The Genus Category and Cranial Morphometrics of the Catarrhini with Implications for Fossil Hominins

Total Page:16

File Type:pdf, Size:1020Kb

The Genus Category and Cranial Morphometrics of the Catarrhini with Implications for Fossil Hominins The genus category and cranial morphometrics of the Catarrhini with implications for fossil hominins Jack Andrew Coate A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Postgraduate Board University of New South Wales September 2007 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Coate First name: Jack Other name/s: Andrew Abbreviation for degree as given in the University calendar: PhD School: SOMS Faculty: Anatomy Title: The genus category and cranial morphometrics of the Catarrhini with implications for fossil hominins Abstract 350 words maximum: (PLEASE TYPE) Recently, the number of hominin genera has increased dramatically. Prior to the announcement of Ardipithecus, only two genera were used by paleoanthropologists: Australopithecus and Homo. Presently, up to eight hominin genera are used: Sahelanthropus, Orrorin, Ardipithecus, Australopithecus, Praeanthropus, Kenyanthropus, Paranthropus and Homo. Unlike species concepts, the genus category has not received wide critical examination. To investigate the use of the genus category in paleoanthropology, a comparative framework drawing on morphometric data from a large number of catarrhines is developed. Cranial variables include 36 standard linear measurements from representatives of catarrhine genera across the major tribes/families. This study seeks to assess whether too few or too many hominin genera have been recognized compared with extant catarrhines. Moreover, two published hypotheses about the use of Homo are examined: 1) Wood & Collard’s (1999) proposal to transfer Homo habilis/rudolfensis to Australopithecus; and 2) Goodman et al’s (1998) classification of both humans and chimpanzees in Homo. To analyze these cranial variables and a number of shape indices calculated from them, as well as to assess competing hypotheses, univariate, bivariate and multivariate statistical approaches are used. The results allow the identification of a set of variables and shape indices which distinguish genera across the catarrhines. Importantly, body size seems to be the major separator of catarrhine genera, reinforcing the idea that they occupy discrete adaptive zones. Moreover, differences between these genera mostly represent contrasts in the size of the neuro- versus the viscerocranium. When applied to hominins, a picture emerges which distinguishes them from extant catarrhines: cranial shape rather than size is the major component distinguishing them; this suggests that extinct hominins occupied similar habitats and adaptive zones; variability in size and shape within hominin genera is much lower than extant catarrhines; and the major differences seen in shape among hominins are the result of encephalization in Homo. It is concluded here that both Wood & Collard’s (1999) and Goodman et al.’s (1998) proposals appear to be premature. Moreover, while the earliest hominins may be too finely split at the genus level, the evidence for distinction of Australopithecus and Paranthropus is solid. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). …………………………………………………………… ……………………………………..……………… ……….………4/14/07...…….… Signature Witness Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS Abstract: Recently, the number of hominin genera has increased dramatically. Prior to the announcement of Ardipithecus, only two genera were used by paleoanthropologists: Australopithecus and Homo. Presently, up to eight hominin genera are used: Sahelanthropus, Orrorin, Ardipithecus, Australopithecus, Praeanthropus, Kenyanthropus, Paranthropus and Homo. Unlike species concepts, the genus category has not received wide critical examination. To investigate the use of the genus category in paleoanthropology, a comparative framework drawing on morphometric data from a large number of catarrhines is developed. Cranial variables include 36 standard linear measurements from representatives of catarrhine genera across the major tribes/families. This study seeks to assess whether too few or too many hominin genera have been recognized compared with extant catarrhines. Moreover, two published hypotheses about the use of Homo are examined: 1) Wood & Collard’s (1999) proposal to transfer Homo habilis/rudolfensis to Australopithecus; and 2) Goodman et al.’s (1998) classification of both humans and chimpanzees in Homo. To analyze these cranial variables and a number of shape indices calculated from them, as well as to assess competing hypotheses, univariate, bivariate and multivariate statistical approaches are used. The results allow the identification of a set of variables and shape indices which distinguish genera across the catarrhines. Importantly, body size seems to be the major separator of catarrhine genera, reinforcing the idea that they occupy discrete adaptive zones. Moreover, differences between these genera mostly represent contrasts in the size of the neuro- versus the viscerocranium. When applied to hominins, a picture emerges which distinguishes them from extant catarrhines: cranial shape rather than size is the major component distinguishing them; this suggests that extinct hominins occupied similar habitats