Transcription Factor Gene Expression Profiling and Analysis of SOX Gene Family Transcription Factors in Human Limbal Epithelial

Total Page:16

File Type:pdf, Size:1020Kb

Transcription Factor Gene Expression Profiling and Analysis of SOX Gene Family Transcription Factors in Human Limbal Epithelial Transcription factor gene expression profiling and analysis of SOX gene family transcription factors in human limbal epithelial progenitor cells Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Dr. med. Johannes Menzel-Severing aus Bonn Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 7. Februar 2018 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter: Prof. Dr. Andreas Feigenspan Prof. Dr. Ursula Schlötzer-Schrehardt 1 INDEX 1. ABSTRACTS Page 1.1. Abstract in English 4 1.2. Zusammenfassung auf Deutsch 7 2. INTRODUCTION 2.1. Anatomy and histology of the cornea and the corneal surface 11 2.2. Homeostasis of corneal epithelium and the limbal stem cell paradigm 13 2.3. The limbal stem cell niche 15 2.4. Cell therapeutic strategies in ocular surface disease 17 2.5. Alternative cell sources for transplantation to the corneal surface 18 2.6. Transcription factors in cell differentiation and reprogramming 21 2.7. Transcription factors in limbal epithelial cells 22 2.8. Research question 25 3. MATERIALS AND METHODS 3.1. Human donor corneas 27 3.2. Laser Capture Microdissection (LCM) 28 3.3. RNA amplification and RT2 profiler PCR arrays 29 3.4. Real-time PCR analysis 33 3.5. Immunohistochemistry 34 3.6. Limbal epithelial cell culture 38 3.7. Transcription-factor knockdown/overexpression in vitro 39 3.8. Proliferation assay 40 3.9. Western blot 40 3.10. Statistical analysis 41 2 4. RESULTS 4.1. Quality control of LCM-isolated and amplified RNA 42 4.2. Transcription factor gene expression profiling in basal limbal and corneal 46 epithelium 4.3. SOX family gene expression profiling in basal limbal and corneal epithelium 48 4.4. Localisation of SoxE proteins in situ 51 4.5. SOX9-expression during corneal epithelial wound healing 55 4.6. SOX9-expression during differentiation of limbal epithelial cells in culture 56 4.7. Overexpression of SOX9 in cultured limbal epithelial cells 58 4.8. Knockdown of SOX9 in cultured limbal epithelial cells 63 5. DISCUSSION 5.1. LCM for differential gene expression analysis of corneal surface epithelia 71 5.2. Transcription factor expression in limbal and corneal basal epithelium 74 5.3. SOX family transcription factors in limbal epithelial cells 77 5.4. SOX9 functional analysis in limbal epithelial cells 80 5.5. Summary 85 5.6. Outlook 86 6. ACKNOWLEDGEMENTS 90 7. REFERENCES 91 8. ABBREVIATIONS 104 3 1. ABSTRACTS 1.1 Abstract in English To function as our “window to the world”, the cornea requires an intact epithelial surface. Epithelial stem/progenitor cells at the corneoscleral limbus are a reservoir for corneal epithelial homeostasis and repair. When these cells are lost, delayed wound healing, vascularisation and scarring may lead to painful loss of vision. Current treatment options include expansion of limbal epithelial progenitor cells (LEPCs) from a healthy donor eye through ex vivo culture and transplantation of these cells to the diseased ocular surface. However, the availability of autologous LEPCs for transplantation is limited in cases of systemic and/or bilateral disease. This has raised interest in the use of induced pluripotent cells or direct transdifferentiation of non-ocular cells towards a corneal epithelial phenotype. Transcription factors (TFs) are key players both in establishing pluripotency and in direct reprogramming. Understanding TF regulation of LEPCs and corneal epithelial homeostasis may aid in successfully using non-ocular cell sources to regenerate the corneal surface. Hence, this study aimed to identify differentially expressed TF genes in human limbal and corneal epithelial cells and to characterise their role for proliferation and differentiation of limbal epithelial cells. LEPC clusters and central corneal epithelial cells were excised from cryosections of snap-frozen human post-mortem donor eyes using laser capture microdissection (LCM). RNA extracted from these specimens underwent linear amplification. Limbal and central corneal samples were screened for levels of expression of a panel of stem cell TF genes using real-time polymerase chain reaction (PCR) arrays. Four genes showed preferential limbal expression (at least two-fold elevated in limbal specimens compared to central cornea): DACH1, HOXA11, SOX9, and PPARG. Eleven genes were preferentially expressed in central corneal epithelial cells: FOXP2, RB1, MSX2, JUN, PCNA, SP1, SIX2, 4 PAX6, FOXP3, SMAD2, and FOXP1. Validation experiments using real-time PCR hydrolysis probe assays confirmed statistically significant preferential limbal expression of SOX9 (with the highest fold change value of 