Vibrio Fluvialis: an Emerging Human Pathogen

Total Page:16

File Type:pdf, Size:1020Kb

Vibrio Fluvialis: an Emerging Human Pathogen REVIEW ARTICLE published: 07 March 2014 doi: 10.3389/fmicb.2014.00091 Vibrio fluvialis: an emerging human pathogen Thandavarayan Ramamurthy 1*, Goutam Chowdhury 1, Gururaja P.Pazhani 1 and Sumio Shinoda 2 1 National Institute of Cholera and Enteric Diseases, Kolkata, India 2 National Institute of Cholera and Enteric Diseases, Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata, India Edited by: Vibrio fluvialis is a pathogen commonly found in coastal environs. Considering recent Rita R. Colwell, University of increase in numbers of diarrheal outbreaks and sporadic extraintestinal cases, V.fluvialis has Maryland, USA been considered as an emerging pathogen. Though this pathogen can be easily isolated Reviewed by: by existing culture methods, its identification is still a challenging problem due to close Carlos R. Osorio, University of Santiago de Compostela, Spain phenotypic resemblance either with Vibrio cholerae or Aeromonas spp. However, using Brian Austin, University of Stirling, UK molecular tools, it is easy to identify V. fluvialis from clinical and different environmental *Correspondence: samples. Many putative virulence factors have been reported, but its mechanisms of Thandavarayan Ramamurthy, National pathogenesis and survival fitness in the environment are yet to be explored. This chapter Institute of Cholera and Enteric covers some of the major discoveries that have been made to understand the importance Diseases, P-33, CIT Road, Scheme-XM, Beliaghata, of V. fluvialis. Kolkata-700010, India Keywords:V. fluvialis, diarrhea, virulence factors, antimicrobial resistance, molecular typing e-mail: [email protected] INTRODUCTION importance of V. fluvialis (Chowdhury et al., 2012; Liang et al., Vibrio fluvialis is a halophilic Gram-negative bacterium, which 2013). has a curved cell morphology and polar flagella for motility. The important biochemical features of this organism include IDENTIFICATION AND TAXONOMY conversion of nitrate to nitrite, do not cleave L-lysine or Thiosulfate-citrate-bile salts-sucrose agar (TCBS) has been con- ornithine, activate arginine dihydrolase, produce indole but ventionally used as a selective medium for the isolation of clinically not acetoin, ferment sucrose, D-mannitol, L-arabinose, maltose, important vibrios. The colony morphology of V. fluvialis in this trehalose, D-galactose, and D-galacturonate. Most of the vib- medium remains indistinguishable from V. cholerae, i.e., it grows rios, including V. fluvialis occur widely in the aquatic milieu, as sucrose fermenting yellow color colonies after direct plating of mostly in the seas, estuaries and brackish waters. Even though clinical specimens or after enrichment in alkaline peptone water more than 100 spices have been reported in the Genus Vib- (pH 8.0). After preliminary screening in the TCBS, a battery rio (http://www.bacterio.net/uw/vibrio.html), about 13 of them of biochemical testes is essential for the species-specific identi- have been reported to cause several human diseases. Among fication of V. fluvialis. Minimal biochemical tests such as lysine the pathogenic vibrios, V. alginolyticus, V. cholerae, V. costicola, decarboxylase, ornithine decarboxylase, arginine dihydrolase, and V. mimicus, V. cincinnatiensis, V. hollisae, V. furnissii, V. para- L-arabinose are mandatory for the identification of V. fluvialis. haemolyticus, V. vulnificus, V. carchariae (a junior synonym of Without these minimal tests, the identification is incomplete and V. harveyi) and V. metschnikovii are clinically important as they the isolate will be improperly classified as V. cholerae or Aeromonas cause different types of vibriosis. One of the Vibrio spp., V. spp. In most resource-poor countries, these tests are not method- damselae has now been renamed as “Photobacterium damselae ically performed, which may lead to labeling of V. fluvialis as subsp. damselae.” The toxigenic V. cholerae, V. parahaemolyti- V. cholerae. Considering such situation, there is a high possibil- cus and V. vulnificus are associated with well-known cholera ity that the V. fluvialis could be reported as V. cholerae non-O1, and diarrhea and extraintestinal infections, respectively. Preva- non-O139 or non-agglutinable vibrios (NAGs). It is worth to lence of V. cholerae in developing countries is mostly related mention here that V. cholerae O1 and O139 serogroups can to the breakdown of sanitary conditions and/or due to scarcity be easily confirmed by slide agglutination with corresponding of drinking water. On the other hand, infections caused by antiserum. V. parahaemolyticus and other vibrios denote contamination For the identification of V. fluvialis and other vibrios, rapid of seafood in many countries, irrespective of their economic identification kits must be used with caution as they need conditions. additional