Ablation of Ezh2 in Neural Crest Cells Leads to Hirschsprung's Disease-Like Phenotype in Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Datasheet PB1029 Anti-AEBP2 Antibody
Product datasheet Anti-AEBP2 Antibody Catalog Number: PB1029 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Basic Information Product Name Anti-AEBP2 Antibody Gene Name AEBP2 Source Rabbit IgG Species Reactivity human,mouse,rat Tested Application WB,IHC-P,ICC/IF,FCM Contents 500ug/ml antibody with PBS ,0.02% NaN3 , 1mg BSA and 50% glycerol. Immunogen E.coli-derived human AEBP2 recombinant protein (Position: K424-Q517). Human AEBP2 shares 98.8% amino acid (aa) sequence identity with mouse AEBP2. Purification Immunogen affinity purified. Observed MW 54KD Dilution Ratios Western blot: 1:500-2000 Immunohistochemistry(Paraffin-embedded Section): 1:50-400 Immunocytochemistry/Immunofluorescence (ICC/IF): 1:50-400 Flow cytometry (FCM): 1-3μg/1x106 cells Storage 12 months from date of receipt,-20℃ as supplied.6 months 2 to 8℃ after reconstitution. Avoid repeated freezing and thawing Background Information Adipocyte Enhancer-Binding Protein is a zinc finger protein that in humans is encoded by the evolutionarily well-conserved gene AEBP2. This gene is mapped to 12p12.3. AEBP2 is a DNA-binding transcriptional repressor. It may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism and is most likely a targeting protein for the mammalian PRC2 complex. Reference Anti-AEBP2 Antibody被引用在0文献中。 暂无引用 FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC AND CLINICAL USE. 1 Product datasheet Anti-AEBP2 Antibody Catalog Number: PB1029 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Selected Validation Data Figure 1. -
Integrated and Functional Genomic Approaches to Elucidate Differential Genetic Dependencies in Melanoma
Integrated and Functional Genomic Approaches to Elucidate Differential Genetic Dependencies in Melanoma The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Wong, Terence. 2018. Integrated and Functional Genomic Approaches to Elucidate Differential Genetic Dependencies in Melanoma. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42014990 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Integrated and Functional Genomic Approaches to Elucidate Differential Genetic Dependencies in Melanoma A dissertation presented by Terence Cheng Wong to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biological and Biomedical Sciences Harvard University Cambridge, Massachusetts November 2017 © 2017 Terence Cheng Wong All rights reserved. Dissertation Advisor: Levi Garraway Terence Cheng Wong Integrated and Functional Genomic Approaches to Elucidate Differential Genetic Dependencies in Melanoma ABSTRACT Genomic characterization of human cancers over the past decade has generated comprehensive catalogues of genetic alterations in cancer genomes. Many of these genetic events result in molecular or cellular changes that drive cancer cell phenotypes. In melanoma, a majority of tumors harbor mutations in the BRAF gene, leading to activation of the MAPK pathway and tumor initiation. The development and use of drugs that target the mutant BRAF protein and the MAPK pathway have produced significant clinical benefit in melanoma patients. -
Olig1 and Sox10 Interact Synergistically to Drivemyelin Basic
The Journal of Neuroscience, December 26, 2007 • 27(52):14375–14382 • 14375 Cellular/Molecular Olig1 and Sox10 Interact Synergistically to Drive Myelin Basic Protein Transcription in Oligodendrocytes Huiliang Li,1 Yan Lu,2 Hazel K. Smith,1 and William D. Richardson1 1Wolfson Institute for Biomedical Research and Department of Biology, University College London, London WC1E 6BT, United Kingdom, and 2Medical Research Council, Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom The oligodendrocyte lineage genes (Olig1/2), encoding basic helix-loop-helix transcription factors, were first identified in screens for master regulators of oligodendrocyte development. OLIG1 is important for differentiation of oligodendrocyte precursors into myelin- forming oligodendrocytes during development and is thought to play