Sources and Studies in the History of Mathematics and Physical Sciences

Total Page:16

File Type:pdf, Size:1020Kb

Sources and Studies in the History of Mathematics and Physical Sciences Sources and Studies in the History of Mathematics and Physical Sciences Editorial Board J.Z. Buchwald J. Lützen G.J. Toomer Advisory Board P.J. Davis T. Hawkins A.E. Shapiro D. Whiteside Springer Science+Business Media, LLC Sources and Studies in the History of Mathematics and Physical Seiences K. Andersen Brook Taylor's Work on Linear Perspective H.l.M. Bos Redefining Geometrical Exactness: Descartes' Transformation of the Early Modern Concept of Construction 1. Cannon/S. Dostrovsky The Evolution of Dynamics: Vibration Theory from 1687 to 1742 B. ChandIerlW. Magnus The History of Combinatorial Group Theory A.I. Dale AHistory of Inverse Probability: From Thomas Bayes to Karl Pearson, Second Edition A.I. Dale Most Honourable Remembrance: The Life and Work of Thomas Bayes A.I. Dale Pierre-Simon Laplace, Philosophical Essay on Probabilities, Translated from the fifth French edition of 1825, with Notes by the Translator P. Damerow/G. FreudenthallP. McLaugWin/l. Renn Exploring the Limits of Preclassical Mechanics: A Study of Conceptual Development in Early Modem Science: Free Fall and Compounded Motion in the Work of Descartes, Galileo, and Beeckman, Second Edition P.l. Federico Descartes on Polyhedra: A Study of the De Solworum Elementis B.R. Goldstein The Astronomy of Levi ben Gerson (1288-1344) H.H. Goldstine A History of Numerical Analysis from the 16th Through the 19th Century H.H. Goldstine A History of the Calculus of Variations from the 17th Through the 19th Century G. Graßhoff The History of Ptolemy's Star Catalogue A.W. Grootendorst Jan de Witt's Eiementa Curvarum Linearum, über Primus Continued after Index The Arithmetic of Infinitesimals John Wallis 1656 Translated from Latin to English with an Introduction by Jacqueline A. Stedall Centre for the History of the Mathematical Sciences , Open University Springer Jacqueline A. Stedall The Queen's College Oxford OXI 4AW England [email protected] Sources and Studies Editor: Jesper Lützen University of Copenhagen Department of Mathematics Universitetsparken 5 DK-2100 Copenhagen Denmark Mathematics Subject Classification (2000) 01A45, 01A75, 51-03 Library of Congress Cataloging-in-Publication Data Wallis, John, 1616-1703. [Arithmetica infinitorum. English] The arithmetic of infinitesimals : John Wallis 1656/[translated from Latin to English with an introduction by] Jacqueline A. Stedall. p. cm.--(Sources in the history of mathematics and physical sciences) Includes bibliographical references and index. 1. Wallis, John, 1616-1703. Arithmetica infinitorum. 2. Curves--Rectification and quadrature--Early works to 1800. 1. Stedall, Jacqueline A. 11. Title. 111. Sources and studies in the history of mathematics and physical sciences. QA626.W252004 51O--dc22 2003070361 Printed on acid-free paper. ISBN 978-1-4419-1922-9 ISBN 978-1-4757-4312-8 (eBook) DOI 10.1007/978-1-4757-4312-8 © 2004 Springer Science+Business Media New York Softcover reprint ofthe hardcover 1st edition 2004 Originally published by Springer Verlag New York, Inc. in 2004. All right reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 9 8 7 6 5 4 3 2 1 SPIN 10956595 springeronline.com For June Barrow-Green and Jeremy Gray, and in memory of John Fauvel who did so much to make this and many other things possible Acknowledgements This translation was made possible by a generous grant from The Leverhulme Trust. The idea arose initially out of conversations with John Fauvel and David Fowler, and the project was eventually planned and set in motion by John Fauvel, then of the Centre for the History of the Mathematical Seiences at the Open University. Unfortunately John died less than three months after we began working on it. Jeremy Gray of the Open University then took over responsibility for the project, and it has been carried out as faithfully as possible to John's original vision. Contents Acknowledgement vii Frontispiece: Title page of the Arithmetica infinitorum 1656 . x Introduction: The Arithmetic of Infinitesimals by Jacqueline A. Stedall .................................. xi An advertisement of the forthcoming Arithmetica infinitorum, Easter 1655 xxxiv To the most Distinguished and W orthy gentleman and most Skilled Mathematician, Dr William Oughtred, Rector of the church of Aldbury in the Country of Surrey 1 To the Most Respected Gentleman Doctor William Oughtred, most widely famed amongst mathematicians, by John Wallis, Savilian Professor of Geometry at Oxford ... ... .. 