tests for the final confirmation. While testing the com- V. fluvialis is one of the emerging foodborne pathogens all over mercially available identification kits, V.fluvialis remain as a major the world. The distribution of virulence factors and molecular epi- challenge with API 20E and Vitek GNI+ systems (Israil et al., 2003; demiological features of this pathogen remain mostly unknown. O’Hara et al., 2003). Biochemically, V. furnissii expresses fibrin Among the foodborne infections in the United States, there and mucin hydrolysis but no phosphate or esculin hydrolysis, for has been a considerable increase (43%) in the Vibrio-mediated which V. fluvialis varied. V. fluvialis, V. furnissii, and V. mimicus are infections till 2012 compared with the rates reported during distinctive from V. cholerae, as the later exhibit strong mannose- 2006–2008 (Centers for Disease Control and Prevention (CDC), sensitive hemagglutination. These test results may have a strong 2013). Several recent publications indicate the epidemiological influence in the confirmation of strains. www.frontiersin.org March 2014 | Volume 5 | Article 91 | 1 Ramamurthy et al. Emerging Vibrio fluvialis Molecular tools such as PCR are useful in the identification for the identification of V. fluvialis and with a set of phages, of many uncommon vibrios and most of these assays are com- the diagnostic probability of human isolates was more than parable to the conventional identification methods. The sequence 84%. At least in one study, the importance of phage-typing of amplified 16S–23S intergenic spacers (IGSs) has demonstrated of V. fluvialis has been demonstrated using six specific bac- 37 ribosomal RNA (rrn) operons representing seven different IGS teriophages with 73% typability (Suthienkul, 1993). However, types in different Vibrio spp. with IGS(0), IGS(IA), and IGS(Glu) availability of these bacteriophages makes this assay technique less as major ones. The sequence difference in these IGS types was popular. used to design species-specific primers for PCR for V. fluvialis and other vibrios (Lee et al., 2002). In some of the reports, a uni- PHENOTYPIC AND GENETIC CHARACTERISTICS OF versal primer PCR that covers conserved regions of bacterial 16S V. fluvialis rRNA genes followed by denaturing gradient gel electrophoresis Based on the somatic antigen variation, several serotypes of (DGGE) was found to be useful in the identification of V. flu- V. fluvialis have been identified. Though Shimada et al. (1999) vialis either as axenic bacteria or mixed with other pathogens identified more than 50 somatic antigens, the serological based (Ji et al., 2004). typing of V. fluvialis remains non-customary. V. fluvialis strains Initially, V. furnissii was taxonomically assigned with V. fluvialis belonging to serogroup O19 possessed the C (Inaba) antigen of and named as aerogenic biogroup of V. fluvialis.BasedonDNA V. cholerae O1, but not the B (Ogawa) or A (common) anti- relatedness and several biochemical tests, V. furnissii has been sep- gens (Shimada et al., 1987; Kondo et al., 2000). In the crossed arated as a new species (Lee et al., 1981; Brenner et al., 1983). In the immuno-electrophoresis, antibodies against the oral cholera vac- phylogenetic analysis with several housekeeping genes, V. furnissii cines containing killed whole cells (WC) of V. cholerae O1 Inaba and V. fluvialis have been linked as close species. The nucleotide El Tor reacted with a few strains of V. fluvialis (Ciznãr et al., 1989). comparison of 16S-rRNA, recA, and toxR sequences showed that Presence of shared WC antigens indicates that the oral cholera V. furnissii and V. fluvialis had 100% similarity. The gene toxR of V. vaccine could stimulate immunity effectively against other vib- fluvialis had 84% similarity with V.harveyi (Franco and Hedreyda, rios also. It is known that the antigenic nature of flagella of 2006). With the gyrB, V. cholerae, V. mimicus, V. furnissii, and V. vibrios is highly homologous. Tassin et al. (1983) and Shinoda fluvialis shared 93% sequence similarity. et al. (1984) demonstrated independently that anti-L-flagella anti- Toxigenic vibrios have a homolog of the toxRS operon, which sera of V. fluvialis did not agglutinate other Vibrio species in the regulates the virulence expression. The gene toxR encodes a tran- H-agglutination tests. Further studies placed V.fluvialis and V.fur- scriptional activation domain (TAD), a transmembrane domain nissii in the same lateral flagellar serogroup-HL8 (Shinoda et al., (TMD), and a periplasmic domain (PD). Among the vibrios, 1992). However, in practice, serotyping based on H-flagella is also there is essentially no homology within the region between TAD not in use. and TMD. Hence, this region has been used
Recommended publications
  • Chitin Metabolism by Vibrio Furnissii: Quantification of Nage Expression
