The Night Monkey, Aotes Triuirgatus (Cebidae, Platyrrhini, Anthropoidea)

Total Page:16

File Type:pdf, Size:1020Kb

The Night Monkey, Aotes Triuirgatus (Cebidae, Platyrrhini, Anthropoidea) CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Volume 165, number 1 FEBS 1071 January 1984 The myoglobin of primates: the Night Monkey, Aotes triuirgatus (Cebidae, Platyrrhini, Anthropoidea) Nils Heinbokel and Hermann Lehmann Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 IQW, England Received 26 October 1983 The amino acid sequence of the myoglobin of the South American Night Monkey, Aotes trivirgatus, is identical to that of the marmoset (Callithrix jacchus [l]) except for residue 21 which is isoleucine in the marmoset, like in all other anthropoids, but valine in Aotes. Analysis of a possible pathway of the evolution of Aotes myoglobin using 18 known primate myoglobin sequences [2-51 supports the classification of the Night Monkey within Anthropoidea and Platyrrhini but it indicates that this species might be more closely related to the marmoset (family Callitrichidae) than to the family Cebidae as a member of which it is commonly classified. Aotes trivirgatus Myoglobin Sequential analysis Amino acid analysis High-performance liquid chromatography of peptides Molecular evolution 1. INTRODUCTION phylogeny of the Night Monkey based on im- munological comparisons of serum proteins [8,9] The small, purely arboreal South American and on &type haemoglobin chain sequences [lo] Night Monkey, Aotes trivirgatus, is the only noc- has not been conclusive. We determined the amino turnal species in the primate suborder An- acid sequence of the myoglobin of the Night thropoidea. Two thirds of the Prosimii, the other Monkey in order to reconstruct a possible pathway primate suborder, are exclusively nocturnal. This of the evolution of this protein using 18 known resemblance and other similarities of physical and primate myoglobin sequences aiming to obtain behavioural characteristics of Aotes and Prosimii some insights into the phylogenetic relationships of have mostly been considered as convergent adapta- this primate. tions without phylogenetic significance [6]. However, it has been suggested on dermatological 2. MATERIALS AND METHODS grounds that Aotes might be a New World prosi- mian [7]. Previous biomolecular evidence for the 2.1. Preparation of apomyoglobin Myoglobin was extracted from 80 g of A. trivirgatus hind limb muscle with 280 ml of 2 mM NaCn10.6 mM &Fe(CN)6, and the extract was Abbreviations: SDS, sodium dodecyl sulphate; RP-HPLC, reverse phase high-performance liquid centrifuged. The supernatant was adjusted to 55% chromatography; DABS-Cl, 4-N,N-dimethylaminoazo- ammonium sulphate saturation and the precipitate benzene-4 ’ -sulphonyl chloride; DABITC, 4-N, N-dime- removed by filtration. The filtrate was concen- thylaminoazobenzene-4’-isothiocyanate; PITC, phenyl- trated to 10 ml by pressure ultrafiltration (Amicon isothiocyanate PM 10 membrane). One hundred ml of 10 mM Published by Elsevier Science Publishers B. V. 46 00145793/84/$3.00 0 1984 Federation of European Biochemical Societies Volume 165, number 1 FEBS LETTERS January 1984 phosphate buffer containing 2 mM NaCN and with starting buffer and eluted stepwise with 10, 35 0.3% 2-mercaptoethanol (pH 6.35) were added and 100 mM phosphate buffer containing 2 mM and the volume again reduced to 10 ml by NaCN and 0.3% 2-mercaptoethanol (pH 6.35). ultrafiltration. This step was repeated 4 times. The Myoglobin was further purified by gel filtration sample was applied to a carboxymethyl ion- chromatography (Sephadex G-100, eluted with exchange column (Whatman CM 23) equilibrated 50 mM Tris-HCl containing 2 mM NaCN, pH 1 5 10 '5 20 25 30 Kb Gly Lcu SW Asp Gly Glu lbp Glr.Leu Val zlu Am Vnl Trp G:y Lys Ye1 Glu Ale kp Val Ra Set Is Gly Gln Glu Val Lu Ilc Kb I_____- CN% ,. IL4 ii __ iv SP il,tp _ ___^____ --_-w-4 Ch (SP) +-- Mb CN% 2 SP SP Cb (SP) Mb CN% SP2 SP Ch!SP) Ch Ch 95 loo . 