9 Doctor William Oughtred: A Response to the preceding letter (after the book went to press). In which he makes it known what he thought of that method .................... 11 The Arithmetic of Infinitesimals or a New Method of Inquiring into the Quadrature of Curves, and other more dijJicult mathematical problems. .......................... 13 Glossary ...................................................... 183 Bibliography. ............................................... .. 185 Index 191 10bannis 11'alJjJii, ss, Tb. D. GEOMETRJIE PROFESSORIS S AI'1t.u» JX.. I in Celeberrirns Academia 0 XO NI EN SI, ARITHMETICA INFINITORVM, SIVE Nova Methodus [nqutrendi in Curvili.... neorum Quadraturam, äli2q; djfficl1iora Matbcfeos Problemara. OXON11 , Typil L E0 N: L 1C HF I EL D Ac.dcmiz Typographi, JQ1?tn6. THO. ROß INSON. Annt 16~6. - Title page of the Arithmetica infinitorum 1656 The Arithmetic of Infinitesimals John Wallis (1616-1703) was appointed Savilian Professor of Geometry at Oxford in 1649. He was then a relative newcomer to mathematics, and largely self-taught, but in his first few years at Oxford he produced his two most significant works: De sectionibus conicis and Arithmetica injinitorum. Both were printed in 1655, and published in 1656 in the second volume of Wal­ lis's first set of collected works, Operum math ematicorum.t In De sectionibus conicis, Wallis found algebraic formulae for the parabola, ellipse and hyper­ bola, thus liberating them, as he so aptly expressed it, from 't he embranglings of the cone' .2 His purpose in doing so was ultimately to find a general method of quadrature (or cubature) for curved spaces, a promise held out in De sectionibus conicis and taken up at length in the Arithmetica injinitorum.3 In both books Wallis drew on ideas originally developed in France, Italy, and the Netherlands: algebraic geometry and the method of indivisibles, but he handled them in his own way, and the resulting method of quadrature, based on the summation of indivisible or infinitesimal quantities," was a crucial step towards the development of a fully fledged integral calculus some ten years later. To the modern reader the Arithmetica injinitorum reveals much that is of historical and mathematical interest, not least the mid seventeenth-century tension between classical geometry on the one hand, and arithmetic and 1 For the first editions of De conicis sectionibus and Arithmetica infinitorum, see Operum mathematicorum, 1656-57, 11, 49-108 and 1-199 (separate pagination). Both works were reprinted in Wallis's second set of collected works, Opera mathematica, Wallis 1693-99, I, 291-354 and 355-478. 2 Wallis 1685, 291-292. 3 See De sectionibus conicis, Proposition 48; Arithmetica infinitorum, Proposition 45. 4 Strietly speaking an 'indivisible' has at least one of its dimensions zero, (for example, a point, line or plane), whereas an 'infinitesimal' has arbitrarily small but non-zero width or thiekness. Wallis blurred the distinction between the two and generally spoke only of 'infinitely small qu antities'. For hirn 'indivisible' and 'infinitesimal' were more usefully seen as geometrie and arithmetie categories, respectively. xii The Arithmetic of Infinitesimals algebra on the ot her. Newton was to take up Wallis's work and transform it into mathematics that has become par t of the mainstream , but in Wallis 's text we see what we think of as modern mathematics still stru ggling to emerge. It is t his sense of watehing new and significant ideas force their way slowly and sometimes painfully into existence t hat makes t he Arithmetica infinitorum such a relevant text even now for st udents and historians of math­ ematics alike. Wallis 's mathematical background Wallis was educated from the age of nine by a pri vate tutor t hen, at the age of fourteen , for a year at Felsted School in Essex, and then at