Network Management Survey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
QUILT CIRCLE2020 a Letter from the President
THE QUILT CIRCLE2020 A Letter From the President This 2020 Quilt Circle edition commemorates the 20th Anniversary of The Quilt. The fabric of our research and education (R&E) networking community has never been stronger. While our Quilt community has evolved in new and exciting ways in the past two decades, we have also been faced with a number of challenges which we take head-on and always with the spirit of collaboration. As we address the unprecedented challenges presented by the current global public health crisis due to the COVID-19 pandemic, the work of our members is more important than ever to the missions of their member communities. U.S. higher education institutions rely on R&E networks to give them a competitive edge in the most impactful scientific research initiatives which is essential in this crisis. We connect the educational institutions that support university medical centers and their associated hospitals. R&E networks also connect tens of thousands of other community anchor institutions, including K-12 schools, public libraries, local/state government, research sites, cultural institutions, public safety, and tribal lands. Being responsive and providing vital networking infrastructure and resources right now to address immediate needs is who we are and what we do. R&E networks are part of our nation’s critical infrastructure. This year’s edition of The Quilt Circle showcases several examples of the key role of R&E network members in both providing and facilitating the use-network infrastructure to further scientific discovery and collaborations at higher education institutions of all sizes. -
On Multi-Point, In-Network Filtering of Distributed Denial-Of-Service Traffic
On Multi-Point, In-Network Filtering of Distributed Denial-of-Service Traffic Mingwei Zhang∗, Lumin Shi∗, Devkishen Sisodia∗, Jun Li∗, Peter Reihery ∗ University of Oregon fmingwei, luminshi, dsisodia, [email protected] y University of California, Los Angeles [email protected] Abstract—Research has shown that distributed denial-of- in a common language. Further, it is also unknown how these service (DDoS) attacks on the Internet could often be better solutions perform under insufficient knowledge of the attacks handled by enlisting the in-network defense of multiple au- or against intelligent adversaries who can dynamically revise tonomous systems (ASes), rather than relying entirely on the victim’s Internet Service Provider at the edge. Less noticed their attack strategies to escape defense. Without a quantitative but important is the fact that an in-network defense can also comparison, it is hard for a DDoS victim to select the most remove DDoS traffic from the Internet early en route to the suitable solution to achieve its defense goal and meet the victim, thus decreasing the overall load on the Internet and resource requirements. reducing chances of link congestion. However, it is not well In this paper, we introduce a modeling and simulation understood to what degree different in-network defense strategies can achieve such benefits. In this paper, we model the existing framework to systematically evaluate in-network DDoS de- two main categories of in-network DDoS defense algorithms fense algorithms. The framework contains a general model (PushBack, SourceEnd) and propose a new type of algorithm that can describe the attack and defense for various defense (StrategicPoints). -
Growth of the Internet
Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] Preliminary version, July 6, 2001 Abstract The Internet is the main cause of the recent explosion of activity in optical fiber telecommunica- tions. The high growth rates observed on the Internet, and the popular perception that growth rates were even higher, led to an upsurge in research, development, and investment in telecommunications. The telecom crash of 2000 occurred when investors realized that transmission capacity in place and under construction greatly exceeded actual traffic demand. This chapter discusses the growth of the Internet and compares it with that of other communication services. Internet traffic is growing, approximately doubling each year. There are reasonable arguments that it will continue to grow at this rate for the rest of this decade. If this happens, then in a few years, we may have a rough balance between supply and demand. Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] 1. Introduction Optical fiber communications was initially developed for the voice phone system. The feverish level of activity that we have experienced since the late 1990s, though, was caused primarily by the rapidly rising demand for Internet connectivity. The Internet has been growing at unprecedented rates. Moreover, because it is versatile and penetrates deeply into the economy, it is affecting all of society, and therefore has attracted inordinate amounts of public attention. The aim of this chapter is to summarize the current state of knowledge about the growth rates of the Internet, with special attention paid to the implications for fiber optic transmission. -
An Interview With
An Interview with WARREN PRINCE OH 413 Conducted by Jeffrey R. Yost on 4 April 2012 Computer Services Project Sunnyvale, California Charles Babbage Institute Center for the History of Information Technology University of Minnesota, Minneapolis Copyright, Charles Babbage Institute Warren Prince Interview 4 April 2012 Oral History 413 Abstract Warren Prince was an executive at Tymshare and served as the leader of TYMNET. He served on the management team at McDonnell Douglas after it acquired TYMNET. The interview concentrates on TYMNET’s history and explaining and providing context to some of the documents he provided for the interview. 2 Prince: So will you produce the chapter in your book out of audio? I’ve got a bunch of papers that might be of interest or might not. Yost: Terrific, I would. Prince: Because it kind of shows; first, on the TYMNET side it shows the growth of it and really, the initial problems of it, which graphically shows it instead of saying it. And then the McDonnell Douglas part. Anyway, we can get into that when the time comes. Yost: Sounds good. My name is Jeffrey Yost, from the Charles Babbage Institute at the University of Minnesota, and I’m here today on April 4th, 2012, with Warren Prince of Tymshare and TYMNET. I’d like to begin just with some brief biographical stuff. Could you tell me where you were born, where you grew up? Prince: Born in Walnut Creek, California but grew up mostly in Arizona; Glendale, Arizona. And went through; started at the University of Arizona, and then joined the Army. -
