The Impact of Environmental Changes on the Microbial Community Dynamics and Abundance of Pathogenic Vibrio Species in Coastal Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

The Impact of Environmental Changes on the Microbial Community Dynamics and Abundance of Pathogenic Vibrio Species in Coastal Ecosystems The Impact of Environmental Changes on the Microbial Community Dynamics and Abundance of Pathogenic Vibrio species in Coastal Ecosystems by Candice Amber Thorstenson a Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Marine Microbiology Approved Dissertation Committee _____________________________________ Prof. Dr. Matthias Ullrich Jacobs University Bremen Prof. Dr. Frank Oliver Glӧckner Jacobs University Bremen Dr. Mathias Wegner Alfred Wegener Institute for Polar and Marine Research Date of Defense: 26 August 2020 Department of Life Sciences and Chemistry i Table of Contents Summary .......................................................................................................... 1 General Introduction ........................................................................................ 3 The genus Vibrio ............................................................................................................. 5 Key Vibrio Characterization and Isolation Techniques .................................................. 9 Vibrio cholerae ............................................................................................................. 10 Vibrio parahaemolyticus ............................................................................................... 12 Vibrio vulnificus ............................................................................................................ 14 Genetic Modification Technologies Applied to Marine Bacteria ................................. 16 Study Objectives and Major Aims .................................................................21 Study Outline .................................................................................................23 Results, Chapter I: Developing a Universal and Efficient Method for the Rapid Selection of Stable Fluorescent Protein-tagged Pathogenic Vibrio species ..26 Abstract ......................................................................................................................... 26 Introduction ................................................................................................................... 27 Materials and Methods .................................................................................................. 29 Results ........................................................................................................................... 39 Discussion ..................................................................................................................... 47 Acknowledgments......................................................................................................... 53 Chapter II. Ecological fitness of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in a Small-scale Population Dynamics Study .............54 Abstract ......................................................................................................................... 54 Introduction ................................................................................................................... 55 ii Materials and Methods .................................................................................................. 57 Results ........................................................................................................................... 62 Discussion ..................................................................................................................... 77 Acknowledgments......................................................................................................... 89 Chapter III: Pathogenic Vibrio abundance and species diversity within coastal regions of the North Atlantic and North Sea .................................................90 Summary ....................................................................................................................... 90 Introduction ................................................................................................................... 91 Materials and Methods .................................................................................................. 93 Results ........................................................................................................................... 98 Discussion ................................................................................................................... 111 Acknowledgments....................................................................................................... 116 General Discussion ......................................................................................117 Fluorescent Protein-tagging Vibrio species ................................................................ 117 The Ecological fitness of V. cholerae, V. parahaemolyticus, and V. vulnificus ......... 123 Vibrio species abundance and diversity within the North Atlantic and North Sea ..... 128 Concluding Remarks ................................................................................................... 130 Acknowledgments .......................................................................................132 References ....................................................................................................134 Supplementary Figures ................................................................................153 iii Summary Summary Coastal ecosystems are highly dynamic regions and extremely important to the livelihoods and health of the people living in coastal regions. Tourism, the aquaculture industry, and human health are all directly tied to the microbial community in these regions. Furthermore, many key aquaculture stocks, such as oysters, may serve as vectors for a variety of foodborne diseases in humans, both at the harvesting area and when imported far inland. Rising sea surface temperatures in the North Atlantic and North Sea have been heavily implicated in the spread and rising abundance of the human pathogenic Vibrio species: Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in North America and Northern Europe. This study investigates how environmental changes may impact the growth and behavior of these key Vibrio species within the context of the surrounding microbial community. This was accomplished through the in situ fluorescent-labelling of environmental strains for live microcosm experiments with a native North Sea water community and the identification and characterization of two discrete pathogenic Vibrio populations in the North Sea off the coast of Sylt, Germany, and along the North Atlantic coast of La Tremblade, France. The genetic accessibility of these important human pathogenic Vibrios, V. cholerae, V. parahaemolyticus, and V. vulnificus, was assessed through the development of a rapid fluorescent protein-labelling system via conjugable vectors carrying fluorescent and antibiotic selection markers encoded on a transposon. This method produced transconjugants from all tested Vibrio strains with an efficiency of at least two transconjugants per 10,000 recipient cells within two days of selective growth. 