Emmanuel College, Cambridge." He later claimed that he had learned little or no math­ emat ics at Cambridge (though he did study some astronomy) . Instead he tau ght hirnself elementary arit hmetic from the textbooks of a younger brother who was preparing to go int o trad e. After the brief tenure of a Fellowship at Queens' College, Cambridge, Wallis was employed as a privat e chaplain, but his mathematical bent came to the fore during t he yea rs of civil war in England (1642-1648) when he regularly decoded letters for Parli ament ." His event ual appointment as Savilian P rofessor at Oxford was no doubt at least in par t a reward for his loyalty and polit ical service to the winning side. By the time he too k up his post , indeed possibly in preparation for it , Wallis had begun t o extend his mathematical knowledge by reading William Oughtred's Clavis mathematicae, the first edition of which had been published in 1631. (Second editions appeared in English and Latin in 1647 an d 1648, respectively, but the copies owned and annotated by Wallis were first edi­ tions.") The Clavis provided Wallis with his first taste of algebraic notation and, as for ot her English readers, an elementary introd uction to t he new sub­ ject of algebraic geometry first developed by Viet e during the 1590s.
Recommended publications
  • Chapter 1 Geometry of Plane Curves
    Chapter 1 Geometry of Plane Curves Definition 1 A (parametrized) curve in Rn is a piece-wise differentiable func- tion α :(a, b) Rn. If I is any other subset of R, α : I Rn is a curve provided that α→extends to a piece-wise differentiable function→ on some open interval (a, b) I. The trace of a curve α is the set of points α ((a, b)) Rn. ⊃ ⊂ AsubsetS Rn is parametrized by α if and only if there exists set I R ⊂ ⊆ such that α : I Rn is a curve for which α (I)=S. A one-to-one parame- trization α assigns→ and orientation toacurveC thought of as the direction of increasing parameter, i.e., if s<t,the direction of increasing parameter runs from α (s) to α (t) . AsubsetS Rn may be parametrized in many ways. ⊂ Example 2 Consider the circle C : x2 + y2 =1and let ω>0. The curve 2π α : 0, R2 given by ω → ¡ ¤ α(t)=(cosωt, sin ωt) . is a parametrization of C for each choice of ω R. Recall that the velocity and acceleration are respectively given by ∈ α0 (t)=( ω sin ωt, ω cos ωt) − and α00 (t)= ω2 cos 2πωt, ω2 sin 2πωt = ω2α(t). − − − The speed is given by ¡ ¢ 2 2 v(t)= α0(t) = ( ω sin ωt) +(ω cos ωt) = ω. (1.1) k k − q 1 2 CHAPTER 1. GEOMETRY OF PLANE CURVES The various parametrizations obtained by varying ω change the velocity, ac- 2π celeration and speed but have the same trace, i.e., α 0, ω = C for each ω.
    [Show full text]
  • Tangent Lines
    The Kabod Volume 5 Issue 1 Fall 2018 Article 1 September 2018 Tangent Lines Samuel Estep Liberty University, [email protected] Follow this and additional works at: https://digitalcommons.liberty.edu/kabod Part of the Mathematics Commons Recommended Citations MLA: Estep, Samuel "Tangent Lines," The Kabod 5. 1 (2018) Article 1. Liberty University Digital Commons. Web. [xx Month xxxx]. APA: Estep, Samuel (2018) "Tangent Lines" The Kabod 5( 1 (2018)), Article 1. Retrieved from https://digitalcommons.liberty.edu/kabod/vol5/iss1/1 Turabian: Estep, Samuel "Tangent Lines" The Kabod 5 , no. 1 2018 (2018) Accessed [Month x, xxxx]. Liberty University Digital Commons. This Individual Article is brought to you for free and open access by Scholars Crossing. It has been accepted for inclusion in The Kabod by an authorized editor of Scholars Crossing. For more information, please contact [email protected]. Estep: Tangent Lines Tangent Lines Sam Estep 2018-05-06 In [1] Leibniz published the first treatment of the subject of calculus. An English translation can be found in [2]; he says that to find a tangent is to draw a right line, which joins two points of the curve having an infinitely small difference, or the side of an infinite angled polygon produced, which is equivalent to the curve for us. Today, according to [3], a straight line is said to be a tangent line of a curve y = f(x) at a point x = c on the curve if the line passes through the point (c; f(c)) on the curve and has slope f 0(c) where f 0 is the derivative of f.