105 110 '1'15 120 Kb Gln Scr Iii6Ala Ihr Lys Has Lya 110 Pro VlllLya Tyr Im Glu Pb* 118 SU kp Ala Ih Vel Hia V&l Lu Gin Lya Lp HilrFro CNEr SP5 Ch Ch Mb CN% CN% SP2 Mb (3% CN% TF TP SP Fig. 1. The complete amino acid sequence of Aotes trivirgatus apomyoglobin. Alignment of peptide sequences (CNBr, cyanogen bromide peptide; Tp, tryptic peptide; SP, Stuphyiococcm aweus protease peptide; Ch, chymotryptic peptide). (-) Amino acid sequences determined by the DABITUPITC double coupling method. (---) Amino acid residues deduced from the amino acid composition analysis. (- - -) Edman degradation; arrowhead indicates that the respective residue was not identified, 47 Volume 165, number 1 FEBS LETTERS January 1984 8.5). After desalting (Sephadex G-251, removal of vent system were resolved using linear gradients of the haem group using 1.5% HCl in acetone 10 mM ammonium acetate buffer, pH 6.05 or (-20°C) and lyophilization, 100 mg of a 6.55, in acetonitrile. The amino acid composition homogenous apomyoglobin preparation (as shown of peptide hydrolysates was determined by pre- by SDS-polyacrylamide electrophoresis and N- column derivatization of amino acids with DABS- terminal sequential analysis) were obtained. Cl followed by separation of the derivatives by RP-HPLC using a gradient of 50 mM sodium 2.2. Sequential analysis acetate buffer (pH 4.15) in acetonitrile [13]. The Ten-mg portions of apomyoglobin were cleaved amino acid composition of apomyoglobin was by treatment with CNBr and by digestion with determined on a conventional amino acid analyser. trypsin, chymotrypsin, and Staphylococcus aureus Amino acid sequences of peptides were determined strain V8 protease [1 11, respectively. Peptides ob- by the manual DABITWPITC double coupling tained from 50 to 100 nmol apomyoglobin were method 1141 using reduced reagent volumes and separated by RP-HPLC (Varian 5060 Liquid reaction times [ 151. Leucine and isoleucine residues Chromatograph) on analytical CIS columns were identified from the amino acid composition (Varian MicroPak MCH-5 and MCH-10, 30 x analyses of peptides or by dansyl-Edman degrada- 0.4 cm) using linear gradients of 0.1% (v/v) tion of suitable peptides. The complete sequence aqueous trifluoroacetic acid in acetonitrile [ 121. was obtained by alignment of overlapping peptide Four pairs of tryptic peptides coeluting in this sol- sequences. Fig.2. Reconstruction of primate myoglobin evolution [2,5]. The placement of A&es represents the most parsimonious solution. 48 Volume 165, number 1 FEBS LETTERS January 1984 3. RESULTS AND DfSCUSSXON ACKN~W~E~~EMENT We would like to thank Professor Michel Gof- Fig.1 shows the amino acid sequence of A. fart for providing muscle specimens, trivirgatus apomyoglobin. Of all known primate myoglobins ) Cdiithrix jacchus (marmoset) DEPOSITED MATERIALS myoglobin is most similar to A&es myogiobin. Their sequences differ only in position 21 where The foIlowing materials have been deposited in Calfithrix, like all other Anthropoidea, has the data bank: isoleucine whereas valine was found in Aotes. (i) amino acid composition analysis of Aotes Aotes myoglobin differs in 3-5 positions from the trivirgatus apomyoglobin; known myoglobins of Cebidae (Lagothrix, (ii) separation and sequential analyses of CNBr S~~rn~r~*Cebus), in I l-16 positions from those of peptides; Catarrhini and in 16-23 positions from prosimian (iii) separation, amino acid composition and se- myoglobins. Considering possible pathways of the quential analyses of tryptic and Staphylococ- evolution of Aotes myoglobin (fig.2), phylogenetic cus aureus protease peptides; and affinity of Aotes and the Prosimii appears to be (iv) separation and sequential analyses of very unlikely because A&es myoglobin shares ail chymotrypti~ peptides. 10 residues indicative of common ancestry of An- Details may be obtained from the Pubfisher, free thropoidea and Platyrrhini, Furthermore, there is of charge, quoting: no indication of a diphyletic origin of the Platyr- Data Bank number: FEBS 1071, FLDB/2, 165 rhini [16], To this extent the conventional (1984) 46-50. systematic classification of the Night Monkey is supported. However, in the most parsimonious tree of the Platyrrhini, Aotes is more closely REFERENCES related to the callitrichid Cdithrix than to the 111Romero-Herrera, A.E. and Lehmann, H. (1973) three Cebidae. Shared common ancestry of these Biochim. Biophys. Acta 317, 65-84. cebids is supported by glutamine in position 8 1. [21 Romero-Herrera, A.E., Lehmann, H., Joysey, Night Monkey and marmoset have retained the K.A. and Friday, A.E. (1978) Phil. Trans. Roy. ancestral histidine in this position and share valine Sot. B 282, 61-163. in position 66. 