428), DACH1 (272.5), HOXA11 (104.7) and PPARG (29.3). Because SOX genes (Sry-related high mobility group box) encode TFs known to regulate cell fate and differentiation, a complete screen of SOX transcription factor gene expression was performed on LCM samples using real-time PCR. Preferential limbal expression was found for a number of SOX family genes, including all members of the SoxE, SoxF and SoxH groups. Intracellular localization of their respective gene products was assessed using in-situ immunofluorescence. Here, SoxE proteins showed distinctive staining patterns, with predominantly cytoplasmic staining in basal limbal epithelial cells suggesting inhibition of its transcriptional program, and predominantly nuclear localisation in suprabasal and central corneal epithelial cells suggesting DNA binding and transcriptional activity. SOX9 was selected for further analyses given its strong expression and taking into consideration previous reports from other progenitor cell types. Using double-labeling, partial co-localisation was observed between SOX9 and putative limbal progenitor cell markers (Bmi1, OCT4, p63α, N-cadherin and Keratin 15). SOX9 protein expression was also assessed in human corneas that had been subjected to a central epithelial wound in vitro. Increased expression and nuclear translocation of SOX9 was found in activated LEPCs and re-grown corneal epithelial cells compared to unwounded control eyes. Next, mRNA expression of SOX9 was analyzed in primary cultures of limbal epithelial cells at different passages. Expression levels increased from P0 to P1 and P2. Immunofluorescent labeling of SOX9 in LEPC clones showed a nuclear staining pattern, with immunopositive cells being located predominantly towards the proliferating periphery of the clones. 5 Knockdown of SOX9-expression in cultured LEPCs was achieved using RNAi, and at 24 hours after transfection, effects on target gene regulation were monitored by real-time PCR. Expression of the progenitor cell marker gene KRT15 (Cytokeratin 15) was significantly reduced in cells after knockdown of SOX9. No significant changes were seen in expression of other progenitor cell marker genes such as CEBPD, ABCG2, p63α or CDH2. We did observe a trend towards upregulation of differentiation markers KRT3 and IVL but found no effect on expression of KRT12, PAX6 or MUC1. Also, we observed a trend towards upregulation of cyclin-dependent kinase inhibitors p21 and p57 and a trend towards downregulation of proliferation marker PCNA (Proliferating cell nuclear antigen). Using Western blot, reduced levels of Cytokeratin 15 and PCNA were detected in cultured cells following siRNA-mediated knockdown of SOX9. In line with downregulation of PCNA, proliferation rates (analyzed by BrdU incorporation) significantly decreased following knockdown of SOX9, in comparison to cells transfected with scramble siRNA. In a nutshell, this study identified a number of TFs not previously known to be preferentially expressed in LEPCs. It also provided some evidence that SOX9, and potentially other SOX-family TFs, are expressed in LEPCs and may regulate corneal epithelial homeostasis. Our results suggest that SOX9 promotes proliferation and differentiation in transient amplifying cells following nuclear translocation, while supporting a progenitor cell phenotype and the continued expression of marker genes of putative LEPC by means of its cytoplasmic retention. Activation of SOX9 may assist clonal expansion, proliferation and differentiation of limbal epithelial cells in vitro for clinical applications. Therefore, SOX9 is a strong candidate gene, which, in combination with other factors, may form part of a strategy to achieve transdifferentiation and expansion of cells from non-ocular sources towards a corneal epithelial phenotype. The functional mechanisms underlying cytoplasmic retention and nuclear shuttling of SOX9 require further investigations. 6 1.2 Zusammenfassung auf Deutsch Die Hornhaut des Auges ist unser “Fenster zur Welt”. Um diese Funktion zu erfüllen, ist eine intakte epitheliale Oberfläche erforderlich. Homöostase und Reparaturvorgänge des Hornhautepithels werden aus epithelialen Stamm- oder Vorläuferzellen am korneoskleralen Limbus gespeist. Gehen sie verloren kommt es durch verzögerte Wundheilung, Neovaskularisation und Narbenbildung zu Schmerzen und Visusverlust. Derzeitige Therapieoptionen beinhalten die Vermehrung von limbalen epithelialen Progenitorzellen (LEPC) eines gesunden Spenderauges durch Kultivierung ex vivo und die Transplantation dieser Zellen auf die erkrankte Augenoberfläche. Die Verfügbarkeit von autologen LEPC zur Transplantation ist jedoch limitiert, z.B. bei systemischer und/oder bilateraler Erkrankung. Dies nährt Interesse an der Verwendung
Recommended publications
  • Table S1. List of Proteins in the BAHD1 Interactome
