Stevin's Theory of Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Letter from Descartes to Desargues 1 (19 June 1639)
Appendix 1 Letter from Descartes to Desargues 1 (19 June 1639) Sir, The openness I have observed in your temperament, and my obligations to you, invite me to write to you freely what I can conjecture of the Treatise on Conic Sections, of which the R[everend] F[ather] M[ersenne] sent me the Draft. 2 You may have two designs, which are very good and very praiseworthy, but which do not both require the same course of action. One is to write for the learned, and to instruct them about some new properties of conics with which they are not yet familiar; the other is to write for people who are interested but not learned, and make this subject, which until now has been understood by very few people, but which is nevertheless very useful for Perspective, Architecture etc., accessible to the common people and easily understood by anyone who studies it from your book. If you have the first of these designs, it does not seem to me that you have any need to use new terms: for the learned, being already accustomed to the terms used by Apollonius, will not easily exchange them for others, even better ones, and thus your terms will only have the effect of making your proofs more difficult for them and discourage them from reading them. If you have the second design, your terms, being French, and showing wit and elegance in their invention, will certainly be better received than those of the Ancients by people who have no preconceived ideas; and they might even serve to attract some people to read your work, as they read works on Heraldry, Hunting, Architecture etc., without any wish to become hunters or architects but only to learn to talk about them correctly. -
Desargues, Girard
GIRARD DESARGUES (February 21, 1591 – October 1661) by HEINZ KLAUS STRICK, Germany GIRARD DESARGUES came from very wealthy families of lawyers and judges who worked at the Parlement, the highest appellate courts of France in Paris and Lyon. Nothing is known about GIRARD's youth, but it is safe to assume that he and his five siblings received the best possible education. While his two older brothers were admitted to the Parisian Parlement, he was involved in the silk trade in Lyon, as can be seen from a document dating from 1621. In 1626, after a journey through Flanders, he applied to the Paris city council for a licence to drill a well and use the water from the well. His idea was to construct an effective hydraulic pump to supply water to entire districts, but this project did not seem to be successful. After the death of his two older brothers in 1628, he took over the family inheritance and settled in Paris. There he met MARIN MERSENNE and soon became a member of his Academia Parisiensis, a discussion group of scientists including RENÉ DESCARTES, GILLES PERSONNE DE ROBERVAL, ÉTIENNE PASCAL and his son BLAISE. (drawing: © Andreas Strick) The first publication by DESARGUES to attract attention was Une méthode aisée pour apprendre et enseigner à lire et escrire la musique (An easy way to learn and teach to read and write music). In 1634 MERSENNE mentioned in a letter to his acquaintances that DESARGUES was working on a paper on perspective (projection from a point). But it was not until two years later that the work was published: only 12 pages long and in a small edition. -
Michael Kühn Detlev Auvermann RARE BOOKS
ANTIQUARIAT 55Michael Kühn Detlev Auvermann RARE BOOKS 1 Rolfinck’s copy ALESSANDRINI, Giulio. De medicina et medico dialogus, libris quinque distinctus. Zurich, Andreas Gessner, 1557. 4to, ff. [6], pp. AUTOLYKOS (AUTOLYCUS OF PYTANE). 356, ff. [8], with printer’s device on title and 7 woodcut initials; a few annotations in ink to the text; a very good copy in a strictly contemporary binding of blind-stamped pigskin, the upper cover stamped ‘1557’, red Autolyci De vario ortu et occasu astrorum inerrantium libri dvo nunc primum de graeca lingua in latinam edges, ties lacking; front-fly almost detached; contemporary ownership inscription of Werner Rolfinck on conuersi … de Vaticana Bibliotheca deprompti. Josepho Avria, neapolitano, interprete. Rome, Vincenzo title (see above), as well as a stamp and duplicate stamp of Breslau University library. Accolti, 1588. 