a crucial role in remyelination during multiple sclerosis. However, itisstillunclearhowOLIG1interactswithitstranscriptionalcofactorsandDNAtargets.OLIG1wasreportedlyrestrictedtomammals,but we demonstrate here that zebrafish and other teleosts also possess an OLIG1 homolog. In zebrafish, as in mammals, Olig1 is expressed in the oligodendrocyte lineage. Olig1 associates physically with another myelin-associated transcription factor, Sox10, and the Olig1/Sox10 complex activates mbp (myelin basic protein) transcription via conserved DNA sequence motifs in the mbp promoter region. In contrast, Olig2 does not bind to Sox10 in zebrafish, although both OLIG1 and OLIG2 bind SOX10 in mouse. Key words: Olig1; Olig2; Sox10; Mbp; oligodendrocyte; myelin; zebrafish; mouse; evolution; development Introduction directly regulates Mbp transcription (Stolt et al., 2002), and over- Myelin, the multilayered glial sheath around axons, is one of the expression of SOX10 alone is sufficient to induce myelin gene defining features of jawed vertebrates (gnathostomes). It is expression in embryonic chick spinal cord (Liu et al., 2007). -
SUPPLEMENTARY MATERIAL Bone Morphogenetic Protein 4 Promotes
www.intjdevbiol.com doi: 10.1387/ijdb.160040mk SUPPLEMENTARY MATERIAL corresponding to: Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells SUMIYO MIMURA, MIKA SUGA, KAORI OKADA, MASAKI KINEHARA, HIROKI NIKAWA and MIHO K. FURUE* *Address correspondence to: Miho Kusuda Furue. Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan. Tel: 81-72-641-9819. Fax: 81-72-641-9812. E-mail: [email protected] Full text for this paper is available at: http://dx.doi.org/10.1387/ijdb.160040mk TABLE S1 PRIMER LIST FOR QRT-PCR Gene forward reverse AP2α AATTTCTCAACCGACAACATT ATCTGTTTTGTAGCCAGGAGC CDX2 CTGGAGCTGGAGAAGGAGTTTC ATTTTAACCTGCCTCTCAGAGAGC DLX1 AGTTTGCAGTTGCAGGCTTT CCCTGCTTCATCAGCTTCTT FOXD3 CAGCGGTTCGGCGGGAGG TGAGTGAGAGGTTGTGGCGGATG GAPDH CAAAGTTGTCATGGATGACC CCATGGAGAAGGCTGGGG MSX1 GGATCAGACTTCGGAGAGTGAACT GCCTTCCCTTTAACCCTCACA NANOG TGAACCTCAGCTACAAACAG TGGTGGTAGGAAGAGTAAAG OCT4 GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAA PAX3 TTGCAATGGCCTCTCAC AGGGGAGAGCGCGTAATC PAX6 GTCCATCTTTGCTTGGGAAA TAGCCAGGTTGCGAAGAACT p75 TCATCCCTGTCTATTGCTCCA TGTTCTGCTTGCAGCTGTTC SOX9 AATGGAGCAGCGAAATCAAC CAGAGAGATTTAGCACACTGATC SOX10 GACCAGTACCCGCACCTG CGCTTGTCACTTTCGTTCAG Suppl. Fig. S1. Comparison of the gene expression profiles of the ES cells and the cells induced by NC and NC-B condition. Scatter plots compares the normalized expression of every gene on the array (refer to Table S3). The central line -
Birth Defects Caused by Mutations in Human GLI3 and Mouse Gli3 Genescga
doi:10.1111/j.1741-4520.2009.00266.x Congenital Anomalies 2010; 50, 1–7 1 REVIEW ARTICLE Birth defects caused by mutations in human GLI3 and mouse Gli3 genescga_ 266 1..71..7 Ichiro Naruse1, Etsuko Ueta1, Yoshiki Sumino1, Masaya Ogawa1, and Satoshi Ishikiriyama2 1School of Health Science, Faculty of Medicine, Tottori University, Yonago, and 2Division of Clinical Genetics and Cytogenetics, Shizuoka Children’s Hospital, Shizuoka, Japan ABSTRACT GLI3 is the gene responsible for Greig cepha- type-A (PAP-A) and preaxial polydactyly type-IV (PPD-IV). A lopolysyndactyly syndrome (GCPS), Pallister–Hall syndrome mimic phenomenon is observed in mice. Investigation of human (PHS) and Postaxial polydactyly type-A (PAP-A). Genetic poly- GLI3 and Gli3 genes has progressed using the knowledge of dactyly mice such as Pdn/Pdn (Polydactyly Nagoya), XtH/XtH Cubitus interruptus (Ci) in Drosophila, a homologous gene of GLI3 (Extra toes) and XtJ/XtJ (Extra toes Jackson) are the mouse and Gli3 genes. These genes have been highly conserved in the homolog of GCPS, and Gli3tmlUrtt/Gli3tmlUrt is produced as the animal kingdom throughout evolution. Now, a lot of mutant mice of mouse homolog of PHS. In the present review, relationships Gli3 gene have been known and knockout mice have been pro- between mutation points of GLI3 and Gli3, and resulting phe- duced. It is expected that the knowledge obtained from mutant and notypes in humans and mice are described. It has been con- knockout mice will be extrapolated to the manifestation mecha- firmed that mutation in the upstream or within the zinc finger nisms in human diseases to understand the diseases caused by the domain of the GLI3 gene induces GCPS; that in the post-zinc mutations in GLI3 gene. -