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • Michael Kühn Detlev Auvermann RARE BOOKS
    ANTIQUARIAT 55Michael Kühn Detlev Auvermann RARE BOOKS 1 Rolfinck’s copy ALESSANDRINI, Giulio. De medicina et medico dialogus, libris quinque distinctus. Zurich, Andreas Gessner, 1557. 4to, ff. [6], pp. AUTOLYKOS (AUTOLYCUS OF PYTANE). 356, ff. [8], with printer’s device on title and 7 woodcut initials; a few annotations in ink to the text; a very good copy in a strictly contemporary binding of blind-stamped pigskin, the upper cover stamped ‘1557’, red Autolyci De vario ortu et occasu astrorum inerrantium libri dvo nunc primum de graeca lingua in latinam edges, ties lacking; front-fly almost detached; contemporary ownership inscription of Werner Rolfinck on conuersi … de Vaticana Bibliotheca deprompti. Josepho Avria, neapolitano, interprete. Rome, Vincenzo title (see above), as well as a stamp and duplicate stamp of Breslau University library. Accolti, 1588. 4to, ff. [6], pp. 70, [2]; with large woodcut device on title, and several woodcut diagrams in the text; title a little browned, else a fine copy in 19th-century vellum-backed boards, new endpapers. EUR 3.800.- EUR 4.200.- First edition of Alessandrini’s medical dialogues, his most famous publication and a work of rare erudition. Very rare Latin edition, translated from a Greek manuscript at the Autolycus was a Greek mathematician and astronomer, who probably Giulio Alessandrini (or Julius Alexandrinus de Neustein) (1506–1590) was an Italian physician and author Vatican library, of Autolycus’ work on the rising and setting of the fixed flourished in the second half of the 4th century B.C., since he is said to of Trento who studied philosophy and medicine at the University of Padua, then mathematical science, stars.
    [Show full text]
  • The British Journal for the History of Science Mechanical Experiments As Moral Exercise in the Education of George
    The British Journal for the History of Science http://journals.cambridge.org/BJH Additional services for The British Journal for the History of Science: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Mechanical experiments as moral exercise in the education of George III FLORENCE GRANT The British Journal for the History of Science / Volume 48 / Issue 02 / June 2015, pp 195 - 212 DOI: 10.1017/S0007087414000582, Published online: 01 August 2014 Link to this article: http://journals.cambridge.org/abstract_S0007087414000582 How to cite this article: FLORENCE GRANT (2015). Mechanical experiments as moral exercise in the education of George III. The British Journal for the History of Science, 48, pp 195-212 doi:10.1017/ S0007087414000582 Request Permissions : Click here Downloaded from http://journals.cambridge.org/BJH, IP address: 130.132.173.207 on 07 Jul 2015 BJHS 48(2): 195–212, June 2015. © British Society for the History of Science 2014 doi:10.1017/S0007087414000582 First published online 1 August 2014 Mechanical experiments as moral exercise in the education of George III FLORENCE GRANT* Abstract. In 1761, George III commissioned a large group of philosophical instruments from the London instrument-maker George Adams. The purchase sprang from a complex plan of moral education devised for Prince George in the late 1750s by the third Earl of Bute. Bute’s plan applied the philosophy of Frances Hutcheson, who placed ‘the culture of the heart’ at the foundation of moral education. To complement this affective development, Bute also acted on seventeenth-century arguments for the value of experimental philosophy and geometry as exercises that habituated the student to recognizing truth, and to pursuing it through long and difficult chains of reasoning.