4to, ff. [6], pp. 70, [2]; with large woodcut device on title, and several woodcut diagrams in the text; title a little browned, else a fine copy in 19th-century vellum-backed boards, new endpapers. EUR 3.800.- EUR 4.200.- First edition of Alessandrini’s medical dialogues, his most famous publication and a work of rare erudition. Very rare Latin edition, translated from a Greek manuscript at the Autolycus was a Greek mathematician and astronomer, who probably Giulio Alessandrini (or Julius Alexandrinus de Neustein) (1506–1590) was an Italian physician and author Vatican library, of Autolycus’ work on the rising and setting of the fixed flourished in the second half of the 4th century B.C., since he is said to of Trento who studied philosophy and medicine at the University of Padua, then mathematical science, stars. -
1 H-France Forum Volume 14 (2019), Issue 4, #3 Jeffrey N. Peters, The
1 H-France Forum Volume 14 (2019), Issue 4, #3 Jeffrey N. Peters, The Written World. Space, Literature, and the Chorological Imagination in Early Modern France. Evanston: Northwestern University Press, 2018. vii + 272 pp. Figures, notes, and Copyright index. $34.95 (pb). ISBN 978-0-8101-3697-7; $99.95 (cl). ISBN 978-0- 8101-3698-4; $34.95 (Kindle). ISBN 978-0-8101-3699-1. Review Essay by David L. Sedley, Haverford College The Written World has on its cover an image from La Manière universelle de M. Desargues, pour pratiquer la perspective (1648). This book, written and illustrated by Abraham Bosse and based on the projective geometry of Girard Desargues, extends the theories of perspective codified by Leon Battista Alberti and his followers. [1] Alberti directed painters to pose a central point at the apparent conjunction of parallel lines in order to lend depth and coherence to their compositions. Desargues reinterpreted and renamed Alberti’s central point (and other points like it) as a point at infinity. Consequently, the convergent lines of a visual representation could be taken to indicate the infinite more emphatically than before. As an illustration of the art of putting objects in a perspective that emphasizes their connection to infinity, Bosse’s image suits Peters’ book to a T. Peters represents his objects of study—mainly a series of works of seventeenth-century French literature—with an eye to showing their affinity with the infinite. He frequently discusses infinity through chora, the Ancient Greek term used by Plato and adopted by Jacques Derrida to denote the space underlying all finite places and place- based thought. -
Mathematics and Arts
Mathematics and Arts All´egoriede la G´eom´etrie A mathematical interpretation Alda Carvalho, Carlos Pereira dos Santos, Jorge Nuno Silva ISEL & Cemapre-ISEG, CEAFEL-UL, University of Lisbon [email protected] [email protected] [email protected] Abstract: In this work, we present a mathematical interpretation for the mas- terpiece All´egoriede la G´eom´etrie (1649), painted by the French baroque artist Laurent de La Hyre (1606{1656). Keywords: Laurent de La Hyre, \All´egoriede la G´eom´etrie",baroque art, mathematical interpretation, perspective. Introduction The main purpose of this text is to present a mathematical interpretation for the masterpiece All´egoriede la G´eom´etrie, from a well-known series of paint- ings, Les 7 arts lib´eraux, by the French baroque artist Laurent de La Hyre (1606{1656). Figure 1: All´egoriede la G´eom´etrie (1649), oil on canvas. Recreational Mathematics Magazine, Number 5, pp. 33{45 DOI 10.1515/rmm{2016{0003 34 allegorie´ de la geom´ etrie´ Laurent de La Hyre painted the series Les 7 arts lib´eraux between 1649 and 1650 to decorate G´ed´eonTallemant's residence. Tallemant was an adviser of Louis xiv (1638{1715). The king was 10 years old at the time of the commission. According to the artist's son, Philippe de La Hire (1640{1718), writing around 1690 [5], (. .) une maison qui appartenoit autrefois a M. Tallemant, maistre des requestes, sept tableaux repres´entant les sept arts liberaux qui font l'ornement d'une chambre. Also, Guillet de Saint-Georges, a historiographer of the Acad´emieRoyale de Peinture et de Sculpture, mentioned that it was Laurent's work for the Ca- puchin church in the Marais which led to the commission for the \Seven Liberal Arts" in a house [2]. -