and adaptive zones; variability in size and shape within hominin genera is much lower than extant catarrhines; and the major differences seen in shape among hominins are the result of encephalization in Homo. It is concluded here that both Wood & Collard’s (1999) and Goodman et al.’s (1998) proposals appear to be premature. Moreover, while the earliest hominins may be too finely split at the genus level, the evidence for distinction of Australopithecus and Paranthropus is solid. II Acknowledgements: I would personally like to thank my supervisor and co-supervisor, Dr. D. Curnoe and Prof. K. Ashwell, as well as, many other close friends and colleagues, including; H. Cohen, E. Danielson and family, T. Furlong, H. Green, D. Harris, Dr. A. Herries, S. Kiker, J. Louys, K. McQualter, D. Neuweger, Dr. S. van Holst, and L. van der Weyde. In addition, I would like to especially thank my parents and family for emotional and financial support throughout the years and during this thesis project. Furthermore, I would also like to personally thank the following institutions and their Physical Anthropology, Zoology and/or Mammalogy staff for allowing me to gather craniometric data from primate skulls in their care – Dr. S. Ingleby and T. Ennis at the Australian Museum, Sydney, Australia; Prof. F. Thackeray, Dr. T. Kearney, S. Potze and T. Perregil at the Transvaal Museum, Pretoria, South Africa; Prof. M. Raath, M. Dayal, M. Spocter, B. Billings and J. Hemingway at the University of Witwatersrand, School of Anatomical Sciences, Jo-burg, South Africa; J. Spence and E. Sarmiento at the American Museum of Natural History, NYC, NY, USA; Dr. Y. Haile-Selassie, L. Jellema and Prof. B. Latimer at the Cleveland Museum of Natural History, Cleveland, OH, USA, which houses the Hamann-Todd Collection; M. Schulenburg at the Field Museum, Chicago, IL, USA; L. Gordon at the Smithsonian Institute, National Museum of Natural History, Washington, D.C., USA; and P. Jenkins and D. Hills at the Natural History Museum, London, UK. In addition, Dr. R. Raaum and Dr. A. Tosi provided genetic information and distance matrices for some of the primates studied herein and both are greatly appreciated by the author for their data and assistance. III Table of contents: Abstract: II Acknowledgements: III Table of contents: IV Abbreviations: V-VII Chapter 1: Introduction, pp.1-18. Chapter 2: Materials and Methods, pp.15-50. Chapter 3: Results for genera of Cercopithecini, pp.51-113. Chapter 4: Results for genera of Papionini, pp.114-179. Chapter 5: Results for genera of Colobinae, pp.180-277 Chapter 6: Results for genera of Hominoidea, pp.278-337 Chapter 7: Summary and Discussion of results for the extant Catarrhini genera, pp.338- 356. Chapter 8: Results for genera of the Hominina, pp.357-412. Chapter 9: Conclusions, pp.413-420. References: pp.421-489. Appendix: pp.490-500. IV Anatomical, Genus and Journal Abbreviations (in alphabetical order): AJP – American Journal of Primatology AJPA – American Journal of Physical Anthropology Al. – Allenopithecus An. – Ankarapithecus Ar. – Ardipithecus Au. – Australopithecus Bas – Basion Bien – Interentoglenoid Breadth bp – basepairs Br - Bregma Cc. – Cercocebus Cp. – Cercopithecus Ch. – Chlorocebus Co. – Colobus Cum. – Cumulative CV – Coefficient of Variation
Recommended publications
  • Initial Research Question • M
    4/30/2008 Macaques Human-Macaque ► Old World monkey Interactions and Related ► Body size: Medium to Large bodied ► Omnivorous: fruit, leaves, invertebrates Effects on Macaque ► Arboreal/terrestrial ► Social groups of 20-50 of both sexes and all ages Behavior and Conservation ► Alpha males usually fission to start own groups ► Native to Asia and Africa Denae Crowl ► Order = Primates ► Family = Cercopithecidae Department of ► Genus = Macaca Anthropology, SIUE Phyletic Species-Groups Within the Genus Macaca (A. F. Richard, et. al. 1989) 1. M. fascicularis group • M. cyclopic - Formosan rock, or Taiwan macaque • M. fascicularis - Crab-eating, or long-tailed macaque • M. fuscata - Japanese macaque • M. mulatta - Rhesus macaque 2. M. silenus-sylvanus group • M. nemestrina - Pigtail macaque • M. silenus - Lion-tailed macaque • M. sylvanus - Barbary macaque • M. brunnescens - Mana-Butung macaque Initial Research Question • M. hecki - Heck’s macaque • H. maura - Moor macaque • M. nigra - Celebes black macaque • M. nigrescens - Gorontalo macaque • M. ochreata - Booted macaque Human Perceptions vs. Macaque • M. tonkeana - Tonkean macaque 3. M. sinica group Behavior • M. assamensis - Assamese macaque • M. radiata - Bonnet macaque • M. sinica - Toque macaque • M. thibetana - Tibetan macaque 4. M. arctoides group • M. arctoides - Stumptail, or bear macaque Both human perceptions and macaques behaviors have been My Perception an issue due to the increasing amount of human-macaque interaction ► Bali, Indonesia ► Yap, Micronesian Island ►What is meant by ‘natural’ environment? ► . Revered . Pests What forms of conservation are beneficial to . Provisioned . Disease transmitters macaques and humans? . Welcomed tourist . Illegal transport to main ►What are the issues surrounding established attraction island conservation methods? . Illegal as pets . Crop-raiders 1 4/30/2008 Offerings in form of a flowers/fruits Methods = non-deliberate provisioning ►Reviewed published literature ►Variables .