    Table S1. List of proteins in the BAHD1 interactome BAHD1 nuclear partners found in this work yeast two-hybrid screen Name Description Function Reference (a) Chromatin adapters HP1α (CBX5) chromobox homolog 5 (HP1 alpha) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins (20-23) HP1β (CBX1) chromobox homolog 1 (HP1 beta) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins HP1γ (CBX3) chromobox homolog 3 (HP1 gamma) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins MBD1 methyl-CpG binding domain protein 1 Binds methylated CpG dinucleotide and chromatin-associated proteins (22, 24-26) Chromatin modification enzymes CHD1 chromodomain helicase DNA binding protein 1 ATP-dependent chromatin remodeling activity (27-28) HDAC5 histone deacetylase 5 Histone deacetylase activity (23,29,30) SETDB1 (ESET;KMT1E) SET domain, bifurcated 1 Histone-lysine N-methyltransferase activity (31-34) Transcription factors GTF3C2 general transcription factor IIIC, polypeptide 2, beta 110kDa Required for RNA polymerase III-mediated transcription HEYL (Hey3) hairy/enhancer-of-split related with YRPW motif-like DNA-binding transcription factor with basic helix-loop-helix domain (35) KLF10 (TIEG1) Kruppel-like factor 10 DNA-binding transcription factor with C2H2 zinc finger domain (36) NR2F1 (COUP-TFI) nuclear receptor subfamily 2, group F, member 1 DNA-binding transcription factor with C4 type zinc finger domain (ligand-regulated) (36) PEG3 paternally expressed 3 DNA-binding transcription factor with
    [Show full text]
  • Detailed Review Paper on Retinoid Pathway Signalling
    1 1 Detailed Review Paper on Retinoid Pathway Signalling 2 December 2020 3 2 4 Foreword 5 1. Project 4.97 to develop a Detailed Review Paper (DRP) on the Retinoid System 6 was added to the Test Guidelines Programme work plan in 2015. The project was 7 originally proposed by Sweden and the European Commission later joined the project as 8 a co-lead. In 2019, the OECD Secretariat was added to coordinate input from expert 9 consultants. The initial objectives of the project were to: 10 draft a review of the biology of retinoid signalling pathway, 11 describe retinoid-mediated effects on various organ systems, 12 identify relevant retinoid in vitro and ex vivo assays that measure mechanistic 13 effects of chemicals for development, and 14 Identify in vivo endpoints that could be added to existing test guidelines to 15 identify chemical effects on retinoid pathway signalling. 16 2. This DRP is intended to expand the recommendations for the retinoid pathway 17 included in the OECD Detailed Review Paper on the State of the Science on Novel In 18 vitro and In vivo Screening and Testing Methods and Endpoints for Evaluating 19 Endocrine Disruptors (DRP No 178). The retinoid signalling pathway was one of seven 20 endocrine pathways considered to be susceptible to environmental endocrine disruption 21 and for which relevant endpoints could be measured in new or existing OECD Test 22 Guidelines for evaluating endocrine disruption. Due to the complexity of retinoid 23 signalling across multiple organ systems, this effort was foreseen as a multi-step process.
    [Show full text]
  • Growth Inhibition of Retinoic Acid Treated MCF-7 Breast Cancer
    Growth Inhibition of Retinoic Acid Treated MCF-7 Breast Cancer Cells-Identification of Sox 9 and Other Proteins T Remsen, P Kessler, A Stern, H Samuels and P Pevsner Dept of Pharmacology New York University School of Medicine, New York, NY, USA [email protected] Background and Significance Despite advances in treatment, breast cancer continues to be the second leading cause of cancer mortality in women. Statistics suggest Sample 1 that while focus on treatment should continue, chemopreventive approaches should also be pursued.1 SRY and SOX9 are involved in Histone 4 (H4) (Swiss prot)Macrophage migration inhibitory factor (MIF) (Swiss prot) both skeletal development and sex determination, 2 and have been shown to be nuclear proteins.3 Human SOX4 is expressed in the nor- Heat Shock protein HSP 90 (Swiss prot) GI 3287489, Hsp89-alpha-delta-N [Homo sapiens] mal breast and in breast cancer cells. Treatment of T-47D breast cancer cells with the synthetic progestin ORG 2058 directly increased 4 GI 31979, histone H2A.2 [Homo sapiens]GI 40254816, heat shock protein 90kDa alpha (cytoso- SOX4 transcription. This caused a 4-fold increase in SOX4 mRNA levels within 4 h of treatment. Retinoids can also reduce expres- lic), class A member 1 isoform 2 [Homo sapiens] 5 sion of the inhibitor of apoptosisprotein, survivin. PDCD4 (programmed cell death 4), a tumor suppressor gene presently being evalu- GI 34039, unnamed protein product [Homo sapiens] ated as a target for chemoprevention, was induced about three-fold by the retinoic acid receptor (RARa)-selective agonist Am580 in GI 31645, glyceraldehyde-3-phosphate dehydrogenase [Homo sapiens] T-47D breast cancer cells.