The Great Telecom Meltdown for a Listing of Recent Titles in the Artech House Telecommunications Library, Turn to the Back of This Book
The Great Telecom Meltdown For a listing of recent titles in the Artech House Telecommunications Library, turn to the back of this book. The Great Telecom Meltdown Fred R. Goldstein a r techhouse. com Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data Goldstein, Fred R. The great telecom meltdown.—(Artech House telecommunications Library) 1. Telecommunication—History 2. Telecommunciation—Technological innovations— History 3. Telecommunication—Finance—History I. Title 384’.09 ISBN 1-58053-939-4 Cover design by Leslie Genser © 2005 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. International Standard Book Number: 1-58053-939-4 10987654321 Contents ix Hybrid Fiber-Coax (HFC) Gave Cable Providers an Advantage on “Triple Play” 122 RBOCs Took the Threat Seriously 123 Hybrid Fiber-Coax Is Developed 123 Cable Modems -
Broadband for Education: the National Internet2 K20 Initiative’S and WICHE’S Recommendations to the FCC
Broadband for Education: The National Internet2 K20 Initiative’s and WICHE’s Recommendations to the FCC Who are we? Internet2: We bring together Internet2’s world-class network and research community members with innovators from colleges and universities, primary and secondary schools, libraries, museums and other educational institutions, the full spectrum of America’s education community, including both formal and informal education. The National K20 Initiative extends new technologies, applications, and rich educational content to all students, their families and communities – no matter where they’re located. We have had immense success connecting the institutions above – in fact, over 65,000 institutions are now connected to the National Internet2 network – but to realize fully the potential of Internet2 all institutions must have adequate bandwidth. What follows are principles we endorse and urge the FCC to adopt. We divide our recommendations into two interrelated categories: connectivity and e-rate support. Western Interstate Commission for Higher Education (WICHE): WICHE and its 15 member states work to improve access to higher education and ensure student success. Our student exchange programs, regional initiatives, and our research and policy work allow us to assist constituents in the West and beyond. Equitable access to broadband technology and, in particular, technology-enabled education, is among our strategies. At present much of the West, particularly the “frontier West,” has little or no access to adequate bandwidth. Many of our institutions are not among those connected by and participating in the Internet2 K20 Initiative. The principles and recommendations below would remedy this situation. Our recommendations: (1) Connectivity • Elementary schools, secondary schools, and branch libraries should be connected at 100 Mbps to 10 Gbps. -
The Quilt a Collaboration of U.S. Research and Education Networks
The Quilt A Collaboration of U.S. Research and Education Networks Slide 1 April 15, 2014 The Quilt The Quilt is a non-profit collaboration of our country’s advanced regional research and education networks. Created in 2000, The Quilt is a member- powered, vibrant forum where leaders from these networks come together to exchange knowledge, experience and ideas to collectively advance networking for research & education. The Quilt aims to influence the national agenda on information technology infrastructure, with particular emphasis on networking for research and education. Through this coalition, Quilt members collaborate to promote the delivery of networking services at lower cost, higher performance and greater reliability and security. Quilt members are our country’s not-for-profit networking organizations serving research and education with similar missions to; support research and education, collaborate, manage advanced networks, provide advanced networking services and further knowledge and innovation. Slide 2 April 15, 2014 Introductions • The U.S. non-profit research and education networks are funded, governed and structured differently. These aspects of the organizations reflect the diverse and complex environments of the communities and states in which they operate. • While diverse in some aspects, these organizations are similarly missioned with common goals which are to provide an advanced network infrastructure, services and applications which support of the research and education goals of the institutions each serve. Slide -
The People Who Invented the Internet Source: Wikipedia's History of the Internet
The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced. -
Tymnet Is Born