    [Show full text]
  • Targets, Tactics, and Cooperation in the Play Fighting of Two Genera of Old World Monkeys (Mandrillus and Papio): Accounting for Similarities and Differences
    2019, 32 Heather M. Hill Editor Peer-reviewed Targets, Tactics, and Cooperation in the Play Fighting of Two Genera of Old World Monkeys (Mandrillus and Papio): Accounting for Similarities and Differences Kelly L. Kraus1, Vivien C. Pellis1, and Sergio M. Pellis1 1 Department of Neuroscience, University of Lethbridge, Canada Play fighting in many species involves partners competing to bite one another while avoiding being bitten. Species can differ in the body targets that are bitten and the tactics used to attack and defend those targets. However, even closely related species that attack and defend the same body target using the same tactics can differ markedly in how much the competitiveness of such interactions is mitigated by cooperation. A degree of cooperation is necessary to ensure that some turn-taking between the roles of attacker and defender occurs, as this is critical in preventing play fighting from escalating into serious fighting. In the present study, the dyadic play fighting of captive troops of 4 closely related species of Old World monkeys, 2 each from 2 genera of Papio and Mandrillus, was analyzed. All 4 species have a comparable social organization, are large bodied with considerable sexual dimorphism, and are mostly terrestrial. In all species, the target of biting is the same – the area encompassing the upper arm, shoulder, and side of the neck – and they have the same tactics of attack and defense. However, the Papio species exhibit more cooperation in their play than do the Mandrillus species, with the former using tactics that make biting easier to attain and that facilitate close bodily contact.
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Body Measurements for the Monkeys of Bioko Island, Equatorial Guinea
    Primate Conservation 2009 (24): 99–105 Body Measurements for the Monkeys of Bioko Island, Equatorial Guinea Thomas M. Butynski¹,², Yvonne A. de Jong² and Gail W. Hearn¹ ¹Bioko Biodiversity Protection Program, Drexel University, Philadelphia, PA, USA ²Eastern Africa Primate Diversity and Conservation Program, Nanyuki, Kenya Abstract: Bioko Island, Equatorial Guinea, has a rich (eight genera, 11 species), unique (seven endemic subspecies), and threat- ened (five species) primate fauna, but the taxonomic status of most forms is not clear. This uncertainty is a serious problem for the setting of priorities for the conservation of Bioko’s (and the region’s) primates. Some of the questions related to the taxonomic status of Bioko’s primates can be resolved through the statistical comparison of data on their body measurements with those of their counterparts on the African mainland. Data for such comparisons are, however, lacking. This note presents the first large set of body measurement data for each of the seven species of monkeys endemic to Bioko; means, ranges, standard deviations and sample sizes for seven body measurements. These 49 data sets derive from 544 fresh adult specimens (235 adult males and 309 adult females) collected by shotgun hunters for sale in the bushmeat market in Malabo. Key Words: Bioko Island, body measurements, conservation, monkeys, morphology, taxonomy Introduction gordonorum), and surprisingly few such data exist even for some of the more widespread species (for example, Allen’s Comparing external body measurements for adult indi- swamp monkey Allenopithecus nigroviridis, northern tala- viduals from different sites has long been used as a tool for poin monkey Miopithecus ogouensis, and grivet Chlorocebus describing populations, subspecies, and species of animals aethiops).
    [Show full text]
  • The Taxonomy of Primates in the Laboratory Context
    P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992).