    [Show full text]
  • Integrated and Functional Genomic Approaches to Elucidate Differential Genetic Dependencies in Melanoma
    Integrated and Functional Genomic Approaches to Elucidate Differential Genetic Dependencies in Melanoma The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Wong, Terence. 2018. Integrated and Functional Genomic Approaches to Elucidate Differential Genetic Dependencies in Melanoma. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42014990 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Integrated and Functional Genomic Approaches to Elucidate Differential Genetic Dependencies in Melanoma A dissertation presented by Terence Cheng Wong to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biological and Biomedical Sciences Harvard University Cambridge, Massachusetts November 2017 © 2017 Terence Cheng Wong All rights reserved. Dissertation Advisor: Levi Garraway Terence Cheng Wong Integrated and Functional Genomic Approaches to Elucidate Differential Genetic Dependencies in Melanoma ABSTRACT Genomic characterization of human cancers over the past decade has generated comprehensive catalogues of genetic alterations in cancer genomes. Many of these genetic events result in molecular or cellular changes that drive cancer cell phenotypes. In melanoma, a majority of tumors harbor mutations in the BRAF gene, leading to activation of the MAPK pathway and tumor initiation. The development and use of drugs that target the mutant BRAF protein and the MAPK pathway have produced significant clinical benefit in melanoma patients.
    [Show full text]
  • Abstracts from the 9Th Biennial Scientific Meeting of The
    International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):15 DOI 10.1186/s13633-017-0054-x MEETING ABSTRACTS Open Access Abstracts from the 9th Biennial Scientific Meeting of the Asia Pacific Paediatric Endocrine Society (APPES) and the 50th Annual Meeting of the Japanese Society for Pediatric Endocrinology (JSPE) Tokyo, Japan. 17-20 November 2016 Published: 28 Dec 2017 PS1 Heritable forms of primary bone fragility in children typically lead to Fat fate and disease - from science to global policy a clinical diagnosis of either osteogenesis imperfecta (OI) or juvenile Peter Gluckman osteoporosis (JO). OI is usually caused by dominant mutations affect- Office of Chief Science Advsor to the Prime Minister ing one of the two genes that code for two collagen type I, but a re- International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):PS1 cessive form of OI is present in 5-10% of individuals with a clinical diagnosis of OI. Most of the involved genes code for proteins that Attempts to deal with the obesity epidemic based solely on adult be- play a role in the processing of collagen type I protein (BMP1, havioural change have been rather disappointing. Indeed the evidence CREB3L1, CRTAP, LEPRE1, P4HB, PPIB, FKBP10, PLOD2, SERPINF1, that biological, developmental and contextual factors are operating SERPINH1, SEC24D, SPARC, from the earliest stages in development and indeed across generations TMEM38B), or interfere with osteoblast function (SP7, WNT1). Specific is compelling. The marked individual differences in the sensitivity to the phenotypes are caused by mutations in SERPINF1 (recessive OI type obesogenic environment need to be understood at both the individual VI), P4HB (Cole-Carpenter syndrome) and SEC24D (‘Cole-Carpenter and population level.
    [Show full text]
  • Watsonjn2018.Pdf (1.780Mb)
    UNIVERSITY OF CENTRAL OKLAHOMA Edmond, Oklahoma Department of Biology Investigating Differential Gene Expression in vivo of Cardiac Birth Defects in an Avian Model of Maternal Phenylketonuria A THESIS SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE IN BIOLOGY By Jamie N. Watson Edmond, OK June 5, 2018 J. Watson/Dr. Nikki Seagraves ii J. Watson/Dr. Nikki Seagraves Acknowledgements It is difficult to articulate the amount of gratitude I have for the support and encouragement I have received throughout my master’s thesis. Many people have added value and support to my life during this time. I am thankful for the education, experience, and friendships I have gained at the University of Central Oklahoma. First, I would like to thank Dr. Nikki Seagraves for her mentorship and friendship. I lucked out when I met her. I have enjoyed working on this project and I am very thankful for her support. I would like thank Thomas Crane for his support and patience throughout my master’s degree. I would like to thank Dr. Shannon Conley for her continued mentorship and support. I would like to thank Liz Bullen and Dr. Eric Howard for their training and help on this project. I would like to thank Kristy Meyer for her friendship and help throughout graduate school. I would like to thank my committee members Dr. Robert Brennan and Dr. Lilian Chooback for their advisement on this project. Also, I would like to thank the biology faculty and staff. I would like to thank the Seagraves lab members: Jailene Canales, Kayley Pate, Mckayla Muse, Grace Thetford, Kody Harvey, Jordan Guffey, and Kayle Patatanian for their hard work and support.