PAINTING and PERSPECTIVE 127 the Real World, That the Universe Is Ordered and Explicable Rationally in Terms of Geometry
PAINTING AND PERSPECTIVE 127 the real world, that the universe is ordered and explicable rationally in terms of geometry. Hence, like the Greek philosopher, he be lieved that to penetrate to the underlying significance, that is, the reality of the theme that he sought to display on canvas, he must reduce it to its mathematical content. Very interesting evidence of x the artist's attempt to discover the mathematical essence of his sub ject is found in one of Leonardo's studies in proportion. In it he Painting and Perspective tried to fit the structure of the ideal man to the ideal figures, the flquare and circle (plate VI). The sheer utility of mathematics for accurate description and the The world's the book where the eternal sense philosophy that mathematics is the essence of reality are only two Wrote his own thoughts; the living temple where, Painting his very self, with figures fair of the reasons why the Renaissance artist sought to use mathematics. He filled the whole immense circumference. There was another reason. The artist of the late medieval period and T. CAMPANELLA the Renaissance was, also, the architect and engineer of his day and so was necessarily mathematically inclined. Businessmen, secular princes, and ecclesiastical officials assigned all construction problems During the Middle Ages painting, serving somewhat as the hand to the artist. He designed and built churches, hospitals, palaces, maiden of the Church, concentrated on embellishing the thoughts cloisters, bridges, fortresses, dams, canals, town walls, and doctrines of Christianity. Toward the end of this period, the and instru ments of warfare. -
A Tale of the Cycloid in Four Acts
A Tale of the Cycloid In Four Acts Carlo Margio Figure 1: A point on a wheel tracing a cycloid, from a work by Pascal in 16589. Introduction In the words of Mersenne, a cycloid is “the curve traced in space by a point on a carriage wheel as it revolves, moving forward on the street surface.” 1 This deceptively simple curve has a large number of remarkable and unique properties from an integral ratio of its length to the radius of the generating circle, and an integral ratio of its enclosed area to the area of the generating circle, as can be proven using geometry or basic calculus, to the advanced and unique tautochrone and brachistochrone properties, that are best shown using the calculus of variations. Thrown in to this assortment, a cycloid is the only curve that is its own involute. Study of the cycloid can reinforce the curriculum concepts of curve parameterisation, length of a curve, and the area under a parametric curve. Being mechanically generated, the cycloid also lends itself to practical demonstrations that help visualise these abstract concepts. The history of the curve is as enthralling as the mathematics, and involves many of the great European mathematicians of the seventeenth century (See Appendix I “Mathematicians and Timeline”). Introducing the cycloid through the persons involved in its discovery, and the struggles they underwent to get credit for their insights, not only gives sequence and order to the cycloid’s properties and shows which properties required advances in mathematics, but it also gives a human face to the mathematicians involved and makes them seem less remote, despite their, at times, seemingly superhuman discoveries. -
Phosphors and Phosphorus in Early Danish Natural Philosophy