13f Romero-Herrera, A.E., Lehmann, H., Castilfo, Owing to the hypervariability of this position in O., Joysey, K.A. and Friday, A.E. (1976) Nature 261, 162-164. vertebrate myoglobins, the interpretation of this [41Bruce, E.J., Castillo, 0. and Lehmann, H. (1977) common residue as a shared derived character FEBS Lett. 78, 113-118. could be contested. it cannot be ruled out that the VI Dene, H.T., Sazy, J. and Romero-Herrera, A.E. replacement 66 alanine to valine has arisen in- (1980) Biochim. Biophys. Acta 625, 133-145. dependentiy in the lineages leading to A&es and to 161 Hill, W.C. 0. (1960) in: Primates. Comparative Cullithrix. Furthermore, this replacement could Anatomy and Taxonomy, vol.IV, Cebidae, part A, have been fixed in the platyrrhine common stem, p.149, University Press, Edinburgh, with a back mutation to alanine in Cebus (which 171Hanson, G. and Montagna, W. (1962) Am. J. would require two nucleotide replacements). Phys. Anthropol. 20, 421-429. However, an association of Aores and ~~~~~thr~x~ 181Sarich, V.M. and Cronin, J.E. (3976) in: MoIec&ar as indicated by the most parsimonious reconstruc- An~hro~lo~y. Genes and Proteins in the Evolutionary Ascent of the Primates (Goodman, tion of mutational events, is in line with Gregory’s M.
Recommended publications
  • Black Capped Capuchin (Cebus Apella)
    Husbandry Manual For Brown Capuchin/Black-capped Capuchin Cebus apella (Cebidae) Author: Joel Honeysett Date of Preparation: March 2006 Sydney Institute of TAFE, Ultimo Course Name and Number: Captive Animals. Lecturer: Graeme Phipps TABLE OF CONTENTS 1 Introduction............................................................................................................................. 4 2 Taxonomy ............................................................................................................................... 5 2.1 Nomenclature ................................................................................................................. 5 2.2 Subspecies ...................................................................................................................... 5 2.3 Recent Synonyms ........................................................................................................... 5 2.4 Other Common Names ................................................................................................... 5 3 Natural History ....................................................................................................................... 7 3.1 Morphometrics ............................................................................................................... 7 3.1.1 Mass And Basic Body Measurements ....................................................................... 7 3.1.2 Sexual Dimorphism ..................................................................................................
    [Show full text]
  • World's Most Endangered Primates
    Primates in Peril The World’s 25 Most Endangered Primates 2016–2018 Edited by Christoph Schwitzer, Russell A. Mittermeier, Anthony B. Rylands, Federica Chiozza, Elizabeth A. Williamson, Elizabeth J. Macfie, Janette Wallis and Alison Cotton Illustrations by Stephen D. Nash IUCN SSC Primate Specialist Group (PSG) International Primatological Society (IPS) Conservation International (CI) Bristol Zoological Society (BZS) Published by: IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), Bristol Zoological Society (BZS) Copyright: ©2017 Conservation International All rights reserved. No part of this report may be reproduced in any form or by any means without permission in writing from the publisher. Inquiries to the publisher should be directed to the following address: Russell A. Mittermeier, Chair, IUCN SSC Primate Specialist Group, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA 22202, USA. Citation (report): Schwitzer, C., Mittermeier, R.A., Rylands, A.B., Chiozza, F., Williamson, E.A., Macfie, E.J., Wallis, J. and Cotton, A. (eds.). 2017. Primates in Peril: The World’s 25 Most Endangered Primates 2016–2018. IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society, Arlington, VA. 99 pp. Citation (species): Salmona, J., Patel, E.R., Chikhi, L. and Banks, M.A. 2017. Propithecus perrieri (Lavauden, 1931). In: C. Schwitzer, R.A. Mittermeier, A.B. Rylands, F. Chiozza, E.A. Williamson, E.J. Macfie, J. Wallis and A. Cotton (eds.), Primates in Peril: The World’s 25 Most Endangered Primates 2016–2018, pp. 40-43. IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society, Arlington, VA.
