Sir Vasily Humphry Petrov * July 19th, 1761 in Oboyan, Russia Davy † August 5th, 1834 in Saint Petersburg, Russia * December 17th, 1778 in Penzance, Cornwall in England Vasily Vladimirovich Petrov was a russian physicist and member of the Russian † May 29th, 1829 in Genf, Switzerland *4 Academy of Sciences. After A.Volta introduced his voltaic battery in the year *1 1800, Petrov began constructing a larger battery by using 4200 copper and zinc Sir Humphry Davy was an english chemist, inventor and presi- discs, stowed in four huge boxes. The boxes were about 3 m long and placed dent of the Royal Society. Unaware of Petrov’s work, Davy con- parallel to each other. They alternately ended with zinc and copper, so when structed a larger voltaic battery with an electrode area of 80 m2. connected they could be used as a serial circuit of Using his huge battery in 1807 he could decompose potash and 4200 electric cells. The motivation of building an soda by gaining the metals potassium and sodium. Later he could “enormous” battery as called by Petrov was the obtain barium, calcium, strontium and magnesium. During these observation of new effects. In his report of the experiments he experienced new gas discharge phenomena such year 1803 “Announcements on Galvano-Volta- as continuous arcs, which he presented often in front of a large ic experiments” he describes the observation of aristocratic audience. In his Bakerian Lecture he writes: “By the ar- *5 the fi rst continuous arc discharge.
    [Show full text]
  • The Ampère House and the Museum of Electricity, Poleymieux Au Mont D’Or, France (Near Lyon)
    The Ampère House The Ampère House and the Museum of Electricity, Poleymieux au Mont d’Or, France (Near Lyon). André-Marie Ampère (1775-1836) Ampere at 21 Ampere at 39 Ampere at 55 Location: Poleymieux au Mont d’Or Compound of the Ampere Family Location: Poleymieux au Mont d’Or Compound of the Ampere Family Educated based on Rousseau theories directly by his father, Jean-Jacques. Never went to school. A genius as soon as 13 years old. A “Prodigy child” learn Latin and other languages. Teach himself the works of Bernouilli and Euler in Latin. Professor of Mathematics, Italian, Chemistry, Mathematics and Physics at 22. Member of the Academy in 1814 (39 years old). Entrance room: History of the Museum Poleymieux au Mont d’Or André-Marie lived there from 7 to 20 years old. His wife and his child stay there a few more years. Museum inaugurated on July 1, 1931. Picture of Hernand & Sosthenes Behn, re-purchased the house to make a museum (Founders of ITT in the USA in 1920). They were from a French Mother and Danish Father. Studied in France and emigrated to New York after graduation. Gave as a gift to the SFE (Société Française des Electriciens) in 1928. Hernand died in France in 1933 in a retirement villa. Room of the Three Amperes. The House of Ampère -Partners Curator: Mr. Georges Asch Plate on the life of Ampere. Definitions (ANSI/IEEE Std 100) Ampere (1) (metric practice). That constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, F F and placed at one meter apart in vacuum, would produce between these conductors a force equal to 2x10-7 newton per meter of length (Adopted by the 9th General Conference on Weight and 1 meter Measures in 1948).
    [Show full text]
  • Investigation of the Influence of a Field-Free Electrostatic Potential on the Electron Mass with Barkhausen-Kurz Oscillation
    Investigation of the Influence of a field-free electrostatic Potential on the Electron Mass with Barkhausen-Kurz Oscillation M. Weikert and M. Tajmar1 Institute of Aerospace Engineering, Technische Universität Dresden, 01062 Dresden, Germany Abstract According to Weber’s electrodynamics, Assis showed analytically, that a field-free electrostatic potential delivered by a spherical shell causes a force upon a moving electrical charge in the center of that shell. This force can be interpreted as a result of the change in inertial mass of the charge. In order to prove this theory, Mikhailov published two type of experimental setups: One using vacuum cathode tube and another using glow-discharge- lamps to generate oscillating and accelerating electrons. Whereas the glow-discharge experiment was already evaluated by several groups, here we are focusing on replicating the vacuum tube configuration. Under right circumstances, electrons inside a vacuum tube start to oscillate around a grid electrode, which is called Barkhausen-Kurz oscillations. However, we found that Mikhailov’s setup does not produce these kind of oscillations and therefore the theory that he applied in the interpretation of his measurements is not correct. We succeeded in generating Barkhausen-Kurz oscillations with a different vacuum tube and found no frequency shifts below an order of magnitude of Assis’s prediction by operating the tube inside a charged spherical shell that would indicate a change in the electron’s mass. However, since both the mass as well as the geometry factor of the electron cloud contribute to the oscillator frequency, we believe that this setup is not suitable to investigate Weber-type electrodynamic effects.
