The Great Telecom Meltdown

Total Page:16

File Type:pdf, Size:1020Kb

The Great Telecom Meltdown 4 The Internet Boom and the Limits to Growth Nothing says “meltdown” quite like “Internet.” For although the boom and crash cycle had many things feeding it, the Internet was at its heart. The Internet created demand for telecommunications; along the way, it helped create an expectation of demand that did not materialize. The Internet’s commercializa- tion and rapid growth led to a supply of “dotcom” vendors; that led to an expec- tation of customers that did not materialize. But the Internet itself was not at fault. The Internet, after all, was not one thing at all; as its name implies, it was a concatenation [1] of networks, under separate ownership, connected by an understanding that each was more valuable because it was able to connect to the others. That value was not reduced by the mere fact that many people overesti- mated it. The ARPAnet Was a Seminal Research Network The origins of the Internet are usually traced to the ARPAnet, an experimental network created by the Advanced Research Projects Agency, a unit of the U.S. Department of Defense, in conjunction with academic and commercial contrac- tors. The ARPAnet began as a small research project in the 1960s. It was pio- neering packet-switching technology, the sending of blocks of data between computers. The telephone network was well established and improving rapidly, though by today’s standards it was rather primitive—digital transmission and switching were yet to come. But the telephone network was not well suited to the bursty nature of data. 57 58 The Great Telecom Meltdown A number of individuals and companies played a crucial role in the ARPAnet’s early days [2]. It is unlikely, though, that any of them envisioned what would come of it 30 years later. The ARPAnet was designed to connect government facilities with their suppliers and academic researchers. It was not open to the public at large but grew from its original three nodes in 1969 to sev- eral hundred a decade later (see Figure 4.1). Along the way, many changes were made to the technology. This was, after all, a research network, and the network itself was the heart of the research. In the early ARPAnet, the machines that interconnected computers were called IMPs, for intermachine processors. The original IMPs were built by Bolt Beranek and Newman, a Cambridge, Mass., firm that also operated the ARPAnet’s Network Control Center. The network’s core protocol was called NCP, for Network Control Protocol. The TCP/IP protocol suite was developed in the 1970s, and NCP support was turned off in the IMPs in 1983. TCP/IP was important because it created two separate layers with distinct functions out of what had been NCP’s function. IP ran in all of the IMPs, relaying packets across the network on a connectionless basis. Each packet stood independent of all others, with no prior connection between the two ends required, and the full source and destination addresses in each packet. (By analogy, postcards and let- ters travel the same way, albeit more slowly.) TCP only ran at each end of the network, in the host computers. It resequenced received packets (IP did not guarantee delivery order), detected dropped packets, and used retransmission to correct for lost or errored packets. This allowed the intermediate systems to be relatively simple; many functions only needed to be performed at the end points. The ARPAnet grew well into the 1980s but at one point was split into the Department of Defense’s own internal MILNET and the more research- and academic-oriented ARPAnet. These interconnected networks became, in effect, the Internet, a network of networks. The ARPAnet itself was soon phased out, as the National Science Foundation took over funding of a new NSFnet back- bone, and other privately operated networks, such as CSNET, became part of the Internet. Other Packet-Switching Technologies Had Their Adherents Although TCP/IP has become the dominant form of data networking, it did not grow up in a vacuum; there were other packet-switching technologies that com- peted with it or were designed for different niche markets. One has to recall that in the 1970s and into the 1980s, most end users did not have computers on their desks; they had terminals. A good deal of computer networking was about connecting terminals to their hosts. In the IBM-dominated world of MIT44 Lincoln MIT6 LBL CCA Moffett AFGL RCC5 The Internet Boom and the Limits to Growth AMES15 AMES16 LLL NYU RCC49 CORDACOM DEC RCC71 SRI1 Utah SRI51 BBN40 Xerox GWC RADC Stanford BBN63 Tymshare ANL CMU BBN72 Sumex NPS Harvard DTI DOCS WPAFB Stla DARCOM Aberdeen Hawaii NOSC ACCAT UCLA ANDRW NRL AFSD CIT Scott DCEC NSA NBS ISI27 USC AFWL NORSAR SDAC Rand ISI52 MITRE YUMA Pentagon ARPA ISI22 WSMR Collins Gunter Bragg Eglin Robins London Satellite circuit Texas IMP TIP Pluribus IMP Pluribus TIP C30 59 Figure 4.1 ARPAnet map from 1980 [3]. 