Cavalieri's Method of Indivisibles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Discovery of the Series Formula for Π by Leibniz, Gregory and Nilakantha Author(S): Ranjan Roy Source: Mathematics Magazine, Vol
The Discovery of the Series Formula for π by Leibniz, Gregory and Nilakantha Author(s): Ranjan Roy Source: Mathematics Magazine, Vol. 63, No. 5 (Dec., 1990), pp. 291-306 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/2690896 Accessed: 27-02-2017 22:02 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to Mathematics Magazine This content downloaded from 195.251.161.31 on Mon, 27 Feb 2017 22:02:42 UTC All use subject to http://about.jstor.org/terms ARTICLES The Discovery of the Series Formula for 7r by Leibniz, Gregory and Nilakantha RANJAN ROY Beloit College Beloit, WI 53511 1. Introduction The formula for -r mentioned in the title of this article is 4 3 57 . (1) One simple and well-known moderm proof goes as follows: x I arctan x = | 1 +2 dt x3 +5 - +2n + 1 x t2n+2 + -w3 - +(-I)rl2n+1 +(-I)l?lf dt. The last integral tends to zero if Ix < 1, for 'o t+2dt < jt dt - iX2n+3 20 as n oo. -
Michael Kühn Detlev Auvermann RARE BOOKS
ANTIQUARIAT 55Michael Kühn Detlev Auvermann RARE BOOKS 1 Rolfinck’s copy ALESSANDRINI, Giulio. De medicina et medico dialogus, libris quinque distinctus. Zurich, Andreas Gessner, 1557. 4to, ff. [6], pp. AUTOLYKOS (AUTOLYCUS OF PYTANE). 356, ff. [8], with printer’s device on title and 7 woodcut initials; a few annotations in ink to the text; a very good copy in a strictly contemporary binding of blind-stamped pigskin, the upper cover stamped ‘1557’, red Autolyci De vario ortu et occasu astrorum inerrantium libri dvo nunc primum de graeca lingua in latinam edges, ties lacking; front-fly almost detached; contemporary ownership inscription of Werner Rolfinck on conuersi … de Vaticana Bibliotheca deprompti. Josepho Avria, neapolitano, interprete. Rome, Vincenzo title (see above), as well as a stamp and duplicate stamp of Breslau University library. Accolti, 1588. 4to, ff. [6], pp. 70, [2]; with large woodcut device on title, and several woodcut diagrams in the text; title a little browned, else a fine copy in 19th-century vellum-backed boards, new endpapers. EUR 3.800.- EUR 4.200.- First edition of Alessandrini’s medical dialogues, his most famous publication and a work of rare erudition. Very rare Latin edition, translated from a Greek manuscript at the Autolycus was a Greek mathematician and astronomer, who probably Giulio Alessandrini (or Julius Alexandrinus de Neustein) (1506–1590) was an Italian physician and author Vatican library, of Autolycus’ work on the rising and setting of the fixed flourished in the second half of the 4th century B.C., since he is said to of Trento who studied philosophy and medicine at the University of Padua, then mathematical science, stars. -
Gregory's Sixth Operation
Found Sci (2018) 23:133–144 https://doi.org/10.1007/s10699-016-9512-9 Gregory’s Sixth Operation 1 2 3,4 Tiziana Bascelli • Piotr Błaszczyk • Vladimir Kanovei • 5 5 6 Karin U. Katz • Mikhail G. Katz • Semen S. Kutateladze • 5 7 8 Tahl Nowik • David M. Schaps • David Sherry Published online: 20 December 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract In relation to a thesis put forward by Marx Wartofsky, we seek to show that a historiography of mathematics requires an analysis of the ontology of the part of mathe- matics under scrutiny. Following Ian Hacking, we point out that in the history of mathe- matics the amount of contingency is larger than is usually thought. As a case study, we analyze the historians’ approach to interpreting James Gregory’s expression ultimate terms in his paper attempting to prove the irrationality of p. Here Gregory referred to the last or & Mikhail G. Katz [email protected] Tiziana Bascelli [email protected] Piotr Błaszczyk [email protected] Vladimir Kanovei [email protected] Karin U. Katz [email protected] Semen S. Kutateladze [email protected] Tahl Nowik [email protected] David M. Schaps [email protected] David Sherry [email protected] 1 Lyceum Gymnasium ‘‘F. Corradini’’, Thiene, Italy 2 Institute of Mathematics, Pedagogical University of Cracow, Cracow, Poland 3 IPPI, Moscow, Russia 4 MIIT, Moscow, Russia 123 134 T. Bascelli et al. ultimate terms of a series. More broadly, we analyze the following questions: which modern framework is more appropriate for interpreting the procedures at work in texts from the early history of infinitesimal analysis? As well as the related question: what is a logical theory that is close to something early modern mathematicians could have used when studying infinite series and quadrature problems? We argue that what has been routinely viewed from the viewpoint of classical analysis as an example of an ‘‘unrigor- ous’’ practice, in fact finds close procedural proxies in modern infinitesimal theories. -