    [Show full text]
  • Gauss and Weber's Creation of the Absolute System of Units Inphysics
    Gauss and Weber's Creation of The Absolute System of Units InPhysics by Andre Koch Torres Assis, Karin Reich, and Karl Heinrich Wiederkehr A specialist in Weber's electrodynamics, and leading Museum or the City 01 Gottmgeo biographers of Weber and Gauss, tell how Gauss's 7832 Wifhelm Weber (1804-1891J. Physics work in magnetism changed physics, and led to Wilhelm professor in Gottingen from 1831; expeffed Weber's development of the laws of electricity. by the King Ernst Augustus in 1837. ere we discuss the work of Carl Friedrich Gauss (1777- bodies. A "terrestrial current" flowing over the surface of the 1 ~55) in mag~etism, centering o~r analysis in his work Earth from east to west, according to Ampere, would force a H ot 1832 and Its consequences tor physics.1 We also magnetic compass needle to its orientation. analyze the extension of this line of research accomplished by Beyond this general interest in the themes of magnetism and Gauss's collaborator Wilhelm Eduard Weber (1804-1891 ).2 electromagnetism, there were two key factors which motivat­ Electricity and magnetism had become very active fields by ed Gauss to initiate his real work in this field: the direct influ­ the 18305, when Gauss turned his full attention to them. The ence of Alexander von Humboldt (1769-1 B59) and that of his science of Earth magnetism, which until then had been isolat­ collaborator, Wilhelm Weber, who filled the vacant chair or ed from other fields, suddenly became a center of attention physics in Gbttingen in 1B31. Humboldt had already created when the close connection between magnetism and the sci­ a European network of regular, synchronous magnetic obser­ ence of electricity was discovered.
    [Show full text]
  • The 1856 Weber-Kohlrausch Experiment (The Speed of Light)
    The 1856 Weber-Kohlrausch Experiment (The Speed of Light) Frederick David Tombe, Northern Ireland, United Kingdom, [email protected] 18th October 2015 Abstract. Nineteenth century physicists Wilhelm Eduard Weber, Gustav Kirchhoff, and James Clerk-Maxwell are all credited with connecting electricity to the speed of light. Weber’s breakthrough in 1856, in conjunction with Rudolf Kohlrausch, revealed the speed of light in the context of a ratio as between two different units of electric charge. In 1857 Kirchhoff connected this ratio to the speed of an electric signal travelling along a wire. Later, in 1862, Maxwell connected this ratio to the elasticity in the all-pervading luminiferous medium that serves as the carrier of light waves. This paper sets out to establish the fundamental cause of the speed of light. Introduction I. The 1856 Weber-Kohlrausch experiment established a ratio between two different units of electric charge. The experiment involved discharging a Leyden jar (a capacitor) that had been storing a known amount of charge in electrostatic units, and then seeing how long it took for a unit of electric current, as measured in electrodynamic units, to produce the same deflection in a galvanometer. This resulted in a ratio C, known as Weber’s constant, and we know today that it is equal to c√2 where c is the directly measured speed of light. Weber interpreted this ratio in connection with the convectively induced force that he had identified and formulated in 1846 as between two charged particles in relative motion. He believed C to be the speed that would produce an exact counterbalancing force to the electrostatic force.
    [Show full text]