    [Show full text]
  • This Draft Holds Additions and Corrections Made After 15
    Thomas M. Butynski Lists of Publications, Reports and Consultancies Published papers (many available as pdfs, some at www.wildsolutions.nl) Butynski, T. M. 1973. Life history and economic value of the springhare (Pedetes capensis Forester) in Botswana. Botswana Notes and Records 5: 209–213. von Richter, W. & Butynski, T. M. 1973. Hunting in Botswana. Botswana Notes and Records 5: 191–208. Butynski, T. M. 1974. An encounter between African wild dog and domestic dog. African Journal of Ecology 12: 243. Butynski, T. M. 1974. In Botswana most of the meat is wild. Unasylva 26: 24–29. Butynski, T. M. 1975. Ageing black-backed jackal pups in Botswana. Journal of the Southern African Wildlife Management Association 5: 39–42. Butynski, T. M. & von Richter, W. 19975. Wildlife management in Botswana. Wildlife Society Bulletin 3: 19–24. Dawson, J. L. & Butynski, T. M. 1975. Khutse Game Reserve, Botswana: preserving the Kalahari ecosystem. Biological Conservation 7: 147–153. Butynski, T. M. 1979. Body and organ growth of the springhare Acta Theriologica 24: 431–448. Butynski, T. M. 1979. Reproductive ecology of the springhaas Pedetes capensis in Botswana. Journal of Zoology, London 189: 221–232. Butynski, T. M. & Hanks, J. 1979. Reproductive activity in the male springhare Pedetes capensis in Botswana. South African Journal of Wildlife Research 9: 13–17. Butynski, T. M. & Mattingly, R. 1979. Burrow structure and fossorial ecology of the springhare Pedetes capensis in Botswana. African Journal of Ecology 17: 205– 215. Butynski, T. M. 1980. Growth and development of the foetal springhare Pedetes capensis in Botswana. Mammalia 44: 361–369.
    [Show full text]
  • Human Evolution: a Paleoanthropological Perspective - F.H
    PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins.
    [Show full text]
  • The Threads of Evolutionary, Behavioural and Conservation Research
    Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Edited by Alison M Behie and Marc F Oxenham Chapters written in honour of Professor Colin P Groves Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at http://press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Taxonomic tapestries : the threads of evolutionary, behavioural and conservation research / Alison M Behie and Marc F Oxenham, editors. ISBN: 9781925022360 (paperback) 9781925022377 (ebook) Subjects: Biology--Classification. Biology--Philosophy. Human ecology--Research. Coexistence of species--Research. Evolution (Biology)--Research. Taxonomists. Other Creators/Contributors: Behie, Alison M., editor. Oxenham, Marc F., editor. Dewey Number: 578.012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press Cover photograph courtesy of Hajarimanitra Rambeloarivony Printed by Griffin Press This edition © 2015 ANU Press Contents List of Contributors . .vii List of Figures and Tables . ix PART I 1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research . 3 Alison M Behie and Marc F Oxenham PART II 2 . Characterisation of the endemic Sulawesi Lenomys meyeri (Muridae, Murinae) and the description of a new species of Lenomys . 13 Guy G Musser 3 . Gibbons and hominoid ancestry . 51 Peter Andrews and Richard J Johnson 4 .
    [Show full text]
  • Ranging Bonnet Macaques, Macaca Radiata
    Flexibility in Food Extraction Techniques in Urban Free- Ranging Bonnet Macaques, Macaca radiata Madhur Mangalam1, Mewa Singh1,2* 1 Biopsychology Laboratory, University of Mysore, Mysore, India, 2 Evolutionary & Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India Abstract Non-human primate populations, other than responding appropriately to naturally occurring challenges, also need to cope with anthropogenic factors such as environmental pollution, resource depletion, and habitat destruction. Populations and individuals are likely to show considerable variations in food extraction abilities, with some populations and individuals more efficient than others at exploiting a set of resources. In this study, we examined among urban free-ranging bonnet macaques, Macaca radiata (a) local differences in food extraction abilities, (b) between-individual variation and within-individual consistency in problem-solving success and the underlying problem-solving characteristics, and (c) behavioral patterns associated with higher efficiency in food extraction. When presented with novel food extraction tasks, the urban macaques having more frequent exposure to novel physical objects in their surroundings, extracted food material from PET bottles and also solved another food extraction task (i.e., extracting an orange from a wire mesh box), more often than those living under more natural conditions. Adults solved the tasks more frequently than juveniles, and females more frequently than males. Both solution-technique and problem-solving characteristics varied across individuals but remained consistent within each individual across the successive presentations of PET bottles. The macaques that solved the tasks showed lesser within-individual variation in their food extraction behavior as compared to those that failed to solve the tasks.