Reposs #11: the Mathematics of Niels Henrik Abel: Continuation and New Approaches in Mathematics During the 1820S
RePoSS: Research Publications on Science Studies RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation and New Approaches in Mathematics During the 1820s Henrik Kragh Sørensen October 2010 Centre for Science Studies, University of Aarhus, Denmark Research group: History and philosophy of science Please cite this work as: Henrik Kragh Sørensen (Oct. 2010). The Mathematics of Niels Henrik Abel: Continuation and New Approaches in Mathemat- ics During the 1820s. RePoSS: Research Publications on Science Studies 11. Aarhus: Centre for Science Studies, University of Aarhus. url: http://www.css.au.dk/reposs. Copyright c Henrik Kragh Sørensen, 2010 The Mathematics of NIELS HENRIK ABEL Continuation and New Approaches in Mathematics During the 1820s HENRIK KRAGH SØRENSEN For Mom and Dad who were always there for me when I abandoned all good manners, good friends, and common sense to pursue my dreams. The Mathematics of NIELS HENRIK ABEL Continuation and New Approaches in Mathematics During the 1820s HENRIK KRAGH SØRENSEN PhD dissertation March 2002 Electronic edition, October 2010 History of Science Department The Faculty of Science University of Aarhus, Denmark This dissertation was submitted to the Faculty of Science, University of Aarhus in March 2002 for the purpose of ob- taining the scientific PhD degree. It was defended in a public PhD defense on May 3, 2002. A second, only slightly revised edition was printed October, 2004. The PhD program was supervised by associate professor KIRSTI ANDERSEN, History of Science Department, Univer- sity of Aarhus. Professors UMBERTO BOTTAZZINI (University of Palermo, Italy), JEREMY J. GRAY (Open University, UK), and OLE KNUDSEN (History of Science Department, Aarhus) served on the committee for the defense. -
Algebra and Geometry in Pietro Mengoli (1625–1686) ✩
Historia Mathematica 33 (2006) 82–112 www.elsevier.com/locate/yhmat Algebra and geometry in Pietro Mengoli (1625–1686) ✩ Ma. Rosa Massa Esteve Centre per a la recerca d’Història de la Tècnica, Universitat Politècnica de Catalunya, Spain Centre d’Estudis d’Història de les Ciències, Universitat Autònoma de Barcelona, Spain Available online 3 March 2005 Abstract An important step in 17th-century research on quadratures involved the use of algebraic procedures. Pietro Men- goli (1625–1686), probably the most original student of Bonaventura Cavalieri (1598–1647), was one of several scholars who developed such procedures. Algebra and geometry are closely related in his works, particularly in Geometriae Speciosae Elementa [Bologna, 1659]. Mengoli considered curves determined by equations that are now represented by y = K · xm · (t − x)n. This paper analyzes the interrelation between algebra and geometry in this work, showing the complementary nature of the two disciplines and how their combination allowed Mengoli to calculate quadratures in a new way. 2005 Elsevier Inc. All rights reserved. Résumé L’un des plus grands pas en avant, au XVIIe siècle, dans la recherche de nouvelles méthodes de quadrature fut l’introduction des procédures algébriques. Pietro Mengoli (1625–1686), probablement le plus intéressant des élèves de Bonaventura Cavalieri (1598–1647), fut l’un de ceux qui développa ce type de procédures dans ses travaux mathématiques. Algèbre et géométrie sont étroitement liées dans les ouvrages de Mengoli, en particulier dans les Geometriae Speciosae Elementa [Bologna, 1659]. Mengoli emploie des procédures algébriques pour résoudre des problèmes de quadrature de curves déterminées par des ordonnées que nous noterions par y = K · xm · (t − x)n.Le but de cet article est d’analyser les rapports entre algèbre et géométrie dans l’ouvrage ci-dessus, de montrer leur complémentarité et d’indiquer comment celle-ci a permis à Mengoli de mettre en oeuvre une nouvelle méthode dans le calcul des quadratures. -