    Chitin Metabolism by Vibrio furnissii: Quantification of nagE Expression by Sarah G. Brown A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science Major Subject: Interdisciplinary Sciences West Texas A&M University Canyon, Texas May 2017 Abstract The phosphoenolpyruvate: sugar phosphotransferase system (PTS) was first discovered in the 1960s by Kundig et al. The PTS is unique to bacteria, and is a rich area of study offering an abundance of potential research topics due to its environmental role and its potential as a target for future antibiotics. This study focuses on the nag operon, which plays an important role in chitin degradation. The expression of nagE, one gene located on the nag operon, was assessed via quantitative PCR (qPCR) in the presence of four substrates. This gene encodes the N-acetylglucosamine transporter protein. Expression of the gene was found to be up-regulated in the presence of N-acetylglucosamine, but not in the presence of glucose, mannose, or lactate. Potential future projects include: the quantification of expression of nagA via qPCR; the use of a reporter gene to quantify expression of nagE and nagA; study of NagC, thought to be the repressor of the nag operon; and further study and characterization of the gene encoding for the glucose specific transporter protein in V. furnissii. ii Acknowledgements I would like to thank Dr. Carolyn Bouma, first and foremost, for her invaluable guidance and expertise, as well as her time, patience, and encouragement during the course of this project. I would also like to thank Dr. Donna Byers, for time spent instructing me on how to carry out a gene expression study using qPCR, as well as the use of her Nanodrop system; Dr.
    [Show full text]
  • Stony Brook University
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Characterization of antimicrobial activity present in the cuticle of American lobster, Homarus americanus A Thesis Presented by Margaret Anne Mars to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Master of Science in Marine and Atmospheric Science Stony Brook University December 2010 Stony Brook University The Graduate School Margaret Anne Mars We, the thesis committee for the above candidate for the Master of Science degree, hereby recommend acceptance of this thesis. Dr. Bassem Allam – Thesis Advisor Associate Professor School of Marine and Atmospheric Science Dr. Anne McElroy – Thesis Advisor Associate Professor School of Marine and Atmospheric Science Dr. Emmanuelle Pale Espinosa Adjunct Professor School of Marine and Atmospheric Science This thesis is accepted by the Graduate School Lawrence Martin Dean of the Graduate School ii Abstract of the Thesis Characterization of antimicrobial activity present in the cuticle of American lobster, Homarus americanus by Margaret Anne Mars Master of Science in Marine and Atmospheric Science Stony Brook University 2010 American lobster is an ecologically and socioeconomically important species. In recent years the species has been affected by disease and the catch in Southern New England has fallen dramatically. In order to fully understand how and why diseases affect lobster populations, it is imperative to fully understand lobster defense mechanisms. The cuticle, previously believed to act only as a physical barrier, has recently been shown to contain antimicrobial activity.
    [Show full text]
  • The Impact of Environmental Changes on the Microbial Community Dynamics and Abundance of Pathogenic Vibrio Species in Coastal Ecosystems
    The Impact of Environmental Changes on the Microbial Community Dynamics and Abundance of Pathogenic Vibrio species in Coastal Ecosystems by Candice Amber Thorstenson a Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Marine Microbiology Approved Dissertation Committee _____________________________________ Prof. Dr. Matthias Ullrich Jacobs University Bremen Prof. Dr. Frank Oliver Glӧckner Jacobs University Bremen Dr. Mathias Wegner Alfred Wegener Institute for Polar and Marine Research Date of Defense: 26 August 2020 Department of Life Sciences and Chemistry i Table of Contents Summary .......................................................................................................... 1 General Introduction ........................................................................................ 3 The genus Vibrio ............................................................................................................. 5 Key Vibrio Characterization and Isolation Techniques .................................................. 9 Vibrio cholerae ............................................................................................................. 10 Vibrio parahaemolyticus ............................................................................................... 12 Vibrio vulnificus ............................................................................................................ 14 Genetic Modification Technologies Applied to Marine Bacteria ................................