60 The Great Telecom Meltdown mainframes, the terminals were typically intelligent devices, block-mode termi- nals like the 3270 family, that performed local screen editing under tight control of the host. In the alternative computer universe then dominated by minicom- puter vendors such as DEC and Hewlett-Packard Inc. (HP), terminals were typically “dumb” character-by-character asynchronous devices. AT&T’s own Teletype Corp. had been a large supplier of terminals to minicomputer users in the 1960s and early 1970s, but its slow teleprinters (designed primarily for use as Telex machines) were being replaced by backward-compatible cathode-ray- tube terminals. In either case, the minicomputer terminal was more likely to be hard-wired to a small local machine. Big mainframes, on the other hand, were more likely to be located in a “glass house” computer center some distance away, so terminal-to-host data communications, or “teleprocessing” technology, was important. Minicomputer users were more concerned with host-to-host interconnection. One very important network technology was the packet-switching proto- col suite based on CCITT Recommendation X.25. This was developed in the mid-1970s as a way to reconcile competing packet-switched networks developed in several countries. (Like many CCITT Recommendations, as their standards were formally known, there was substantial wiggle room; each X.25 network had its own “profile” and actual devices attached to it required significant cus- tomization.) The design center was connecting asynchronous terminals to remote hosts, as an alternative to using modems on long distance telephone calls. The X.25 protocols were optimized for the slow, noisy analog telephone lines of the day, when a dial-up connection typically went no faster than 300 bps, and a very costly leased-line modem could only reach the blazing speed of 9,600 bps if the line was specially conditioned. Thus X.25 [4] had both hop-by- hop and edge-to-edge error correction and flow control, which the PTTs thought necessary. X.25 became ubiquitous across Europe by the early 1980s but never achieved more than niche status in the United States. New X.25 deployments largely halted by the mid-1980s. Many have since closed, but a few networks remained in place beyond the turn of the twenty-first century. They remained at least marginally useful for some niche applications such as credit card verification. The American market for remote terminal connectivity was dominated by two carriers, Telenet and Tymnet, although other companies, such as AT&T and some of the Bell companies, also participated. Telenet was originally started by Bolt Beranek and Newman as a commercial spin-off of its ARPAnet technol- ogy, though its own technology took a very different path as X.25 and the ARPAnet diverged. By the 1980s, it was owned by GTE Corp., and it eventually became part of Sprint. Tymnet was started as the remote-access arm of com- puter timesharing company Tymshare. It outlasted its parent company, and eventually became part of British Telecom and later MCI. Both did provide The Internet Boom and the Limits to Growth 61 optional X.25 interfaces; both faded into obscurity by the 1990s along with the terminal-to-host market. IBM’s original block-mode terminals used a protocol known as bisync (for “binary synchronous”). This was a simple Ack/Nak technique: Blocks were transmitted and the other side had to acknowledge each one before proceeding, or the block would be retransmitted. This limited throughput when transit delay was high, because only one block could be outstanding at a time for any given terminal. In the early 1970s, IBM saw satellites as the way of the future. It invested in Satellite Business Systems (SBS), hoping to bypass the Bell System monopoly with direct-to-the-business satellite service. The delays inherent in geosynchronous satellites were harmful to bisync. This gave them an impetus to develop a new protocol suite, called Systems Network Architecture (SNA). Although SNA eventually had some host-to-host connectivity, it was primarily designed for remote block-mode terminals. Large corporations built worldwide SNA networks, primarily to connect desktop terminals to large mainframes. It remained popular until terminals themselves were replaced by desktop comput- ers in the 1990s. Indeed the IBM mainframe world had its own sort-of-version of the Inter- net. Bitnet (whose name allegedly meant “because it’s there”) interconnected numerous universities beginning in 1981. Although not a packet-switched net- work, Bitnet used store-and-forward techniques said to be based on punch-card images. It was used for electronic mail and mailing lists. It grew to more than 500 organizations and 3,000 nodes (hosts) by 1989, but by 1994 most of its users had migrated to the TCP/IP-based Internet [5].
Recommended publications
  • The Internet As Emerging Critical Infrastructure: What Needs to Be Measured?