Reflections on the Pragmatics of the Illustrated Perspective Treatise Performative Failures and (Pre-) Romantic Innovations Eduardo Ralickas
Document generated on 09/25/2021 8:06 a.m. Intermédialités Histoire et théorie des arts, des lettres et des techniques Intermediality History and Theory of the Arts, Literature and Technologies Reflections on the Pragmatics of the Illustrated Perspective Treatise Performative Failures and (Pre-) Romantic Innovations Eduardo Ralickas exposer Article abstract displaying This essay reconsiders visual demonstrations contained in a selection of Number 15, printemps 2010 illustrated perspective treatises. Based on a fundamental distinction made in the field of pragmatics, the author argues that the images designed to URI: https://id.erudit.org/iderudit/044680ar demonstrate/teach/instantiate the perspectival system are plagued by a DOI: https://doi.org/10.7202/044680ar contradiction between the conceptual “content” of perspective and the figurative means deployed to display such content. In all cases, this aporia, which defines the teaching of perspective by means of images, arises when the See table of contents figurative discourse of perspective attempts to integrate a representation of its user within the system itself. In closing, the author suggests that the perspective treatise’s “pragmatic unconscious” allows one to shed new light on Publisher(s) the pictorial innovations of German romanticism, particularly in the work of Caspar David Friedrich, which is tied to fundamental (and hitherto unforeseen) Revue Intermédialités (Presses de l’Université de Montréal) ways to the “failures” of the classical age. ISSN 1705-8546 (print) 1920-3136 (digital) Explore this journal Cite this article Ralickas, E. (2010). Reflections on the Pragmatics of the Illustrated Perspective Treatise: Performative Failures and (Pre-) Romantic Innovations. Intermédialités / Intermediality, (15), 163–185. -
Sources and Studies in the History of Mathematics and Physical Sciences
Sources and Studies in the History of Mathematics and Physical Sciences Editorial Board J.Z. Buchwald J. Lützen G.J. Toomer Advisory Board P.J. Davis T. Hawkins A.E. Shapiro D. Whiteside Springer Science+Business Media, LLC Sources and Studies in the History of Mathematics and Physical Seiences K. Andersen Brook Taylor's Work on Linear Perspective H.l.M. Bos Redefining Geometrical Exactness: Descartes' Transformation of the Early Modern Concept of Construction 1. Cannon/S. Dostrovsky The Evolution of Dynamics: Vibration Theory from 1687 to 1742 B. ChandIerlW. Magnus The History of Combinatorial Group Theory A.I. Dale AHistory of Inverse Probability: From Thomas Bayes to Karl Pearson, Second Edition A.I. Dale Most Honourable Remembrance: The Life and Work of Thomas Bayes A.I. Dale Pierre-Simon Laplace, Philosophical Essay on Probabilities, Translated from the fifth French edition of 1825, with Notes by the Translator P. Damerow/G. FreudenthallP. McLaugWin/l. Renn Exploring the Limits of Preclassical Mechanics: A Study of Conceptual Development in Early Modem Science: Free Fall and Compounded Motion in the Work of Descartes, Galileo, and Beeckman, Second Edition P.l. Federico Descartes on Polyhedra: A Study of the De Solworum Elementis B.R. Goldstein The Astronomy of Levi ben Gerson (1288-1344) H.H. Goldstine A History of Numerical Analysis from the 16th Through the 19th Century H.H. Goldstine A History of the Calculus of Variations from the 17th Through the 19th Century G. Graßhoff The History of Ptolemy's Star Catalogue A.W. Grootendorst Jan de Witt's Eiementa Curvarum Linearum, über Primus Continued after Index The Arithmetic of Infinitesimals John Wallis 1656 Translated from Latin to English with an Introduction by Jacqueline A. -
Galileo, Ignoramus: Mathematics Versus Philosophy in the Scientific Revolution