    [Show full text]
  • Vibrios As Causal Agents of Zoonoses B
    Vibrios as causal agents of zoonoses B. Austin To cite this version: B. Austin. Vibrios as causal agents of zoonoses. Veterinary Microbiology, Elsevier, 2010, 140 (3-4), pp.310. 10.1016/j.vetmic.2009.03.015. hal-00556049 HAL Id: hal-00556049 https://hal.archives-ouvertes.fr/hal-00556049 Submitted on 15 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: Vibrios as causal agents of zoonoses Author: B. Austin PII: S0378-1135(09)00119-9 DOI: doi:10.1016/j.vetmic.2009.03.015 Reference: VETMIC 4385 To appear in: VETMIC Received date: 9-1-2009 Revised date: 9-2-2009 Accepted date: 2-3-2009 Please cite this article as: Austin, B., Vibrios as causal agents of zoonoses, Veterinary Microbiology (2008), doi:10.1016/j.vetmic.2009.03.015 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.
    [Show full text]
  • Chelonia Mydas) from the Mexican Pacific
    ABANICO VETERINARIO ISSN 2448-6132 abanicoacademico.mx/revistasabanico/index.php/abanico-veterinario Abanico Veterinario. January-December 2021; 11:1-13. http://dx.doi.org/10.21929/abavet2021.19 Original Article. Received: 13/12/2020. Accepted: 29/03/2021. Published: 12/04/2021. Code: e2020-101. Biochemical identification of potentially pathogenic and zoonotic bacteria in black turtles (Chelonia mydas) from the Mexican Pacific Identificación bioquímica de bacterias potencialmente patógenas y zoonóticas en las tortugas negras (Chelonia mydas) del Pacífico Mexicano Eduardo Reséndiz1, 2, 3 * ID , Helena Fernández-Sanz 2, 4 iD 1Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur (UABCS). Carretera al Sur KM 5.5., Apartado Postal 19-B, C.P. 23080, La Paz B.C.S. México. 2Health assessments in sea turtles from Baja California Sur, La Paz B.C.S. México. 3Asociación Mexicana de Veterinarios de Tortugas A.C., Xalapa 91050, Veracruz, México. 4Posgrado en Ciencias Marinas y Costeras (CIMACO) UABCS, Carretera al Sur KM 5.5., Apartado Postal 19-B, C.P. 23080, La Paz B.C.S. México. Responsible author: Eduardo Reséndiz. *Author for correspondence: Eduardo Reséndiz. E-mail: [email protected], [email protected] ABSTRACT Sea turtles naturally have gastrointestinal microbiota; however, opportunistic behavior and pathogenicity of some bacteria have also been reported. Therefore, it is important to generate information on possible risks to turtles and human health. Five monthly field monitoring were carried out with captures of Chelonia mydas in the Ojo de Liebre lagoon complex. Physical examinations were performed and their morphometries were recorded; oral and cloacal swabs were made and sowing in McConkey and TCBS culture media.
    [Show full text]
  • Phenotypic and Genotypic Properties of Vibrio Cholerae Non-O1, Non-O139 Isolates Recovered from Domestic Ducks in Germany
    Characterization of Vibrio spp. isolates from Germany by reference to human clinical isolates using phenotypic and WGS-assisted genotypic methods Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry, Pharmacy of Freie Universität Berlin by Keike Schwartz Berlin 2020 This dissertation was prepared under supervision of Dr. Eckhard Strauch at the Vibrio consiliary laboratory, Department Biological Safety, German Federal Institute for Risk Assessment. May 2016 to December 2020 First examiner: Prof. Dr. Karsten Nöckler Second examiner: Prof. Dr. Jens Rolff Disputation: 05/05/2021 Danksagung An dieser Stelle möchte ich all denjenigen danken, die mich auf meinem Weg zur Promotion begleitet haben. Mein größter Dank gilt Dr. Eckhard Strauch für die Ermöglichung und engagierte Betreuung dieser Doktorarbeit am Konsiliarlabor für Vibrionen sowie seine immerwährende uneingeschränkte Unterstützung. Ganz herzlich bedanke ich mich bei Prof. Dr. Karsten Nöckler und Prof. Dr. Jens Rolff für die Begutachtung dieser Arbeit. Mein besonderer Dank gilt auch Dr. Martin Richter für die Möglichkeit, diese kumulative Dissertation in seiner Fachgruppe anfertigen zu können. Ich danke Dr. Claudia Metelmann und allen Mitarbeitern des IMD Greifswald für die Bereitstellung aktueller klinischer Vibrio-Isolate aus Humanproben sowie Dr. Nadja Bier und Dr. Jens André Hammerl für die bereitwillige Weitergabe wertvoller Erfahrungen zu sequenzbasierten bioinformatischen Analysen. Besonders herzlich möchte ich mich bei Dr. Claudia Jäckel, Cornelia Göllner, Nicole vom Ort und Jonas Nekat aus dem Vibrio-Team für die angenehme, kollegiale Atmosphäre sowie ihre Hilfsbereitschaft und stetige Unterstützung bedanken. In diesem Zusammenhang sei auch allen übrigen Kolleginnen und Kollegen der Fachgruppe 45 für die schöne gemeinsame Zeit gedankt.