The Bang! • August 1949 • Soviet RDS-1 • Valley Committee – Chair: George Valley • Technology R&D – Advanced RADAR – Advanced Computers – Advanced Networking • Boxcars of Cash The MIT Whirlwind Whirlwind was fitted with Core memory in 1953 as a part of the SAGE development project to develop something better than electrostatic memory. 22000 Sq Ft, 250 tons SAGE (Semi-Automatic Ground Environment) Enormous Comm. Network • Modems • Telephones • Fax Machines • Teleprinters • Radar Ckts Four Story Blockhouses • 3.5 acres of floor space • Hardened for 34 kPa overpressure • Two Computers in Duplex, each fills one floor, plus supporting equipment • Generators in smaller building • Enough Air Conditioning to cool 500 Arizona homes in summer, the electricity used would power 250 homes. Then Came Sputnik • US Defense Community reacted and threw even more money at Rand Corp and MIT and other think tanks, seeking a hardened network for military communications • ARPA began working on ARPANET Civilian Spin-offs - SABRE • Research proposal in 1953 • First system online in 1960 Civilian Spin-offs • ERMA – Electronic Recording Machine, Accounting • Bank of America and SRI • First ERMA system came online in 1959 Exploratory Demonstrations May 1965, Dave and Tom departed GE to work full-time on their dream Tymshare Associates Their business market is the science and engineering community around the South Bay Area Tymshare Incorporated • With funding in hand, the computer is ordered – Funded by $250,000 loan from BofA and SBA – Planned to use GE (Dartmouth -
The Great Telecom Meltdown
4 The Internet Boom and the Limits to Growth Nothing says “meltdown” quite like “Internet.” For although the boom and crash cycle had many things feeding it, the Internet was at its heart. The Internet created demand for telecommunications; along the way, it helped create an expectation of demand that did not materialize. The Internet’s commercializa- tion and rapid growth led to a supply of “dotcom” vendors; that led to an expec- tation of customers that did not materialize. But the Internet itself was not at fault. The Internet, after all, was not one thing at all; as its name implies, it was a concatenation [1] of networks, under separate ownership, connected by an understanding that each was more valuable because it was able to connect to the others. That value was not reduced by the mere fact that many people overesti- mated it. The ARPAnet Was a Seminal Research Network The origins of the Internet are usually traced to the ARPAnet, an experimental network created by the Advanced Research Projects Agency, a unit of the U.S. Department of Defense, in conjunction with academic and commercial contrac- tors. The ARPAnet began as a small research project in the 1960s. It was pio- neering packet-switching technology, the sending of blocks of data between computers. The telephone network was well established and improving rapidly, though by today’s standards it was rather primitive—digital transmission and switching were yet to come. But the telephone network was not well suited to the bursty nature of data. 57 58 The Great Telecom Meltdown A number of individuals and companies played a crucial role in the ARPAnet’s early days [2]. -
ETS Reference Manual for the Lantronix ETS Family of Multiport Device Servers the Information in This Guide May Change Without Notice
ETS Reference Manual For the Lantronix ETS Family of Multiport Device Servers The information in this guide may change without notice. The manufacturer assumes no responsibility for any errors which may appear in this guide. UNIX is a registered trademark of The Open Group. Ethernet is a trademark of XEROX Corporation. DEC and LAT are trademarks of Digital Equipment Corporation. Centronics is a registered trademark of Centronics Data Computer Corp. PostScript is a trademark of Adobe Systems, Inc. NetWare is a trademark of Novell Corp. AppleTalk, Chooser, and Macintosh are trademarks of Apple Computer Corp. LaserJet and Bitronics are trademarks of Hewlett Packard. Windows is a trademark of Microsoft. Copyright 2000, Lantronix. All rights reserved. No part of the contents of this book may be transmitted or reproduced in any form or by any means without the written permission of Lantronix. Printed in the United States of America. The revision date for this manual is October 23, 2000. Part Number: 900-065 Rev. A WARNING This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against such interference when operating in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with this guide, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause interference in which case the user, at his or her own expense, will be required to take whatever measures may be required to correct the interference. -
Bibliography of BBN Documents on Parallel Processing 1.0 MONARCH
Bibliography of BBN documents on parallel processing (this file was passed to D. Walden by Mike Beeler sometime in 1994 or earlier) 1.0 MONARCH 1.1 Monarch External Publications "Contention is No Obstacle to Shared-Memory Multiprocessing," Rettberg, R. and Thomas, R.; Communications of the ACM, Vol. 29, Number 12, December 1986, pp 1202-1212. 1.2 Monarch Internal Publications "Multiprocessor System Architectures: The Monarch Multiprocessor, vol. 2: Technical Proposal," BBN Labs, November 1984. The only technical description of the Monarch architecture I have been able thus far to locate. "Dynamic Delay Adjustment: A Technique for High-Speed Asynchronous Communication," BBN Labs, December 1985. Authors: P. Bassett, L. Glasser, R. Rettberg. Presents the circuit- based Dynamic Delay Adjustment (DDA) technique for automatically adjusting signal delays in a MOS system. The technique is characterized by global clock frequency distribution coupled with local, on-chip modems which dynamically adjust the effective delay of data streams between chips. Paper was presented at the Fourth MIT Conference on Advanced Research in VLSI, April 7-9, 1986. "Shared Memory Parallel Processors: The Butterfly and the Monarch," BBN Labs, April 1986. Author: Randy D. Rettberg. Presented at the Fourth MIT Conference on Advanced Research in VLSI, April 7-9, l986. 2.0 BUTTERFLY 2.1 Butterfly External Publications "Evaluation of Multiprocessor Communication Architectures," A.B. Lake, M.S. Thesis, Department of Electrical Engineering, MIT, October 1982. Presents the Butterfly Multiprocessor. "Beyond The Baskett Benchmark," M. Beeler, BBN Author, Computer Architecture News, Association for Computing Machinery, Special Interest Group on Computer Architecture, vol. 12 no. 1, March 1984.