1 Summary Red fluorescent protein-labelled V. cholerae, V. parahaemolyticus, and V. vulnificus clones were co-incubated with sterile sea water and non-sterile sea water containing a native microbial community under three discrete temperatures. These microcosm experiments indicated that increased temperatures alone do not confer greater competitive fitness to these Vibrio species. Finally, through environmental field sampling for pathogenic Vibrio in two discrete coastal communities, we found that temperature and salinity were the best explanatory variables for the abundance of Vibrio species in accordance with similar studies. Furthermore, through a targeted isolation campaign, we found the two Vibrio populations from each sampling site varies in species composition, allowing for future speculation on the role these species may play in their respective regions and niches. 2 General Introduction General Introduction Coastal ecosystems are valuable to human society, biodiversity, and the climate in these regions. From northern sea ice to mangrove ecosystems in the Pacific and Antarctic ice flows, the term “coastal ecosystem” refers to a dramatic range of habitats. These ecosystems are highly dynamic, representing the interchange from marine to terrestrial habitats, and are home to both specialized and adaptable flora and fauna. Approximately half of global commerce is dependent on coastal goods and services (Costanza et al., 1997), which puts coastal ecosystems under strong anthropogenic pressure and illustrates their importance to anthropological activities. The aquaculture industry has grown in the past several decades, and of concern is the spread of pathogens in fisheries and other aquaculture stocks worldwide due to anthropologic activities and environmental change (Jegatheesan et al., 2011; Naylor et al., 2000). Anthropological activities known to influence the spread of pathogens includes, but are not limited to: travel (including shipping and the transfer of ballast water), eutrophication of coastal waters influencing algal blooms, the domestication of animals and increased exposure to zoonotic diseases, the misuse of antibiotics, and contamination of water with heavy metals (Barua, 1992; R. R. Colwell, 1996; Imran et al., 2019; Lebarbenchon et al., 2008). With rising temperatures worldwide, and the warming of the
Recommended publications
  • Stony Brook University
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Characterization of antimicrobial activity present in the cuticle of American lobster, Homarus americanus A Thesis Presented by Margaret Anne Mars to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Master of Science in Marine and Atmospheric Science Stony Brook University December 2010 Stony Brook University The Graduate School Margaret Anne Mars We, the thesis committee for the above candidate for the Master of Science degree, hereby recommend acceptance of this thesis. Dr. Bassem Allam – Thesis Advisor Associate Professor School of Marine and Atmospheric Science Dr. Anne McElroy – Thesis Advisor Associate Professor School of Marine and Atmospheric Science Dr. Emmanuelle Pale Espinosa Adjunct Professor School of Marine and Atmospheric Science This thesis is accepted by the Graduate School Lawrence Martin Dean of the Graduate School ii Abstract of the Thesis Characterization of antimicrobial activity present in the cuticle of American lobster, Homarus americanus by Margaret Anne Mars Master of Science in Marine and Atmospheric Science Stony Brook University 2010 American lobster is an ecologically and socioeconomically important species. In recent years the species has been affected by disease and the catch in Southern New England has fallen dramatically. In order to fully understand how and why diseases affect lobster populations, it is imperative to fully understand lobster defense mechanisms. The cuticle, previously believed to act only as a physical barrier, has recently been shown to contain antimicrobial activity.
    [Show full text]
  • Regulation of Vibrio Mimicus Metalloprotease (VMP) Production by the Quorum-Sensing Master Regulatory Protein, Luxr El-Shaymaa A
    Regulation of Vibrio mimicus metalloprotease (VMP) production by the quorum-sensing master regulatory protein, LuxR El-Shaymaa Abdel-Sattar 1, 2, Shin-ichi Miyoshi 1 and Abdelaziz Elgaml 1, 3 * 1 Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan 2 Chemical Industries Development Company, Assiut 71511, Egypt 3 Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Elgomhouria Street, Mansoura 35516, Egypt * Correspondence: Corresponding author: Abdelaziz Elgaml Postal address: Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan Tel: +81-86-251-7968, Fax: +81-86-251-7926 E-mail: [email protected] ; [email protected] Running title: Regulation of V. mimicus metalloprotease by LuxR Key words: Vibrio mimicus; Metalloprotease; Quorum-sensing; LuxR protein 1 Abstract Vibrio mimicus is an estuarine bacterium, while it can cause severe diarrhea, wound infection and otitis media in humans. This pathogen secretes a relatively important toxin named V. mimicus metalloprotease (VMP). In this study, we clarified regulation of the VMP production according to the quorum-sensing master regulatory protein named LuxR. First, the full length of luxR gene, encoding LuxR, was detected in V. mimicus strain E-37, an environmental isolate. Next, the putative consensus binding sequence of LuxR protein could be detected in the upstream (promoter) region of VMP encoding gene, vmp. Finally, the effect of disruption of luxR gene on the expression of vmp and production of VMP was evaluated. Namely, the expression of vmp was significantly decreased by luxR disruption and the production of VMP was severely altered.