    [Show full text]
  • SOX3 Is Required During the Formation of the Hypothalamo-Pituitary Axis
    ARTICLES SOX3 is required during the formation of the hypothalamo-pituitary axis Karine Rizzoti1,5, Silvia Brunelli1,4,5, Danielle Carmignac2, Paul Q Thomas3, Iain C Robinson2 & Robin Lovell-Badge1 The pituitary develops from the interaction of the infundibulum, a region of the ventral diencephalon, and Rathke’s pouch, a derivative of oral ectoderm. Postnatally, its secretory functions are controlled by hypothalamic neurons, which also derive from the ventral diencephalon. In humans, mutations affecting the X-linked transcription factor SOX3 are associated with hypopituitarism and mental retardation, but nothing is known of their etiology. We find that deletion of Sox3 in mice leads to defects of pituitary function and of specific central nervous system (CNS) midline structures. Cells in the ventral diencephalon, where Sox3 is usually http://www.nature.com/naturegenetics highly expressed, have altered properties in mutant embryos, leading to abnormal development of Rathke’s pouch, which does not express the gene. Pituitary and hypothalamic defects persist postnatally, and SOX3 may also function in a subset of hypothalamic neurons. This study shows how sensitive the pituitary is to subtle developmental defects and how one gene can act at several levels in the hypothalamic-pituitary axis. The development of complex organs composed of different cell types review see ref. 5), is implicated in a syndrome of X-linked hypopitu- frequently depends on reciprocal induction events occurring between itarism and mental retardation6. In a single family whose males were distinct tissue layers that lie adjacent to one another in the embryo. deficient in growth hormone, a mutation in SOX3 was identified.
    [Show full text]
  • Topoisomerase Ii Inhibitors Induce an Illegitimate Genome Rearrangement Common in Infant Leukemia
    TOPOISOMERASE II INHIBITORS INDUCE AN ILLEGITIMATE GENOME REARRANGEMENT COMMON IN INFANT LEUKEMIA by Bhawana Bariar A dissertation submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Charlotte 2013 Approved by: ______________________________ Dr. Christine Richardson ______________________________ Dr. Mark Clemens ______________________________ Dr. Laura Schrum ______________________________ Dr. Pinku Mukherjee ______________________________ Dr. Anthony Fodor ii ©2013 Bhawana Bariar ALL RIGHTS RESERVED iii ABSTRACT BHAWANA BARIAR. Topoisomerase II inhibitors induce an illegitimate genome rearrangement common in infant leukemia. (Under the direction of DR. CHRISTINE RICHARDSON) Infant acute leukemias account for ~30% of all malignancy seen in childhood across the Western world. They are aggressive and characterized by rapid onset shortly after birth. The majority of these have rearrangements involving the MLL (mixed lineage leukemia) gene. Although MLL fusion to more than 75 genes have been identified, AF9 is one of its most common translocation partners. Since MLL breakpoint sequences associated with infant acute leukemia are similar to those in secondary AML following exposure to the topoisomerase II (topo II) poison etoposide, it has been hypothesized that exposure during pregnancy to biochemically similar compounds may promote infant acute leukemia. Some studies have shown an epidemiological link between bioflavonoid intake
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • The E–Id Protein Axis Modulates the Activities of the PI3K–AKT–Mtorc1
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1– Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis Masaki Miyazaki,1,8 Kazuko Miyazaki,1,8 Shuwen Chen,1 Vivek Chandra,1 Keisuke Wagatsuma,2 Yasutoshi Agata,2 Hans-Reimer Rodewald,3 Rintaro Saito,4 Aaron N. Chang,5 Nissi Varki,6 Hiroshi Kawamoto,7 and Cornelis Murre1 1Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan; 3Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany; 4Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA; 5Center for Computational Biology, Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA; 6Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA; 7Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naı¨ve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells.
    [Show full text]