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]
  • Ancestral Facial Morphology of Old World Higher Primates (Anthropoidea/Catarrhini/Miocene/Cranium/Anatomy) BRENDA R
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 5267-5271, June 1991 Evolution Ancestral facial morphology of Old World higher primates (Anthropoidea/Catarrhini/Miocene/cranium/anatomy) BRENDA R. BENEFIT* AND MONTE L. MCCROSSINt *Department of Anthropology, Southern Illinois University, Carbondale, IL 62901; and tDepartment of Anthropology, University of California, Berkeley, CA 94720 Communicated by F. Clark Howell, March 11, 1991 ABSTRACT Fossil remains of the cercopithecoid Victoia- (1, 5, 6). Contrasting craniofacial configurations of cercopithe- pithecus recently recovered from middle Miocene deposits of cines and great apes are, in consequence, held to be indepen- Maboko Island (Kenya) provide evidence ofthe cranial anatomy dently derived with regard to the ancestral catarrhine condition of Old World monkeys prior to the evolutionary divergence of (1, 5, 6). This reconstruction has formed the basis of influential the extant subfamilies Colobinae and Cercopithecinae. Victoria- cladistic assessments ofthe phylogenetic relationships between pithecus shares a suite ofcraniofacial features with the Oligocene extant and extinct catarrhines (1, 2). catarrhine Aegyptopithecus and early Miocene hominoid Afro- Reconstructions of the ancestral catarrhine morphotype pithecus. AU three genera manifest supraorbital costae, anteri- are based on commonalities of subordinate morphotypes for orly convergent temporal lines, the absence of a postglabellar Cercopithecoidea and Hominoidea (1, 5, 6). Broadly distrib- fossa, a moderate to long snout, great facial
    [Show full text]
  • The New World Monkeys
    The New World Monkeys NEW WORLD PRIMATE TAG Husbandry WORKSHOP Taxonomy of New World primates circa 1980’s Suborder Anthropoidea Infraorder Platyrrhini SuperFamily Ceboidea Family Callitrichidae Cebidae Aotus Leontopithecus Owl Monkeys Lion Tamarins Callicebus Saguinus Titi Monkeys Tamarins Cebus Cacajao Capuchin Monkeys Uakaris Callithrix Marmosets Chiropotes Saimiri Bearded Sakis Cebuella Squirrel Monkeys Pygmy Marmosets Pithecia Sakis Alouatta Howler Monkeys Callimico Goeldi’s Monkey Ateles Spider Monkeys Brachyteles Woolly Spider Monkeys (Muriqui) Lagothrix Woolly Monkeys Taxonomy of New World primates circa 1990’s Suborder Anthropoidea Infraorder Platyrrhini SuperFamily Ceboidea Family Callitrichidae Atelidae Aotus Leontopithecus Owl Monkeys Lion Tamarins Cebidae Callicebus Saguinus Titi Monkeys Tamarins Cebus Cacajao Capuchin Monkeys Uakaris Callithrix Marmosets Chiropotes Saimiri Bearded Sakis Cebuella Suirrel Monkeys Pygmy Marmosets Pithecia Sakis Alouatta Howler Monkeys Callimico Goeldi’s Monkey Ateles Spider Monkeys Brachyteles Woolly Spider Monkeys (Muriqui) Lagothrix Woolly Monkeys Taxonomy of New World primates circa 1990’s Suborder Anthropoidea Infraorder Platyrrhini SuperFamily Ceboidea Family Callitrichidae Atelidae Aotus Leontopithecus Owl Monkeys Lion Tamarins Cebidae Callicebus Saguinus Titi Monkeys Tamarins Cebus Cacajao Capuchin Monkeys Uakaris Callithrix Marmosets Chiropotes Saimiri Bearded Sakis Cebuella Suirrel Monkeys Pygmy Marmosets Pithecia Sakis Alouatta *DNA analysis Howler Monkeys Callimico suggested that
    [Show full text]
  • Gene Expression CARLA M