    [Show full text]
  • Diverse Deep-Sea Anglerfishes Share a Genetically Reduced Luminous
    RESEARCH ARTICLE Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment Lydia J Baker1*, Lindsay L Freed2, Cole G Easson2,3, Jose V Lopez2, Dante´ Fenolio4, Tracey T Sutton2, Spencer V Nyholm5, Tory A Hendry1* 1Department of Microbiology, Cornell University, New York, United States; 2Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States; 3Department of Biology, Middle Tennessee State University, Murfreesboro, United States; 4Center for Conservation and Research, San Antonio Zoo, San Antonio, United States; 5Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States Abstract Deep-sea anglerfishes are relatively abundant and diverse, but their luminescent bacterial symbionts remain enigmatic. The genomes of two symbiont species have qualities common to vertically transmitted, host-dependent bacteria. However, a number of traits suggest that these symbionts may be environmentally acquired. To determine how anglerfish symbionts are transmitted, we analyzed bacteria-host codivergence across six diverse anglerfish genera. Most of the anglerfish species surveyed shared a common species of symbiont. Only one other symbiont species was found, which had a specific relationship with one anglerfish species, Cryptopsaras couesii. Host and symbiont phylogenies lacked congruence, and there was no statistical support for codivergence broadly. We also recovered symbiont-specific gene sequences from water collected near hosts, suggesting environmental persistence of symbionts. Based on these results we conclude that diverse anglerfishes share symbionts that are acquired from the environment, and *For correspondence: that these bacteria have undergone extreme genome reduction although they are not vertically [email protected] (LJB); transmitted.
    [Show full text]
  • Vibrios As Causal Agents of Zoonoses B
    Vibrios as causal agents of zoonoses B. Austin To cite this version: B. Austin. Vibrios as causal agents of zoonoses. Veterinary Microbiology, Elsevier, 2010, 140 (3-4), pp.310. 10.1016/j.vetmic.2009.03.015. hal-00556049 HAL Id: hal-00556049 https://hal.archives-ouvertes.fr/hal-00556049 Submitted on 15 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: Vibrios as causal agents of zoonoses Author: B. Austin PII: S0378-1135(09)00119-9 DOI: doi:10.1016/j.vetmic.2009.03.015 Reference: VETMIC 4385 To appear in: VETMIC Received date: 9-1-2009 Revised date: 9-2-2009 Accepted date: 2-3-2009 Please cite this article as: Austin, B., Vibrios as causal agents of zoonoses, Veterinary Microbiology (2008), doi:10.1016/j.vetmic.2009.03.015 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.
    [Show full text]
  • Vibrio Spp. Infections
    PRIMER Vibrio spp. infections Craig Baker- Austin1*, James D. Oliver2,3, Munirul Alam4, Afsar Ali5, Matthew K. Waldor6, Firdausi Qadri4 and Jaime Martinez- Urtaza1 Abstract | Vibrio is a genus of ubiquitous bacteria found in a wide variety of aquatic and marine habitats; of the >100 described Vibrio spp., ~12 cause infections in humans. Vibrio cholerae can cause cholera, a severe diarrhoeal disease that can be quickly fatal if untreated and is typically transmitted via contaminated water and person- to-person contact. Non- cholera Vibrio spp. (for example, Vibrio parahaemolyticus, Vibrio alginolyticus and Vibrio vulnificus) cause vibriosis — infections normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. Non- cholera bacteria can lead to several clinical manifestations, most commonly mild, self- limiting gastroenteritis, with the exception of V. vulnificus, an opportunistic pathogen with a high mortality that causes wound infections that can rapidly lead to septicaemia. Treatment for Vibrio spp. infection largely depends on the causative pathogen: for example, rehydration therapy for V. cholerae infection and debridement of infected tissues for V. vulnificus- associated wound infections, with antibiotic therapy for severe cholera and systemic infections. Although cholera is preventable and effective oral cholera vaccines are available, outbreaks can be triggered by natural or man-made events that contaminate drinking water or compromise access to safe water and sanitation. The incidence of vibriosis is rising, perhaps owing in part to the spread of Vibrio spp. favoured by climate change and rising sea water temperature. Vibrio spp. are a group of common, Gram-negative, rod- marked seasonal distribution, with most cases occurring 1Centre for Environment, shaped bacteria that are natural constituents of fresh- during warmer months.