Polycomb Repressor Complex 2 Function in Breast Cancer (Review)
INTERNATIONAL JOURNAL OF ONCOLOGY 57: 1085-1094, 2020 Polycomb repressor complex 2 function in breast cancer (Review) COURTNEY J. MARTIN and ROGER A. MOOREHEAD Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada Received July 10, 2020; Accepted September 7, 2020 DOI: 10.3892/ijo.2020.5122 Abstract. Epigenetic modifications are important contributors 1. Introduction to the regulation of genes within the chromatin. The poly- comb repressive complex 2 (PRC2) is a multi‑subunit protein Epigenetic modifications, including DNA methylation complex that is involved in silencing gene expression through and histone modifications, play an important role in gene the trimethylation of lysine 27 at histone 3 (H3K27me3). The regulation. The dysregulation of these modifications can dysregulation of this modification has been associated with result in pathogenicity, including tumorigenicity. Research tumorigenicity through the increased repression of tumour has indicated an important influence of the trimethylation suppressor genes via condensing DNA to reduce access to the modification at lysine 27 on histone H3 (H3K27me3) within transcription start site (TSS) within tumor suppressor gene chromatin. This methylation is involved in the repression promoters. In the present review, the core proteins of PRC2, as of multiple genes within the genome by condensing DNA well as key accessory proteins, will be described. In addition, to reduce access to the transcription start site (TSS) within mechanisms controlling the recruitment of the PRC2 complex gene promoter sequences (1). The recruitment of H1.2, an H1 to H3K27 will be outlined. Finally, literature identifying the histone subtype, by the H3K27me3 modification has been a role of PRC2 in breast cancer proliferation, apoptosis and suggested as a mechanism for mediating this compaction (1). -
Identifying Isl1 Genetic Lineage in the Developing Olfactory System and in Gnrh-1 Neurons 2 3 Ed Zandro M
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.276360; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Identifying Isl1 genetic lineage in the developing olfactory system and in GnRH-1 neurons 2 3 Ed Zandro M. Taroc1, Raghu Ram Katreddi1 and Paolo E. Forni1*. 4 5 1Department of Biological Sciences; The RNA Institute, and the Center for Neuroscience 6 Research; University at Albany, State University of New York, Albany, NY 12222, USA. 7 8 * Corresponding Author 9 [email protected] 10 11 12 Keywords: Olfactory neurons, vomeronasal sensory neurons, GnRH neurons, Islet-1/Isl1, Isl1 13 Conditional knock-out; genetic lineage tracing, olfactory placode, neural crest. 14 15 Abstract (299, at 245 after editing) 16 During embryonic development, symmetric ectodermal thickenings (olfactory placodes) give rise 17 to several cell types that comprise the olfactory system, such as those that form the terminal nerve 18 ganglion (TN), gonadotropin releasing hormone-1 (GnRH-1) neurons and other migratory 19 neurons in rodents. Even though the genetic heterogeneity among these cell types are 20 documented, unidentified cell populations arising from the olfactory placode remain. One 21 candidate to identify placodal derived neurons in the developing nasal area is the transcription 22 factor Isl1, which was recently identified in GnRH-3 neurons of the terminal nerve in fish, as well 23 as expression in neurons of the nasal migratory mass. Here, we analyzed the Isl1 genetic lineage 24 in chemosensory neuronal populations in the nasal area and migratory GnRH-1 neurons in mice 25 using in-situ hybridization, immunolabeling a Tamoxifen inducible Isl1CreERT and a constitutive 26 Isl1Cre knock-in mouse lines. -
To Proliferate Or to Die: Role of Id3 in Cell Cycle Progression and Survival of Neural Crest Progenitors
Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors Yun Kee and Marianne Bronner-Fraser1 Division of Biology, California Institute of Technology, Pasadena, California 91125, USA The neural crest is a unique population of mitotically active, multipotent progenitors that arise at the vertebrate neural plate border. Here, we show that the helix–loop–helix transcriptional regulator Id3 has a novel role in cell cycle progression and survival of neural crest progenitors in Xenopus. Id3 is localized at the neural plate border during gastrulation and neurulation, overlapping the domain of neural crest induction. Morpholino oligonucleotide-mediated depletion of Id3 results in the absence of neural crest precursors and a resultant loss of neural crest derivatives. This appears to be mediated by cell cycle inhibition followed by cell death of the neural crest progenitor pool, rather than a cell fate switch. Conversely, overexpression of Id3 increases cell proliferation and results in expansion of the neural crest domain. Our data suggest that Id3 functions by a novel mechanism, independent of cell fate determination, to mediate the decision of neural crest precursors to proliferate or die. [Keywords: Xenopus; Id3; neural crest; cell cycle; survival] Received September 1, 2004; revised version accepted January 19, 2005. The neural crest is an embryonic cell population that origi- et al. 2003), c-Myc (Bellmeyer et al. 2003), and Msx1 nates from the lateral edges of the neural plate during (Tribulo et al. 2003) have been identified in Xenopus nervous system formation. -
A Combination of GATA3 and SOX10 Is Useful for the Diagnosis of Metastatic Triple-Negative Breast Cancer☆ Gary H
Human Pathology (2019) 85,221–227 www.elsevier.com/locate/humpath Original contribution A combination of GATA3 and SOX10 is useful for the diagnosis of metastatic triple-negative breast cancer☆ Gary H. Tozbikian MD⁎, Debra L. Zynger MD Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA Received 9 July 2018; revised 2 November 2018; accepted 7 November 2018 Keywords: Summary In metastatic breast cancer (MBC), it can be difficult to establish the origin if the primary tumor is Triple negative; triple negative or if there is a loss of biomarker expression. SOX10 expression has been reported in primary Breast cancer; triple-negative breast cancer but is poorly studied in metastatic lesions. In this study, the diagnostic utility of SOX10; a panel of SOX10, GATA3, and androgen receptor (AR) in MBC negative for estrogen receptor, progester- GATA3; one receptor, and human epidermal growth factor receptor 2 was evaluated and compared with the expres- Metastatic; sion of these markers in the matched primary breast cancer. In a series of 57 triple-negative MBCs, 82% Primary were positive for GATA3, 58% for SOX10, and 25% for AR. Nearly all MBCs (95%) were positive for ei- ther GATA3 or SOX10, with 46% dual positive and 5% of cases negative for both markers. Most GATA3- negative MBC cases were SOX10 positive (70%). AR expression was only seen in GATA3-positive MBC (25%) and was significantly more frequent in SOX10-negative MBC (48%) versus SOX10-positive MBC (9%; P = .001). Concordance for GATA3, SOX10, and AR between the primary and metastasis was 89%, 88%, and 80%, respectively. -
Epigenetics in ENS Development and Hirschsprung Disease
Developmental Biology 417 (2016) 209–216 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Epigenetics in ENS development and Hirschsprung disease A. Torroglosa a,b, M.M. Alves c, R.M. Fernández a,b, G. Antiñolo a,b, R.M. Hofstra c,d, S. Borrego a,b,n a Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain b Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain c Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands d Stem Cells and Regenerative Medicine, Birth Defects Research Centre UCL Institute of Child Health, London, UK article info abstract Article history: Hirschsprung disease (HSCR, OMIM 142623) is a neurocristopathy caused by a failure of the enteric Received 27 March 2016 nervous system (ENS) progenitors derived from neural crest cells (NCCs), to migrate, proliferate, differ- Received in revised form entiate or survive to and within the gastrointestinal tract, resulting in aganglionosis in the distal colon. 