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 2607-2611, March 1995 Evolution Fate of a redundant y-globin gene in the atelid clade of New World monkeys: Implications concerning fetal globin gene expression CARLA M. M. MEIRELES*t, MARIA P. C. SCHNEIDER*t, MARIA I. C. SAMPAIO*t, HoRAcIo SCHNEIDER*t, JERRY L. SLIGHTOM4, CHI-HUA CHIUt§, KATHY NEISWANGERT, DEBORAH L. GuMucIoll, JOHN CZELUSNLAKt, AND MORRIS GOODMANt** *Departamento de Genetica, Universidade Federal do Para, Belem, Para, Brazil; Departments of tAnatomy and Cell Biology and §Molecular Biology and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; tMolecular Biology Unit 7242, The Upjohn Company, Kalamazoo, MI 49007; 1Westem Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA 15213-2593; and IlDepartment of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0616 Communicated by Roy J. Britten, California Institute of Technology, Corona Del Mar, CA, December 19, 1994 (received for review August 19, 1994) ABSTRACT Conclusive evidence was provided that y', purifying selection. One outcome was that a mutation that the upstream of the two linked simian y-globin loci (5'-y'- made the qr locus a pseudogene was fixed -65 MYA in the 'y2-3'), is a pseudogene in a major group of New World eutherian lineage that evolved into the first true primates (4, monkeys. Sequence analysis of PCR-amplified genomic frag- 8). A later outcome, most likely favored by positive selection, ments of predicted sizes revealed that all extant genera of the was that embryonically expressed -y-globin genes became platyrrhine family Atelidae [Lagothrix (woolly monkeys), fetally expressed in the primate lineage out of which platyr- Brachyteles (woolly spider monkeys), Ateles (spider monkeys), rhines and catarrhines descended (1-3,9, 10).
    [Show full text]
  • 1 Old World Monkeys
    2003. 5. 23 Dr. Toshio MOURI Old World monkey Although Old World monkey, as a word, corresponds to New World monkey, its taxonomic rank is much lower than that of the New World Monkey. Therefore, it is speculated that the last common ancestor of Old World monkeys is newer compared to that of New World monkeys. While New World monkey is the vernacular name for infraorder Platyrrhini, Old World Monkey is the vernacular name for superfamily Cercopithecoidea (family Cercopithecidae is limited to living species). As a side note, the taxon including Old World Monkey at the same taxonomic level as New World Monkey is infraorder Catarrhini. Catarrhini includes Hominoidea (humans and apes), as well as Cercopithecoidea. Cercopithecoidea comprises the families Victoriapithecidae and Cercopithecidae. Victoriapithecidae is fossil primates from the early to middle Miocene (15-20 Ma; Ma = megannum = 1 million years ago), with known genera Prohylobates and Victoriapithecus. The characteristic that defines the Old World Monkey (as synapomorphy – a derived character shared by two or more groups – defines a monophyletic taxon), is the bilophodonty of the molars, but the development of biphilophodonty in Victoriapithecidae is still imperfect, and crista obliqua is observed in many maxillary molars (as well as primary molars). (Benefit, 1999; Fleagle, 1999) Recently, there is an opinion that Prohylobates should be combined with Victoriapithecus. Living Old World Monkeys are all classified in the family Cercopithecidae. Cercopithecidae comprises the subfamilies Cercopithecinae and Colobinae. Cercopithecinae has a buccal pouch, and Colobinae has a complex, or sacculated, stomach. It is thought that the buccal pouch is an adaptation for quickly putting rare food like fruit into the mouth, and the complex stomach is an adaptation for eating leaves.