    [Show full text]
  • Chelonia Mydas) from the Mexican Pacific
    ABANICO VETERINARIO ISSN 2448-6132 abanicoacademico.mx/revistasabanico/index.php/abanico-veterinario Abanico Veterinario. January-December 2021; 11:1-13. http://dx.doi.org/10.21929/abavet2021.19 Original Article. Received: 13/12/2020. Accepted: 29/03/2021. Published: 12/04/2021. Code: e2020-101. Biochemical identification of potentially pathogenic and zoonotic bacteria in black turtles (Chelonia mydas) from the Mexican Pacific Identificación bioquímica de bacterias potencialmente patógenas y zoonóticas en las tortugas negras (Chelonia mydas) del Pacífico Mexicano Eduardo Reséndiz1, 2, 3 * ID , Helena Fernández-Sanz 2, 4 iD 1Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur (UABCS). Carretera al Sur KM 5.5., Apartado Postal 19-B, C.P. 23080, La Paz B.C.S. México. 2Health assessments in sea turtles from Baja California Sur, La Paz B.C.S. México. 3Asociación Mexicana de Veterinarios de Tortugas A.C., Xalapa 91050, Veracruz, México. 4Posgrado en Ciencias Marinas y Costeras (CIMACO) UABCS, Carretera al Sur KM 5.5., Apartado Postal 19-B, C.P. 23080, La Paz B.C.S. México. Responsible author: Eduardo Reséndiz. *Author for correspondence: Eduardo Reséndiz. E-mail: [email protected], [email protected] ABSTRACT Sea turtles naturally have gastrointestinal microbiota; however, opportunistic behavior and pathogenicity of some bacteria have also been reported. Therefore, it is important to generate information on possible risks to turtles and human health. Five monthly field monitoring were carried out with captures of Chelonia mydas in the Ojo de Liebre lagoon complex. Physical examinations were performed and their morphometries were recorded; oral and cloacal swabs were made and sowing in McConkey and TCBS culture media.
    [Show full text]
  • Microbiology Legend Cycle 46 Organism 6 Vibrio
    48 Monte Carlo Crescent Kyalami Business Park, Kyalami Johannesburg, 1684 South Africa www.thistle.co.za Tel: +27 (011) 463 3260 Fax to Email: + 27 (0) 86-557-2232 e-mail : [email protected] MID - 001 Please read this section first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT-19/091. Each attendee should claim ONE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. MICROBIOLOGY LEGEND CYCLE 46 ORGANISM 6 VIBRIO Vibrio is a genus of Gram-negative bacteria, possessing a curved-rod shape (comma shape), several species of which can cause foodborne infection, usually associated with eating undercooked seafood. Typically found in salt water, Vibrio species are facultative anaerobes that test positive for oxidase and do not form spores. All members of the genus are motile and have polar flagella with sheaths. The name Vibrio derives from Filippo Pacini, who isolated micro-organisms he called "vibrions" from cholera patients in 1854, because of their motility. Several species of Vibrio are pathogens. Most disease-causing strains are associated with gastroenteritis, but can also infect open wounds and cause septicaemia.