10 June 2016 The formation of the ENS is a complex process, which is regulated by a large range of molecules and Accepted 13 June 2016 signalling pathways involving both the NCCs and the intestinal environment. This tightly regulated Available online 16 June 2016 process needs correct regulation of the expression of ENS specific genes. Alterations in the expression of Keywords: these genes can have dramatic consequences. Enteric nervous system Several mechanisms that control the expression of genes have been described, such as DNA mod- Neural crest cells ification (epigenetic mechanisms), regulation of transcription (transcription factor, enhancers, repressors Hirschsprung disease and silencers), post-transcriptional regulation (3′UTR and miRNAs) and regulation of translation. -
Spatial Distribution of Leading Pacemaker Sites in the Normal, Intact Rat Sinoa
Supplementary Material Supplementary Figure 1: Spatial distribution of leading pacemaker sites in the normal, intact rat sinoatrial 5 nodes (SAN) plotted along a normalized y-axis between the superior vena cava (SVC) and inferior vena 6 cava (IVC) and a scaled x-axis in millimeters (n = 8). Colors correspond to treatment condition (black: 7 baseline, blue: 100 µM Acetylcholine (ACh), red: 500 nM Isoproterenol (ISO)). 1 Supplementary Figure 2: Spatial distribution of leading pacemaker sites before and after surgical 3 separation of the rat SAN (n = 5). Top: Intact SAN preparations with leading pacemaker sites plotted during 4 baseline conditions. Bottom: Surgically cut SAN preparations with leading pacemaker sites plotted during 5 baseline conditions (black) and exposure to pharmacological stimulation (blue: 100 µM ACh, red: 500 nM 6 ISO). 2 a &DUGLDFIoQChDQQHOV .FQM FOXVWHU &DFQDG &DFQDK *MD &DFQJ .FQLS .FQG .FQK .FQM &DFQDF &DFQE .FQM í $WSD .FQD .FQM í .FQN &DVT 5\U .FQM &DFQJ &DFQDG ,WSU 6FQD &DFQDG .FQQ &DFQDJ &DFQDG .FQD .FQT 6FQD 3OQ 6FQD +FQ *MD ,WSU 6FQE +FQ *MG .FQN .FQQ .FQN .FQD .FQE .FQQ +FQ &DFQDD &DFQE &DOP .FQM .FQD .FQN .FQG .FQN &DOP 6FQD .FQD 6FQE 6FQD 6FQD ,WSU +FQ 6FQD 5\U 6FQD 6FQE 6FQD .FQQ .FQH 6FQD &DFQE 6FQE .FQM FOXVWHU V6$1 L6$1 5$ /$ 3 b &DUGLDFReFHSWRUV $GUDF FOXVWHU $GUDD &DY &KUQE &KUP &KJD 0\O 3GHG &KUQD $GUE $GUDG &KUQE 5JV í 9LS $GUDE 7SP í 5JV 7QQF 3GHE 0\K $GUE *QDL $QN $GUDD $QN $QN &KUP $GUDE $NDS $WSE 5DPS &KUP 0\O &KUQD 6UF &KUQH $GUE &KUQD FOXVWHU V6$1 L6$1 5$ /$ 4 c 1HXURQDOPURWHLQV -
Transcription Factor Gene Expression Profiling and Analysis of SOX Gene Family Transcription Factors in Human Limbal Epithelial
Transcription factor gene expression profiling and analysis of SOX gene family transcription factors in human limbal epithelial progenitor cells Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Dr. med. Johannes Menzel-Severing aus Bonn Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 7. Februar 2018 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter: Prof. Dr. Andreas Feigenspan Prof. Dr. Ursula Schlötzer-Schrehardt 1 INDEX 1. ABSTRACTS Page 1.1. Abstract in English 4 1.2. Zusammenfassung auf Deutsch 7 2. INTRODUCTION 2.1. Anatomy and histology of the cornea and the corneal surface 11 2.2. Homeostasis of corneal epithelium and the limbal stem cell paradigm 13 2.3. The limbal stem cell niche 15 2.4. Cell therapeutic strategies in ocular surface disease 17 2.5. Alternative cell sources for transplantation to the corneal surface 18 2.6. Transcription factors in cell differentiation and reprogramming 21 2.7. Transcription factors in limbal epithelial cells 22 2.8. Research question 25 3. MATERIALS AND METHODS 3.1. Human donor corneas 27 3.2. Laser Capture Microdissection (LCM) 28 3.3. RNA amplification and RT2 profiler PCR arrays 29 3.4. Real-time PCR analysis 33 3.5. Immunohistochemistry 34 3.6. Limbal epithelial cell culture 38 3.7. Transcription-factor knockdown/overexpression in vitro 39 3.8. Proliferation assay 40 3.9. Western blot 40 3.10. Statistical analysis 41 2 4. RESULTS 4.1. Quality control of LCM-isolated and amplified RNA 42 4.2.