    [Show full text]
  • Primates: Cebidae) Mariela Nieves1,2*, María Isabel Remis2,3, Carla Sesarini1, Diana Lucrecia Hassel4, Carina Francisca Argüelles4 & Marta Dolores Mudry1,2
    www.nature.com/scientificreports OPEN Assessment of genetic variability in captive capuchin monkeys (Primates: Cebidae) Mariela Nieves1,2*, María Isabel Remis2,3, Carla Sesarini1, Diana Lucrecia Hassel4, Carina Francisca Argüelles4 & Marta Dolores Mudry1,2 Capuchin monkeys (genera Cebus and Sapajus) show a wide range distribution, from Honduras to Argentina. The aim of this work was to evaluate the genetic and phenotypic variability of captive specimens putatively belonging to S. cay (SCY) and S. nigritus (SNI) at their southernmost distribution limit. Forty-four individuals held in fve captive centers from Argentina were analyzed based on external morphology, karyology and DNA sequences of mitochondrial control region (mtDNA-CR). Three morphotypes associated with their probable geographical origin in SCY and a single morphotype in SNI were found. For SCY we could associate each morphotype with the most frequent karyotype. SNI showed a single phenotype and a homogenous karyotype. Heterochromatin showed geographical patterns within species. A 515-bp mtDNA-CR fragment was sequenced, defning fourteen haplotypes at 59 polymorphic sites. A network constructed with our 14 haplotypes and other 77 from S. apella, S. macrocephalus, S. cay and S. nigritus from bibliography revealed some phylogeographic signals. Our SCY and SNI samples rendered four groups that difered in multiple mutational steps, with SCY being more similar to S. apella than to S. macrocephalus. Also, we identifed two genetic divergent SCY groups: samples from NOA and from NEA with high mitochondrial diversity. Our results highlight the relevance of using complementary genetic tools throughout the distribution ranges of SCY and SNI for a better assessment of their diversity.
    [Show full text]
  • The Evolution of Human and Ape Hand Proportions
    ARTICLE Received 6 Feb 2015 | Accepted 4 Jun 2015 | Published 14 Jul 2015 DOI: 10.1038/ncomms8717 OPEN The evolution of human and ape hand proportions Sergio Alme´cija1,2,3, Jeroen B. Smaers4 & William L. Jungers2 Human hands are distinguished from apes by possessing longer thumbs relative to fingers. However, this simple ape-human dichotomy fails to provide an adequate framework for testing competing hypotheses of human evolution and for reconstructing the morphology of the last common ancestor (LCA) of humans and chimpanzees. We inspect human and ape hand-length proportions using phylogenetically informed morphometric analyses and test alternative models of evolution along the anthropoid tree of life, including fossils like the plesiomorphic ape Proconsul heseloni and the hominins Ardipithecus ramidus and Australopithecus sediba. Our results reveal high levels of hand disparity among modern hominoids, which are explained by different evolutionary processes: autapomorphic evolution in hylobatids (extreme digital and thumb elongation), convergent adaptation between chimpanzees and orangutans (digital elongation) and comparatively little change in gorillas and hominins. The human (and australopith) high thumb-to-digits ratio required little change since the LCA, and was acquired convergently with other highly dexterous anthropoids. 1 Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA. 2 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York 11794, USA. 3 Institut Catala` de Paleontologia Miquel Crusafont (ICP), Universitat Auto`noma de Barcelona, Edifici Z (ICTA-ICP), campus de la UAB, c/ de les Columnes, s/n., 08193 Cerdanyola del Valle`s (Barcelona), Spain.
    [Show full text]
  • Hooded Capuchin • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Sapajus Apella Caythrough Human Understanding
    Hooded Capuchin • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Sapajus apella caythrough human understanding Classification What groups does this organism belong to based on characteristics shared with other organisms? Class: Mammalia (all mammals) Order: Primates (prosimians, monkeys, apes, humans) Family: Cebidae (new world monkey capuchin, squirrel monkey) Genus: Sapajus Species: apella Distribution Where in the world does this species live? They live in South America, specifically Southeastern Bolivia, Northern Argentina, Brazil and Paraguay. Habitat What kinds of areas does this species live in? Hooded capuchins live in sub-tropical humid and semi-deciduous forests. In Bolivia and Argentina they live in seasonal subtropical laurel and montane forests up to 5000 ft. In Paraguay, they live in dense humid semi-deciduous forest and gallery forests in areas of thorn scrub and savannah. Physical Description How would this animal’s body shape and size be described? • Hooded capuchins are 12-22 inches (30-56 cm) long with a 15-22 inch (38-56 cm) tail. • Adults weigh six to eight pounds (3-4 kg). • Hooded Capuchin are not sexually dimorphic but males may have darker appearing fur.. • They have a brownish crown with two tuft-like horns of fur. • They are overall quite pale, and differ from other tufted capuchin because the hair on the back of the neck and dorsal part of the tail is burnt brown, with a greyish brown dorsal body, shoulders, front upper arms, saddle, rump and thighs and black forearms and legs, black hands, wrists and feet. Diet What does this species eat? In their historic range: They are omnivores eating mostly fruit, young leaves including succulent leaf bases, insects, small animal prey and flower nectar.