Phosphors and Phosphorus in Early Danish Natural Philosophy by HELGE KRAGH Historisk-filosofiske Meddelelser 88 Det Kongelige Danske Videnskabernes Selskab The Royal Danish Academy of Sciences and Letters Commission Agent: C.A. Reitzel Det Kongelige Danske Videnskabernes Selskab udgiver følgende publikationsrækker: The Royal Danish Academy of Sciences and Letters issues the following series of publications: Authorized Abbreviations Historisk-filosofiske Meddelelser, 8 Hist.Fil.Medd.Dan.Vid.Selsk. (printed area 175 x 104 mm, 2700 units) Historisk-filosofiske Skrifter, 4 Hist.Filos.Skr.Dan.Vid.Selsk. (History, Philosophy, Philology, (printed area 2 columns, Archaeology, Art History) each 199 x 77 mm, 2100 units) Matematisk-fysiske Meddelelser, 8 Mat.Fys.Medd.Dan.Vid.Selsk. (Mathematics, Physics, (printed area 180 x 126 mm, 3360 units) Chemistry, Astronomy, Geology) Biologiske Skrifter, 4 Biol.Skr.Dan.Vid.Sel.sk. (Botany, Zoology, Palaeontology, (printed area 2 columns, General Biology) each 199 x 77 mm, 2100 units) Oversigt, Annual Report, 8 Overs.Dan. Vid.Selsk. The Academy invites original papers that contribute significantly to research carried on in Denmark. Foreign contributions are accepted from temporary residents in Denmark, participants in a joint project involving Danish researchers, or those in discussion with Danish contributors. Instructions to Authors Manuscripts from contributors who are not members of the Academy will be refereed by two members of the Academy. Authors of papers accepted for publication will receive galley proofs and page proofs; these should be returned promptly to the editor. Corrections other than of printer’s errors will be charged to the author(s) insofar as their costs exceeds 15% of the cost of typesetting. -
Reposs #11: the Mathematics of Niels Henrik Abel: Continuation and New Approaches in Mathematics During the 1820S
RePoSS: Research Publications on Science Studies RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation and New Approaches in Mathematics During the 1820s Henrik Kragh Sørensen October 2010 Centre for Science Studies, University of Aarhus, Denmark Research group: History and philosophy of science Please cite this work as: Henrik Kragh Sørensen (Oct. 2010). The Mathematics of Niels Henrik Abel: Continuation and New Approaches in Mathemat- ics During the 1820s. RePoSS: Research Publications on Science Studies 11. Aarhus: Centre for Science Studies, University of Aarhus. url: http://www.css.au.dk/reposs. Copyright c Henrik Kragh Sørensen, 2010 The Mathematics of NIELS HENRIK ABEL Continuation and New Approaches in Mathematics During the 1820s HENRIK KRAGH SØRENSEN For Mom and Dad who were always there for me when I abandoned all good manners, good friends, and common sense to pursue my dreams. The Mathematics of NIELS HENRIK ABEL Continuation and New Approaches in Mathematics During the 1820s HENRIK KRAGH SØRENSEN PhD dissertation March 2002 Electronic edition, October 2010 History of Science Department The Faculty of Science University of Aarhus, Denmark This dissertation was submitted to the Faculty of Science, University of Aarhus in March 2002 for the purpose of ob- taining the scientific PhD degree. It was defended in a public PhD defense on May 3, 2002. A second, only slightly revised edition was printed October, 2004. The PhD program was supervised by associate professor KIRSTI ANDERSEN, History of Science Department, Univer- sity of Aarhus. Professors UMBERTO BOTTAZZINI (University of Palermo, Italy), JEREMY J. GRAY (Open University, UK), and OLE KNUDSEN (History of Science Department, Aarhus) served on the committee for the defense. -
Reflections on the Pragmatics of the Illustrated Perspective Treatise Performative Failures and (Pre-) Romantic Innovations Eduardo Ralickas
Document generated on 09/25/2021 8:06 a.m. Intermédialités Histoire et théorie des arts, des lettres et des techniques Intermediality History and Theory of the Arts, Literature and Technologies Reflections on the Pragmatics of the Illustrated Perspective Treatise Performative Failures and (Pre-) Romantic Innovations Eduardo Ralickas exposer Article abstract displaying This essay reconsiders visual demonstrations contained in a selection of Number 15, printemps 2010 illustrated perspective treatises. Based on a fundamental distinction made in the field of pragmatics, the author argues that the images designed to URI: https://id.erudit.org/iderudit/044680ar demonstrate/teach/instantiate the perspectival system are plagued by a DOI: https://doi.org/10.7202/044680ar contradiction between the conceptual “content” of perspective and the figurative means deployed to display such content. In all cases, this aporia, which defines the teaching of perspective by means of images, arises when the See table of contents figurative discourse of perspective attempts to integrate