    [Show full text]
  • J. Wallis the Arithmetic of Infinitesimals Series: Sources and Studies in the History of Mathematics and Physical Sciences
    J. Wallis The Arithmetic of Infinitesimals Series: Sources and Studies in the History of Mathematics and Physical Sciences John Wallis was appointed Savilian Professor of Geometry at Oxford University in 1649. He was then a relative newcomer to mathematics, and largely self-taught, but in his first few years at Oxford he produced his two most significant works: De sectionibus conicis and Arithmetica infinitorum. In both books, Wallis drew on ideas originally developed in France, Italy, and the Netherlands: analytic geometry and the method of indivisibles. He handled them in his own way, and the resulting method of quadrature, based on the summation of indivisible or infinitesimal quantities, was a crucial step towards the development of a fully fledged integral calculus some ten years later. To the modern reader, the Arithmetica Infinitorum reveals much that is of historical and mathematical interest, not least the mid seventeenth-century tension between classical geometry on the one hand, and arithmetic and algebra on the other. Newton was to take up Wallis’s work and transform it into mathematics that has become part of the mainstream, but in Wallis’s text we see what we think of as modern mathematics still 2004, XXXIV, 192 p. struggling to emerge. It is this sense of watching new and significant ideas force their way slowly and sometimes painfully into existence that makes the Arithmetica Infinitorum such a relevant text even now for students and historians of mathematics alike. Printed book Dr J.A. Stedall is a Junior Research Fellow at Queen's University. She has written a number Hardcover of papers exploring the history of algebra, particularly the algebra of the sixteenth and 159,99 € | £139.99 | $199.99 ▶ seventeenth centuries.
    [Show full text]
  • Who Invented the Calculus? - and Other 17Th Century Topics Transcript
    Who invented the calculus? - and other 17th century topics Transcript Date: Wednesday, 16 November 2005 - 12:00AM Location: Barnard's Inn Hall WHO INVENTED THE CALCULUS? Professor Robin Wilson Introduction We’ve now covered two-thirds of our journey ‘From Caliphs to Cambridge’, and in this lecture I want to try to survey the mathematical achievements of the seventeenth century – a monumental task. I’ve divided my talk into four parts – first, the movement towards the practical sciences, as exemplified by the founding of Gresham College and the Royal Society. Next, we’ll gravitate towards astronomy, from Copernicus to Newton. Thirdly, we visit France and the gradual movement from geometry to algebra (with a brief excursion into some new approaches to pi) – and finally, the development of the calculus. So first, let’s make an excursion to Gresham College. Practical science The Gresham professorships arose from the will of Sir Thomas Gresham, which provided for £50 per year for each of seven professors to read lectures in Divinity, Astronomy, Music, Geometry, Law, Physic and Rhetoric. As the Ballad of Gresham College later described it: If to be rich and to be learn’d Be every Nation’s cheifest glory, How much are English men concern’d, Gresham to celebrate thy story Who built th’Exchange t’enrich the Citty And a Colledge founded for the witty. From its beginning, Gresham College encouraged the practical sciences, rather than the Aristotelian studies still pursued at the ancient universities: Thy Colledg, Gresham, shall hereafter Be the whole world’s Universitie, Oxford and Cambridge are our laughter; Their learning is but Pedantry.