    [Show full text]
  • New Hominoid Mandible from the Early Late Miocene Irrawaddy Formation in Tebingan Area, Central Myanmar Masanaru Takai1*, Khin Nyo2, Reiko T
    Anthropological Science Advance Publication New hominoid mandible from the early Late Miocene Irrawaddy Formation in Tebingan area, central Myanmar Masanaru Takai1*, Khin Nyo2, Reiko T. Kono3, Thaung Htike4, Nao Kusuhashi5, Zin Maung Maung Thein6 1Primate Research Institute, Kyoto University, 41 Kanrin, Inuyama, Aichi 484-8506, Japan 2Zaykabar Museum, No. 1, Mingaradon Garden City, Highway No. 3, Mingaradon Township, Yangon, Myanmar 3Keio University, 4-1-1 Hiyoshi, Kouhoku-Ku, Yokohama, Kanagawa 223-8521, Japan 4University of Yangon, Hlaing Campus, Block (12), Hlaing Township, Yangon, Myanmar 5Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan 6University of Mandalay, Mandalay, Myanmar Received 14 August 2020; accepted 13 December 2020 Abstract A new medium-sized hominoid mandibular fossil was discovered at an early Late Miocene site, Tebingan area, south of Magway city, central Myanmar. The specimen is a left adult mandibular corpus preserving strongly worn M2 and M3, fragmentary roots of P4 and M1, alveoli of canine and P3, and the lower half of the mandibular symphysis. In Southeast Asia, two Late Miocene medium-sized hominoids have been discovered so far: Lufengpithecus from the Yunnan Province, southern China, and Khoratpithecus from northern Thailand and central Myanmar. In particular, the mandibular specimen of Khoratpithecus was discovered from the neighboring village of Tebingan. However, the new mandible shows apparent differences from both genera in the shape of the outline of the mandibular symphyseal section. The new Tebingan mandible has a well-developed superior transverse torus, a deep intertoral sulcus (= genioglossal fossa), and a thin, shelf-like inferior transverse torus. In contrast, Lufengpithecus and Khoratpithecus each have very shallow intertoral sulcus and a thick, rounded inferior transverse torus.
    [Show full text]
  • Macaques ( Macaca Leonina ): Impact on Their Seed Dispersal Effectiveness and Ecological Contribution in a Tropical Rainforest at Khao Yai National Park, Thailand
    Faculté des Sciences Département de Biologie, Ecologie et Environnement Unité de Biologie du Comportement, Ethologie et Psychologie Animale Feeding and ranging behavior of northern pigtailed macaques ( Macaca leonina ): impact on their seed dispersal effectiveness and ecological contribution in a tropical rainforest at Khao Yai National Park, Thailand ~ ~ ~ Régime alimentaire et déplacements des macaques à queue de cochon ( Macaca leonina ) : impact sur leur efficacité dans la dispersion des graines et sur leur contribution écologique dans une forêt tropicale du parc national de Khao Yai, Thaïlande Année académique 2011-2012 Dissertation présentée par Aurélie Albert en vue de l’obtention du grade de Docteur en Sciences Faculté des Sciences Département de Biologie, Ecologie et Environnement Unité de Biologie du Comportement, Ethologie et Psychologie Animale Feeding and ranging behavior of northern pigtailed macaques ( Macaca leonina ): impact on their seed dispersal effectiveness and ecological contribution in a tropical rainforest at Khao Yai National Park, Thailand ~ ~ ~ Régime alimentaire et déplacements des macaques à queue de cochon ( Macaca leonina ) : impact sur leur efficacité dans la dispersion des graines et sur leur contribution écologique dans une forêt tropicale du parc national de Khao Yai, Thaïlande Année académique 2011-2012 Dissertation présentée par Aurélie Albert en vue de l’obtention du grade de Docteur en Sciences Promotrice : Marie-Claude Huynen (ULg, Belgique) Comité de thèse : Tommaso Savini (KMUTT, Thaïlande) Alain Hambuckers (ULg, Belgique) Pascal Poncin (ULg, Belgique) Président du jury : Jean-Marie Bouquegneau (ULg, Belgique) Membres du jury : Pierre-Michel Forget (MNHN, France) Régine Vercauteren Drubbel (ULB, Belgique) Roseline C. Beudels-Jamar (IRSN, Belgique) Copyright © 2012, Aurélie Albert Toute reproduction du présent document, par quelque procédé que ce soit, ne peut être réalisée qu’avec l’autorisation de l’auteur et du/des promoteur(s).
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]