Galileo, Ignoramus: Mathematics versus Philosophy in the Scientific Revolution Viktor Blåsjö Abstract I offer a revisionist interpretation of Galileo’s role in the history of science. My overarching thesis is that Galileo lacked technical ability in mathematics, and that this can be seen as directly explaining numerous aspects of his life’s work. I suggest that it is precisely because he was bad at mathematics that Galileo was keen on experiment and empiricism, and eagerly adopted the telescope. His reliance on these hands-on modes of research was not a pioneering contribution to scientific method, but a last resort of a mind ill equipped to make a contribution on mathematical grounds. Likewise, it is precisely because he was bad at mathematics that Galileo expounded at length about basic principles of scientific method. “Those who can’t do, teach.” The vision of science articulated by Galileo was less original than is commonly assumed. It had long been taken for granted by mathematicians, who, however, did not stop to pontificate about such things in philosophical prose because they were too busy doing advanced scientific work. Contents 4 Astronomy 38 4.1 Adoption of Copernicanism . 38 1 Introduction 2 4.2 Pre-telescopic heliocentrism . 40 4.3 Tycho Brahe’s system . 42 2 Mathematics 2 4.4 Against Tycho . 45 2.1 Cycloid . .2 4.5 The telescope . 46 2.2 Mathematicians versus philosophers . .4 4.6 Optics . 48 2.3 Professor . .7 4.7 Mountains on the moon . 49 2.4 Sector . .8 4.8 Double-star parallax . 50 2.5 Book of nature . -
The Geometry of an Art. the History of Perspective From
Book Review Kirsti Andersen The Geometry of an Art. The History of Perspective from Alberti to Monge New York : Springer, 2007 Reviewed by João Pedro Xavier Faculdade de Arquitectura da Universidade do Porto (FAUP) Via Panorâmica S/N 4150-755 Porto P ORTUGAL [email protected] Keywords: Kirsti Andersen, perspective, perspective geometry, Leon Battista Alberti, Gaspard Monge, Guidobaldo del Monte Kirsti Andersen’s book, The Geometry of an Art. The History of Perspective from Alberti to Monge , will surely become one of the fundamental references concerning the mathematical development of perspectiva artificialis , from the first steps, found in De Pictura (1435) up to its integration in the last edition of Géométrie Descriptive (1820). Given the wide scope of this study and the author’s methodology, based on an extensive and careful analysis of “more than two hundred books, booklets, and pamphlets on perspective” [Introduction, xxi], The Geometry of an Art is a monumental work, the work of a lifetime, one could say. The author’s lifetime has been filled with accurate investigations on perspective that has already given rise to some of the most important titles about its history regarding the work of Piero della Francesca, Stevin, Desargues and Brook Taylor, among others. This is actually a book of history of science dealing with a specific branch of geometry, that is, perspective. Although perspective became the geometry of an art, because its history is related to the conquest of exactitude in the representation of space from an identifiable point of projection (the artist’s viewpoint), the main scope of this book is to narrate the process leading towards the definition of a mathematical theory of perspective: My primary sources do not give an adequate background for discussing thoroughly the highly pertinent question of the actual use of perspective in paintings, architectural illustrations, and other drawings [Introduction, xxiii]. -
Leibniz: His Philosophy and His Calculi Eric Ditwiler Harvey Mudd College
Humanistic Mathematics Network Journal Issue 19 Article 20 3-1-1999 Leibniz: His Philosophy and His Calculi Eric Ditwiler Harvey Mudd College Follow this and additional works at: http://scholarship.claremont.edu/hmnj Part of the Intellectual History Commons, Logic and Foundations Commons, and the Logic and Foundations of Mathematics Commons Recommended Citation Ditwiler, Eric (1999) "Leibniz: His Philosophy and His Calculi," Humanistic Mathematics Network Journal: Iss. 19, Article 20. Available at: http://scholarship.claremont.edu/hmnj/vol1/iss19/20 This Article is brought to you for free and open access by the Journals at Claremont at Scholarship @ Claremont. It has been accepted for inclusion in Humanistic Mathematics Network Journal by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Leibniz: His Philosophy and His Calculi Eric Ditwiler Harvey Mudd College Claremont, CA 91711 This paper is about the last person to be known as a Anyone who has tried to calculate simple interest us- great Rationalist before Kant’s Transcendental Philoso- ing Roman Numerals knows well the importance of phy forever blurred the distinction between that tra- an elegant notation. dition and that of the Empiricists. Gottfried Wilhelm von Leibniz is well known both for the Law which In the preface to his translations of The Early Math- bears his name and states that “if two things are ex- ematical Manuscripts of Leibniz, J.M. Child maintains actly the same, they are not two things, but one” and that “the main ideas of [Leibniz’s] philosophy are to for his co-invention of the Differential Calculus. -