    [Show full text]
  • Cavendish the Experimental Life
    Cavendish The Experimental Life Revised Second Edition Max Planck Research Library for the History and Development of Knowledge Series Editors Ian T. Baldwin, Gerd Graßhoff, Jürgen Renn, Dagmar Schäfer, Robert Schlögl, Bernard F. Schutz Edition Open Access Development Team Lindy Divarci, Georg Pflanz, Klaus Thoden, Dirk Wintergrün. The Edition Open Access (EOA) platform was founded to bring together publi- cation initiatives seeking to disseminate the results of scholarly work in a format that combines traditional publications with the digital medium. It currently hosts the open-access publications of the “Max Planck Research Library for the History and Development of Knowledge” (MPRL) and “Edition Open Sources” (EOS). EOA is open to host other open access initiatives similar in conception and spirit, in accordance with the Berlin Declaration on Open Access to Knowledge in the sciences and humanities, which was launched by the Max Planck Society in 2003. By combining the advantages of traditional publications and the digital medium, the platform offers a new way of publishing research and of studying historical topics or current issues in relation to primary materials that are otherwise not easily available. The volumes are available both as printed books and as online open access publications. They are directed at scholars and students of various disciplines, and at a broader public interested in how science shapes our world. Cavendish The Experimental Life Revised Second Edition Christa Jungnickel and Russell McCormmach Studies 7 Studies 7 Communicated by Jed Z. Buchwald Editorial Team: Lindy Divarci, Georg Pflanz, Bendix Düker, Caroline Frank, Beatrice Hermann, Beatrice Hilke Image Processing: Digitization Group of the Max Planck Institute for the History of Science Cover Image: Chemical Laboratory.
    [Show full text]
  • KAREN THOMSON CATALOGUE 103 UNIQUE OR RARE with A
    KAREN THOMSON CATALOGUE 103 UNIQUE OR RARE with a Newtonian section & a Jane Austen discovery KAREN THOMSON RARE BOOKS CATALOGUE 103 UNIQUE OR RARE With a Newtonian section (1-8), and a Jane Austen discovery (16) [email protected] NEWTONIANA William Jones’ copy [1] Thomas Rudd Practicall Geometry, in two parts: the first, shewing how to perform the foure species of Arithmeticke (viz: addition, substraction, multiplication, and division) together with reduction, and the rule of proportion in figures. The second, containing a hundred geometricall questions, with their solutions & demonstrations, some of them being performed arithmetically, and others geometrically, yet all without the help of algebra. Imprinted at London by J.G. for Robert Boydell, and are to be sold at his Shop in the Bulwarke neer the Tower, 1650 £1500 Small 4to. pp. [vii]+56+[iv]+139. Removed from a volume of tracts bound in the eighteenth century for the Macclesfield Library with characteristically cropped inscription, running titles, catchwords and page numbers, and shaving three words of the text on H4r. Ink smudge to second title page verso, manuscript algebraic solution on 2Q3 illustrated below, Macclesfield armorial blindstamp, clean and crisp. First edition, one of two issues published in the same year (the other spelling “Practical” in the title). William Jones (1675-1749) was employed by the second Earl of Macclesfield at Shirburn Castle as his mathematics instructor, and at his death left his pupil and patron the most valuable mathematical library in England, which included Newton manuscript material. Jones was an important promoter of Isaac Newton’s work, as well as being a friend: William Stukeley (see item 6), in the first biography of Newton, describes visiting him “sometime with Dr.
    [Show full text]
  • A Probabilistic Proof of Wallis's Formula for Π
    A PROBABILISTIC PROOF OF WALLIS’S FORMULA FOR ¼ STEVEN J. MILLER There are many beautiful formulas for ¼ (see for example [4]). The purpose of this note is to introduce an alternate derivation of Wallis’s product formula, equation (1), which could be covered in a first course on probability, statistics, or number theory. We quickly review other famous formulas for ¼, recall some needed facts from probability, and then derive Wallis’s formula. We conclude by combining some of the other famous formulas with Wallis’s formula to derive an interesting expression for log(¼=2) (equation (5)). Often in a first-year calculus course students encounter the Gregory-Leibniz for- mula, ¼ 1 1 1 X1 (¡1)n = 1 ¡ + ¡ + ¢ ¢ ¢ = : 4 3 5 7 2n + 1 n=0 The proof uses the fact that the derivative of arctan x is 1=(1 + x2), so ¼=4 = R 1 2 0 dx=(1 + x ). To complete the proof, expand the integrand with the geometric series formula and then justify interchanging the order of integration and summa- tion. Another interesting formula involves Bernoulli numbers and the Riemann zeta function. The Bernoulli numbers Bk are the coefficients in the Taylor series t t X1 B tk = 1 ¡ + k ; et ¡ 1 2 k! k=2 P1 ¡s each Bk is rational. The Riemann zeta function is ³(s) = n=1 n , which converges for real part of s greater than 1. Using complex analysis one finds (see for instance [10, p. 365] or [18, pp. 179–180]) that (¡4)kB ³(2k) = ¡ 2k ¢ ¼2k; 2 ¢ 2k! 1 2 P ¡2 yielding formulas for ¼ to any even power.