    [Show full text]
  • Locomotion and Postural Behaviour Drinking Water
    History of Geo- and Space Open Access Open Sciences EUROPEAN PRIMATE NETWORK – Primate Biology Adv. Sci. Res., 5, 23–39, 2010 www.adv-sci-res.net/5/23/2010/ Advances in doi:10.5194/asr-5-23-2010 Science & Research © Author(s) 2010. CC Attribution 3.0 License. Open Access Proceedings Locomotion and postural behaviour Drinking Water M. Schmidt Engineering Institut fur¨ Spezielle Zoologie und Evolutionsbiologie, Friedrich-Schiller-UniversitAccess Open at¨ and Jena, Science Erbertstr. 1, 07743 Jena, Germany Received: 22 January 2010 – Revised: 10 October 2010 – Accepted: 20 March 2011 – Published: 30 May 2011 Earth System Abstract. The purpose of this article is to provide a survey of the diversity of primate locomotor Science behaviour for people who are involved in research using laboratory primates. The main locomotor modes displayed by primates are introduced with reference to some general morphological adaptations. The relationships between locomotor behaviour and body size, habitat structure and behavioural context will be illustratedAccess Open Data because these factors are important determinants of the evolutionary diversity of primate locomotor activities. They also induce the high individual plasticity of the locomotor behaviour for which primates are well known. The article also provides a short overview of the preferred locomotor activities in the various primate families. A more detailed description of locomotor preferences for some of the most common laboratory primates is included which also contains information about substrate preferences and daily locomotor activities which might useful for laboratory practice. Finally, practical implications for primate husbandry and cage design are provided emphasizing the positive impact of physical activity on health and psychological well-being of primates in captivity.
    [Show full text]
  • Downloaded the 59 and 71 Proviral Loci Taken Into Account, Respectively, Adding to Each Nu- Phylogenetic Analyses Cleotide Sequence 500 Bp Flankings at 5′ and 3′ Ends
    Grandi et al. Mobile DNA (2020) 11:6 https://doi.org/10.1186/s13100-020-0203-2 RESEARCH Open Access Identification and characterization of ERV- W-like sequences in Platyrrhini species provides new insights into the evolutionary history of ERV-W in primates Nicole Grandi1, Maria Paola Pisano1, Martina Demurtas1, Jonas Blomberg2ˆ, Gkikas Magiorkinis3, Jens Mayer4 and Enzo Tramontano1,5* Abstract Background: Endogenous Retroviruses (ERVs) constitute approximately 8% of every human genome and are relics of ancestral infections that affected the germ line cells. The ERV-W group contributed to primate physiology by providing an envelope protein (Syncytin-1) that has been adopted for placenta development in hominoids. Expression of Human ERV-W (HERV-W) sequences is investigated for a pathological role in various human diseases. Results: We previously characterized ERV-W group genomic sequences in human and non-human Catarrhini species. We now investigated ERV-W-like sequences in the parvorder Platyrrhini, especially regarding two species with complete genome assemblies, namely marmoset (Callithrix jacchus) and squirrel monkey (Saimiri boliviensis). We identified in both species proviral sequences, annotated as ERV1–1 in respective genome assemblies, sharing high sequence similarities with Catarrhini ERV-W. A total of 130 relatively intact proviruses from the genomes of marmoset and squirrel monkey were characterized regarding their structural and evolutionarily relationships with Catarrhini ERV-W elements. Platyrrhini ERV-W sequences share several structural features with Catarrhini ERV-W elements and are closely related phylogenetically with the latter as well as with other ERV-W-related gammaretrovirus-like ERVs. The ERV-W group colonized Platyrrhini primates of both Callitrichidae and Atelidae lineages, with provirus formations having occurred mostly between 25 and 15 mya.
    [Show full text]