Algebra and Geometry in Pietro Mengoli (1625-1686)1
1 ALGEBRA AND GEOMETRY IN PIETRO MENGOLI (1625-1686)1 Mª Rosa Massa Esteve 1. Centre per a la recerca d'Història de la Tècnica. Universitat Politècnica de Catalunya. 2.Centre d'Estudis d'Història de les Ciències. Universitat Autònoma de Barcelona. ABSTRACT One of the most important steps in the research carried out in the seventeenth century into new ways of calculating quadratures was the proposal of algebraic procedures. Pietro Mengoli (1625-1686), probably the most original student of Bonaventura Cavalieri (1598-1647), was one of the scholars who developed algebraic procedures in their mathematical studies. Algebra and geometry are closely related in Mengoli's works, particularly in Geometriae Speciosae Elementa (Bologna, 1659). Mengoli used algebraic procedures to deal with problems of quadratures of figures determined by coordinates which are now represented by y =K. xm. (t-x)n. This paper analyses the interrelation between algebra and geometry in the above-mentioned work, showing the complementary nature of the two disciplines, and how their conjunction allowed Mengoli to calculate these quadratures in an innovative way. L'un des plus grands pas en avant, au XVIIe siècle, dans la recherche de nouvelles méthodes de quadrature fut l'introduction des procédures algébriques. 1 A first version of this work was presented at the University Autònoma of Barcelona on June 26, 1998 for my Doctoral Thesis in the history of sciences. 2 Pietro Mengoli (1625-1686), probablement le plus intéressant des élèves de Bonaventura Cavalieri (1598-1647), fut l'un de ceux qui développa ce type de procédures dans ses travaux mathématiques. -
The Historiography of Perspective and Reflexy-Const in Netherlandish
The Historiography of Perspective and Reflexy-Const in Netherlandish Art Sven Dupré Introduction In The Heritage of Apelles Ernst Gombrich famously drew a distinction between art North and South of the Alps along optical lines. Painters in fifteenth-century Florence, such as Domenico Veneziano, used different optical features than their contemporaries in Bruges, the likes of Jan Van Eyck, to create the illusion of space. Gombrich commented: „We all associate Florentine art with the development of central perspective, and thus with the mathematical method of revealing form in ambient light. The other aspect of optical theory, the reaction of light to various surfaces, was first explored in modern times by painters North of the Alps. It was there that the mastery of lustre, sparkle and glitter was first achieved, permitting the artist to convey the peculiar character of materials. Indeed, for a time, during the first decades of the fifteenth century, the two schools of painting appeared thus to have divided the kingdom of appearances between them.‟1 While Italian painters of the fifteenth century used perspective, Netherlandish artists studied and painted the reflection of light from surfaces of different textures and materials to create the illusion of space. For Gombrich, the point of contact between North and South was Leonardo da Vinci, „the greatest explorer of natural appearances‟, who must have been „a keen student of Northern painting‟.2 Here I am less interested in Gombrich‟s geography of optics, but more in how his juxtaposition of perspective and painterly light reflects and complicates the historiography of perspective. For reasons which fall outside the scope of this paper, since the seminal work of 1 Erwin Panofsky linear perspective has become a locus classicus of the study of artistic practice and science, and the history of perspective, which Panofsky in Die Perspektive als symbolische Form (1927) disconnected from optics, a field of research of its own, independent from the history of science and the history of art.