    [Show full text]
  • Antibiotic-Resistant Bacteria and Gut Microbiome Communities Associated with Wild-Caught Shrimp from the United States Versus Im
    www.nature.com/scientificreports OPEN Antibiotic‑resistant bacteria and gut microbiome communities associated with wild‑caught shrimp from the United States versus imported farm‑raised retail shrimp Laxmi Sharma1, Ravinder Nagpal1, Charlene R. Jackson2, Dhruv Patel3 & Prashant Singh1* In the United States, farm‑raised shrimp accounts for ~ 80% of the market share. Farmed shrimp are cultivated as monoculture and are susceptible to infections. The aquaculture industry is dependent on the application of antibiotics for disease prevention, resulting in the selection of antibiotic‑ resistant bacteria. We aimed to characterize the prevalence of antibiotic‑resistant bacteria and gut microbiome communities in commercially available shrimp. Thirty‑one raw and cooked shrimp samples were purchased from supermarkets in Florida and Georgia (U.S.) between March–September 2019. The samples were processed for the isolation of antibiotic‑resistant bacteria, and isolates were characterized using an array of molecular and antibiotic susceptibility tests. Aerobic plate counts of the cooked samples (n = 13) varied from < 25 to 6.2 log CFU/g. Isolates obtained (n = 110) were spread across 18 genera, comprised of coliforms and opportunistic pathogens. Interestingly, isolates from cooked shrimp showed higher resistance towards chloramphenicol (18.6%) and tetracycline (20%), while those from raw shrimp exhibited low levels of resistance towards nalidixic acid (10%) and tetracycline (8.2%). Compared to wild‑caught shrimp, the imported farm‑raised shrimp harbored
    [Show full text]
  • CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
    report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations.
    [Show full text]
  • Vibrios Annual Report 2018
    Vibrios Annual Report 2018 Vibrios Cholera is a Class A Disease and must be reported to the state within 24 hours by calling the phone number listed on the web page. Non-cholera Vibrio infections are Class C Diseases and must be reported to the state within five business days. All Vibrio cultures should be sent to the State Public Health Laboratory for confirmation. Epidemiology All Vibrio species infections were added to the list of nationally notifiable diseases in January, 2007. Vibrios are Gram-negative, curved, rod-shaped bacteria that are natural inhabitants of the marine environment. In the United States, the transmission of Vibrio infection is primarily through the consumption of raw or under-cooked shellfish or by exposure of wounds to warm seawater or seafood drippings. The most common clinical presentation of Vibrio infection is self-limited gastroenteritis. Historically, many cases of Vibrio-associated gastroenteritis have been under-recognized. This is because most clinical laboratories do not routinely use the selective medium, thiosulfate-citrate-bile-salts-sucrose (TCBS) agar, for processing of stool specimens unless they are specifically requested to do so. However, the recent increase in the use of culture-independent diagnostic tests (CIDT) has led to an increase in diagnosed and reported cases. Wound infections and primary septicemia also occur, particularly for Vibrio vulnificus. Patients with liver disease and those who are immunocompromised are at a particularly high risk for significant morbidity and mortality associated with these infections. Early detection and initiation of treatment is very important, particularly for cholera and invasive Vibrio infections, because these infections may rapidly progress to death.