    [Show full text]
  • Persistence of Vibrio Mimicus During Inter-Epidemic Period Associated with Anabaena Variabilis
    Asian Journal of Pharmacy, Nursing and Medical Sciences (ISSN: 2321 – 3639) Volume 03 – Issue 04, October 2015 Persistence of Vibrio mimicus During Inter-epidemic Period Associated with Anabaena variabilis 1* 2 3 4 Mir Himayet Kabir , Md Sirajul Islam , Zahid Hayat Mahmud , Salequl Islam 1Senior Research Assistant, International Centre for Diarrhoeal Disease Research Mohakhali, Dhaka-1212, Bangladesh 2Scientist and Head of Environmental Microbiology Laboratory, LSD, CFWD,ICDDR,B Mohakhali, Dhaka-1212, Bangladesh 3Associate Scientist, Environmental Microbiology Laboratory, LSD, CFWD,ICDDR,B Mohakhali, Dhaka-1212, Bangladesh 4Post-doctoral fellow, Department of Epidemiology (Suit E6532), Bloomberg School of Public Health Johns Hopkins University, USA * Corresponding author’s email: mirhimayet37 [AT] gmail.com ____________________________________________________________________________________________________________ ABSTRACT---- Vibrio mimicus, the causative agent of diarrhea, is one of the major public health issues in low- income countries like Bangladesh. Epidemiological studies of diarrhea in Bangladesh have demonstrated that surface-water sources can act as foci of infection. The present investigation was aimed to determine the role of blue green alga, Anabaena variabilis in the survival of Vibrio mimicus in laboratory microcosms. Survival of culturableV. mimicus in microcosms was monitored using drop plate method on TTGA plate. Viable but nonculturable (VBNC) V. mimicus were detected using fluorescent antibody (FA) and PCR techniques. V. mimicus was detected in association with A. variabilis for up to 10 days in a culturable state; whereas in algal water and control water the bacteria remained culturablestate upto 5 days and 3 days respectively. The VBNC state of V. mimicus in association with A. variabilis was detected up to 60 days in microcosms.
    [Show full text]
  • Comparative Genomics of Clinical and Environmental Vibrio Mimicus
    Comparative genomics of clinical and environmental Vibrio mimicus Nur A. Hasana, Christopher J. Grima,b,1, Bradd J. Haleya, Jongsik Chunc,d, Munirul Alame, Elisa Taviania, Mozammel Hoqf, A. Christine Munkg, Elizabeth Saundersg, Thomas S. Bretting, David C. Bruceg, Jean F. Challacombeg, J. Chris Detterg, Cliff S. Hang, Gary Xieg, G. Balakrish Nairh, Anwar Huqa, and Rita R. Colwella,b,2 aMaryland Pathogen Research Institute and bUniversity of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742; cSchool of Biological Sciences and dInstitute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea; eInternational Vaccine Institute, Seoul, 151-818, Republic of Korea;eInternational Center for Diarrhoeal Disease Research, Bangladesh, Dhaka-1000, Bangladesh; fDepartment of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh; gGenome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and hNational Institute of Cholera and Enteric Diseases, Kolkata 700 010, India Contributed by Rita R. Colwell, October 22, 2010 (sent for review March 1, 2010) Whether Vibrio mimicus is a variant of Vibrio cholerae or a separate toxin (12), hemolysin (13), protease (14), phospholipase (15), ary- species has been the subject of taxonomic controversy. A genomic lesterase (16), siderophore (aerobactin) (17), and hemagglutinin analysis was undertaken to resolve the issue. The genomes of (18), the mechanism of its pathogenesis remains unclear. V. mimicus MB451, a clinical isolate, and VM223, an environmental The objective of this study was to determine the genetic basis of isolate, comprise ca. 4,347,971 and 4,313,453 bp and encode 3,802 V. mimicus physiology, pathogenicity, and evolution and to clarify and 3,290 ORFs, respectively.