    [Show full text]
  • Sources in the History of Mathematics and Physical Sciences 13
    Sources in the History of Mathematics and Physical Sciences 13 Editor G.J. Toomer Advisory Board J.Z. Buchwald P.J. Davis T. Hawkins A.E. Shapiro D. Whiteside Springer New York Berlin Heidelberg Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo Andrew I. Dale Pierre-Simon Laplace Philosophical Essay on Probabilities Translated from the fifth French edition of 1825 With Notes by the Translator Springer Andrew I. Dale Department of Mathematical Statistics University of Natal King George V Avenue Durban, Natal 4001 Republic of South Africa Library of Congress Cataloging-in-Publication Data Laplace, Pierre Simon, marquis de. 1749-1827. [Essai philosophique sur les probabilites. English] Philosophical essay on probabilities / Pierre Simon Laplace: translated from the fifth French edition of 1825 by Andrew I. Dale, with notes by the translator. p. cm. - (Sources in the history of mathematics and physical sciences: vol. 13) Includes bibliographical references. I. Probabilities. I. Dale, Andrew I. II. Title. III. Series: Sources in the history of mathematics and physical sciences ; 13. QA273.18.L3713 1994 519.2--dc20 94-25497 Printed on acid-free paper. © 1995 Springer-Verlag New York, Inc. Softcover reprint of the hardcover 1st edition 1995 All rights reserved. This work may not be translated or copied in whole or in part without the written pennission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any fonn of infonnation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
    [Show full text]
  • Reposs #11: the Mathematics of Niels Henrik Abel: Continuation and New Approaches in Mathematics During the 1820S
    RePoSS: Research Publications on Science Studies RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation and New Approaches in Mathematics During the 1820s Henrik Kragh Sørensen October 2010 Centre for Science Studies, University of Aarhus, Denmark Research group: History and philosophy of science Please cite this work as: Henrik Kragh Sørensen (Oct. 2010). The Mathematics of Niels Henrik Abel: Continuation and New Approaches in Mathemat- ics During the 1820s. RePoSS: Research Publications on Science Studies 11. Aarhus: Centre for Science Studies, University of Aarhus. url: http://www.css.au.dk/reposs. Copyright c Henrik Kragh Sørensen, 2010 The Mathematics of NIELS HENRIK ABEL Continuation and New Approaches in Mathematics During the 1820s HENRIK KRAGH SØRENSEN For Mom and Dad who were always there for me when I abandoned all good manners, good friends, and common sense to pursue my dreams. The Mathematics of NIELS HENRIK ABEL Continuation and New Approaches in Mathematics During the 1820s HENRIK KRAGH SØRENSEN PhD dissertation March 2002 Electronic edition, October 2010 History of Science Department The Faculty of Science University of Aarhus, Denmark This dissertation was submitted to the Faculty of Science, University of Aarhus in March 2002 for the purpose of ob- taining the scientific PhD degree. It was defended in a public PhD defense on May 3, 2002. A second, only slightly revised edition was printed October, 2004. The PhD program was supervised by associate professor KIRSTI ANDERSEN, History of Science Department, Univer- sity of Aarhus. Professors UMBERTO BOTTAZZINI (University of Palermo, Italy), JEREMY J. GRAY (Open University, UK), and OLE KNUDSEN (History of Science Department, Aarhus) served on the committee for the defense.
    [Show full text]