    [Show full text]
  • Anti-Lipopolysaccharide Factors in the American Lobster Homarus Americanus: Molecular Characterization and Transcriptional Response to Vibrio Fluvialis Challenge
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2008 Anti-lipopolysaccharide factors in the American lobster Homarus americanus: Molecular characterization and transcriptional response to Vibrio fluvialis challenge KM Beale DW Towle N Jayasundara CM Smith JD Shields Virginia Institute of Marine Science See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Beale, KM; Towle, DW; Jayasundara, N; Smith, CM; Shields, JD; Small, HJ; and Greenwood, SJ, "Anti- lipopolysaccharide factors in the American lobster Homarus americanus: Molecular characterization and transcriptional response to Vibrio fluvialis challenge" (2008). VIMS Articles. 974. https://scholarworks.wm.edu/vimsarticles/974 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors KM Beale, DW Towle, N Jayasundara, CM Smith, JD Shields, HJ Small, and SJ Greenwood This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/974 NIH Public Access Author Manuscript Comp Biochem Physiol Part D Genomics Proteomics. Author manuscript; available in PMC 2009 December 1. NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript Published in final edited form as: Comp Biochem Physiol Part D Genomics Proteomics. 2008 December ; 3(4): 263±269.
    [Show full text]
  • Genome-Wide Phylogenetic Analysis of the Pathogenic Potential of Vibrio
    Frontiers in Journal Original Research Date 1 Genome-wide Phylogenetic Analysis of the pathogenic potential of 2 Vibrio furnissii 3 4 Thomas M. Lux 1, Rob Lee 1, John Love 1* 5 1Biosciences, College of Life and Environmental Sciences, The Geoffrey Pope Building, The University of Exeter, Stocker 6 Road, Exeter, EX4 4QD, UK. 7 * Correspondence: John Love, Biosciences, College of Life and Environmental Sciences, The Geoffrey Pope Building, The 8 University of Exeter, Stocker Road, Exeter, EX4 4QD, UK. 9 [email protected] 10 Keywords: Vibrio furnissii, horizontal gene transfer, genome comparison, emerging pathogens, pathogenicity islands, 11 phylogenetic analysis, genome phylogeny. 12 13 Abstract 14 We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) 15 harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium 16 and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic 17 invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the 18 potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 19 other emerging and pathogenic Vibrio species. We selected and analysed more deeply 10 genomic 20 regions based upon unique or common features, and used 3 of these regions to construct a 21 phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer 22 relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks 23 several important features normally associated with virulence in the human pathogens V.
    [Show full text]
  • Coastal Microbiomes Reveal Associations Between Pathogenic Vibrio Species
    1 Coastal microbiomes reveal associations between pathogenic Vibrio species, 2 environmental factors, and planktonic communities 3 Running title: metabarcoding reveals vibrio-plankton associations 4 5 Rachel E. Diner1,2, Drishti Kaul2, Ariel Rabines1,2, Hong Zheng2, Joshua A. Steele3, John F. 6 Griffith3, Andrew E. Allen1,2* 7 8 1 Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 9 92037, USA 10 11 2 Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California 12 92037, USA 13 14 3 Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA 15 16 * Correspondence: [email protected] 17 18 Author Emails: Rachel E. Diner: [email protected], Drishti Kaul: [email protected], Ariel 19 Rabines: [email protected], Hong Zheng: [email protected], Joshua A. Steele: 20 [email protected], John F. Griffith: [email protected], Andrew Allen: [email protected] 21 22 23 1 24 Abstract 25 Background 26 Many species of coastal Vibrio spp. bacteria can infect humans, representing an emerging 27 health threat linked to increasing seawater temperatures. Vibrio interactions with the planktonic 28 community impact coastal ecology and human infection potential. In particular, interactions with 29 eukaryotic and photosynthetic organism may provide attachment substrate and critical nutrients 30 (e.g. chitin, phytoplankton exudates) that facilitate the persistence, diversification, and spread of 31 pathogenic Vibrio spp.. Vibrio interactions with these organisms in an environmental context are, 32 however, poorly understood. 33 34 Results 35 After quantifying pathogenic Vibrio species, including V. cholerae, V. parahaemolyticus, 36 and V. vulnificus, over one year at 5 sites, we found that all three species reached high abundances, 37 particularly during Summer months, and exhibited species-specific temperature and salinity 38 distributions.
    [Show full text]