    [Show full text]
  • National Enteric Disease Surveillance: COVIS Annual Summary, 2014
    National Enteric Disease Surveillance: COVIS Annual Summary, 2014 Summary of Human Vibrio Cases Reported to CDC, 2014 The Cholera and Other Vibrio Illness Surveillance (COVIS) system is a national surveillance system for human infection with pathogenic species of the family Vibrionaceae, which cause vibriosis and cholera. The Centers for Disease Control and Prevention (CDC) maintains COVIS. Information from COVIS helps track Vibrio infections and determine host, food, and environmental risk factors for these infections. CDC initiated COVIS in collaboration with the Food and Drug Administration and four Gulf Coast states (Alabama, Florida, Louisiana, and Texas) in 1989. Using the COVIS report form (available at http://www.cdc.gov/ nationalsurveillance/PDFs/CDC5279_COVISvibriosis.pdf), participating health officials report cases of vibriosis and cholera. The case report includes clinical data, including information about underlying illness; detailed history of seafood consumption; detailed history of exposure to bodies of water, raw or live seafood or their drippings, or contact with marine life in the seven days before illness onset; and traceback information on implicated seafood. Before 2007, only cholera, which by definition is caused by infection with toxigenic Vibrio cholerae serogroup O1 or O139, was nationally notifiable. In January 2007, infection with other serogroups of V. cholerae and other species from the family Vibrionaceae also became nationally notifiable, as vibriosis. For cholera, CDC requests that all state health departments send all Vibrio cholerae, Vibrio mimicus, and isolates from known or suspected outbreaks to CDC for additional characterization. For V. cholerae, CDC identifies serogroups O1, O75, O139, and O141 and determines whether the isolate produces cholera toxin.
    [Show full text]
  • Experimental Non-O Group 1 Vibrio Cholerae Gastroenteritis in Humans
    Experimental non-O group 1 Vibrio cholerae gastroenteritis in humans. J G Morris Jr, … , B A Kay, M Nishibuchi J Clin Invest. 1990;85(3):697-705. https://doi.org/10.1172/JCI114494. Research Article In this study, 27 volunteers received one of three non-O group 1 Vibrio cholerae strains in doses as high as 10(9) CFU. Only one strain (strain C) caused diarrhea: this strain was able to colonize the gastrointestinal tract, and produced a heat- stable enterotoxin (NAG-ST). Diarrhea was not seen with a strain (strain A) that colonized the intestine but did not produce NAG-ST, nor with a strain (strain B) that produced NAG-ST but did not colonize. Persons receiving strain C had diarrhea and abdominal cramps. Diarrheal stool volumes ranged from 154 to 5,397 ml; stool samples from the patient having 5,397 ml of diarrhea were tested and found to contain NAG-ST. The median incubation period for illness was 10 h. There was a suggestion that occurrence of diarrhea was dependent on inoculum size. Immune responses to homologous outer membrane proteins, lipopolysaccharide, and whole-cell lysates were demonstrable with all three strains. Our data demonstrate that V. cholerae of O groups other than 1 are able to cause severe diarrheal disease. However, not all strains are pathogenic for humans: virulence of strain C may be dependent on its ability both to colonize the intestine and to produce a toxin such as NAG-ST. Find the latest version: https://jci.me/114494/pdf Experimental Non-O Group 1 Vibrio cholerae Gastroenteritis in Humans J.
    [Show full text]
  • Genomic Taxonomy of Vibrios
    Downloaded from orbit.dtu.dk on: Dec 18, 2017 Genomic taxonomy of vibrios Thompson, Cristiane C.; Vicente, Ana Carolina P.; Souza, Rangel C.; Vasconcelos, Ana Tereza R.; Vesth, Tammi Camilla; Alves, Nelson Jr; Ussery, David; Iida, Tetsuya; Thompson, FL Published in: B M C Evolutionary Biology Link to article, DOI: 10.1186/1471-2148-9-258 Publication date: 2009 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Thompson, C. C., Vicente, A. C. P., Souza, R. C., Vasconcelos, A. T. R., Vesth, T. C., Alves, N. J., ... Thompson, F. L. (2009). Genomic taxonomy of vibrios. B M C Evolutionary Biology, 9, 258. DOI: 10.1186/1471- 2148-9-258 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. BMC Evolutionary Biology BioMed Central Research article Open Access Genomic taxonomy of vibrios Cristiane C Thompson*1, Ana Carolina P Vicente1, Rangel C Souza2, Ana Tereza R Vasconcelos2, Tammi Vesth3, Nelson Alves Jr4, David W Ussery3, Tetsuya Iida5 and Fabiano L Thompson*4 Address: 1Laboratory of Molecular Genetics of Microrganims, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil, 2National Laboratory for Scientific Computing, Department of Applied and Computational Mathematics, Laboratory of Bioinformatics, Av.
    [Show full text]