a representation of its user within the system itself. In closing, the author suggests that the perspective treatise’s “pragmatic unconscious” allows one to shed new light on Publisher(s) the pictorial innovations of German romanticism, particularly in the work of Caspar David Friedrich, which is tied to fundamental (and hitherto unforeseen) Revue Intermédialités (Presses de l’Université de Montréal) ways to the “failures” of the classical age. ISSN 1705-8546 (print) 1920-3136 (digital) Explore this journal Cite this article Ralickas, E. (2010). Reflections on the Pragmatics of the Illustrated Perspective Treatise: Performative Failures and (Pre-) Romantic Innovations. Intermédialités / Intermediality, (15), 163–185. -
Sources and Studies in the History of Mathematics and Physical Sciences
Sources and Studies in the History of Mathematics and Physical Sciences Editorial Board J.Z. Buchwald J. Lützen G.J. Toomer Advisory Board P.J. Davis T. Hawkins A.E. Shapiro D. Whiteside Springer Science+Business Media, LLC Sources and Studies in the History of Mathematics and Physical Seiences K. Andersen Brook Taylor's Work on Linear Perspective H.l.M. Bos Redefining Geometrical Exactness: Descartes' Transformation of the Early Modern Concept of Construction 1. Cannon/S. Dostrovsky The Evolution of Dynamics: Vibration Theory from 1687 to 1742 B. ChandIerlW. Magnus The History of Combinatorial Group Theory A.I. Dale AHistory of Inverse Probability: From Thomas Bayes to Karl Pearson, Second Edition A.I. Dale Most Honourable Remembrance: The Life and Work of Thomas Bayes A.I. Dale Pierre-Simon Laplace, Philosophical Essay on Probabilities, Translated from the fifth French edition of 1825, with Notes by the Translator P. Damerow/G. FreudenthallP. McLaugWin/l. Renn Exploring the Limits of Preclassical Mechanics: A Study of Conceptual Development in Early Modem Science: Free Fall and Compounded Motion in the Work of Descartes, Galileo, and Beeckman, Second Edition P.l. Federico Descartes on Polyhedra: A Study of the De Solworum Elementis B.R. Goldstein The Astronomy of Levi ben Gerson (1288-1344) H.H. Goldstine A History of Numerical Analysis from the 16th Through the 19th Century H.H. Goldstine A History of the Calculus of Variations from the 17th Through the 19th Century G. Graßhoff The History of Ptolemy's Star Catalogue A.W. Grootendorst Jan de Witt's Eiementa Curvarum Linearum, über Primus Continued after Index The Arithmetic of Infinitesimals John Wallis 1656 Translated from Latin to English with an Introduction by Jacqueline A. -
Projective Geometry Seen in Renaissance Art
Projective Geometry Seen in Renaissance Art Word Count: 2655 Emily Markowsky ID: 112235642 December 7th, 2020 Abstract: For the West, the Renaissance was a revival of long-forgotten knowledge from classical antiquity. The use of geometric techniques from Greek mathematics led to the development of linear perspective as an artistic technique, a method for projecting three dimensional figures onto a two dimensional plane, i.e. the painting itself. An “image plane” intersects the observer’s line of sight to an object, projecting this point onto the intersection point in the image plane. This method is more mathematically interesting than it seems; we can formalize the notion of a vanishing point as a “point at infinity,” from which the subject of projective geometry was born. This paper outlines the historical process of this development and discusses its mathematical implications, including a proof of Desargues’ Theorem of projective geometry. Outline: I. Introduction A. Historical context; the Middle Ages and medieval art B. How linear perspective contributes to the realism of Renaissance art, incl. a comparison between similar pieces from each period. C. Influence of Euclid II. Geometry of Vision and Projection A. Euclid’s Optics B. Cone of vision and the use of conic sections to model projection of an object onto a picture. Projection of a circle explained intuitively. C. Brunelleschi’s experiments and the invention of his technique for linear perspective D. Notion of points at infinity as a vanishing point III. Projective geometry and Desargues’ Theorem A. Definition of a projective plane and relation to earlier concepts discussed B.