    the Internet as emerging critical infrastructure: what needs to be measured? cooperative association for internet data analysis 30 november 2005 presented to lsn jet @ nsf (http://www.nitrd.gov/subcommittee/lsn/jet/) [email protected] outline of talk what is critical infrastructure top problems of Internet historical context (incongruity) what have we learned and how can we apply it? [ case study: scalability (separate talk) ] what we (all) can do to help critical infrastructure what is it? how does it get that way? what are common characteristics? is the Internet one? or will it be soon? what are the implications for public and private sectors? underlying goals: innovation, economic strength, democracy, freedom, health, science, arts, society. it really is about living in a better world... top Internet problems 16 operational internet problems • security • authentication • spam • scalable configuration management • robust scalability of routing system • compromise of e2e principle • dumb network • measurement • patch management • “normal accidents” • growth trends in traffic and user expectations • time management and prioritization of tasks • stewardship vs governance • intellectual property and digital rights • interdomain qos/emergency services • inter-provider vendor/business coordination persistently unsolved problems for 10+ years (see presentations at www.caida.org ) top Internet problems why we’re not making progress • top unsolved problems in internet operations and engineering are rooted in economics, ownership, and trust (EOT). •
    [Show full text]
  • Who Owns the Eyeballs? Backbone Interconnection As a Network Neutrality Issue Jonas from Soelberg
    Who Owns the Eyeballs? Backbone interconnection as a network neutrality issue Jonas From Soelberg Name: Jonas From Soelberg CPR: - Date: August 1, 2011 Course: Master’s thesis Advisor: James Perry Pages: 80,0 Taps: 181.999 Table of Contents 1 Introduction ..................................................................................................................... 4 1.1 Methodology ....................................................................................................................................... 6 2 Understanding the Internet ........................................................................................ 9 2.1 The History of the Internet ............................................................................................................ 9 2.1.1 The Internet protocol ................................................................................................................................. 9 2.1.2 The privatization of the Internet ......................................................................................................... 11 2.2 The Architecture of the Internet ................................................................................................ 12 2.2.1 A simple Internet model .......................................................................................................................... 12 2.2.2 The e2e principle and deep-packet inspection ............................................................................. 14 2.2.3 Modern challenges to e2e ......................................................................................................................
    [Show full text]
  • Volume 1, Section 5.1: Managed Tiered Security
    Enterprise SM VOLUME 1, SECTION 5.1: MANAGED TIERED SECURITY SERVICES Enterprise SM 5.1 MANAGED TIERED SECURITY SERVICES [C.2.7.4, M.2.1.3] Level 3 will support the GSA’s Multi-Tier Security Profiles (MTSP) initiative in accordance with Tier-2 – Protected Service specifications. We teamed with one of the world’s leading Managed Security Services providers, , to offer one of the most complete and reliable Managed Security Solutions available. Our solution is designed to meet or exceed the Government’s requirements for MTSP Tier 2 service, as defined in RFP Section C.2.7.4.1.1.2. A description of our offering is provided below. Responses to the requirements of RFP Section L.34.1.6 follow. The Level 3 MTSP Tier 2 solution includes the Help Desk function specified for Tier 1 service, and additional technical and management components to support security needs of Sensitive but Unclassified (SBU) mission functions and information. Our Managed Tiered Security Service (MTSS) offering will provide a vehicle for agencies to order individual managed security services a la carte or in a bundle. The components include: Volume 1, Section 5.1 Page 667 Rev. 3-5-2007 Managed Tiered Security Services TQC-JTB-05-0002 © 2007 Level 3 Communications, Inc. All rights reserved. Use or disclosure of data contained on this sheet is subject to the restric ions on the title page of this proposal. Enterprise SM Agencies will gain efficiencies and cost savings through service bundling, versus ordering any of the Managed Security Services a la carte.
    [Show full text]
  • THE INGHAM COUNTY NE.WS Section 2 and Diu Ll, I Gue11h 'Lhnl'u Tl Good Hally Is 'Mnlhi!L''• Lltllll Hpitl· Wny Lo Do If You Lceep Pu Ttlng CJ',' Something Orr, Mr
    ' I INGHAM COUNTY Ninety-second No, 42 THE Year~ MASON, MICHIGAN. THURSDAY, OCTOBER 18, 1951 3 Sections - 20 Pagc11 Hunters Shoot FIREWORKS AND SWORD-PLAY, TOO /~ Charity Dri~e Rice Oparates a Squash Ranch Halloween Program ~Q Council Names More Birds as Leaders· Start Is Growing Bigger ··-~-· I Ralph Hall as Pressure Eases Mn~on f{lwllnlnn~ rtl'e piilllnJl "'1'11" r1rrh J'iH'> WPifl slrlllorl 19 11onwwhr••r. nrounrl !11400 into the yenrs ngn I o MIJlplnnt the dnngrl­ On Canvassing Monday Opening Reduces pol In Hlflfl'e 1he enmtnlllllty'~ hlg­ g-rHI Hnllowccn pur•! y. llUH nnrl <'OII~Iy horscplny whlclt Prcssm·e on Pheasrmts, then wrrs lhl' Halloween c11stom Chief of Police AI n meeting 'I~IC~r!ny nl~rht Red Fenthe1· Campaign Hags Show Big I ncreasc thry s.11rl that the rutnunl party B11smcss mrn nnd Yotlnl:"stcl s Is Opened Out-County G1·oup Insurance Proglfllll flnH' hPCil showing- KlgnA of pctci­ have r•cnchcrl an implleri agree­ Tu Haisc Local Quotas Fcwcr huntc1s, mole buds rng- rml, Tlw flrrll:"rnrn outhnorl Jnr ment lhnt Halloween fun wlll be May Be Offered Employeoa and Ideal weather marked the this yr1n Hlinulrl 1 cvivc it In n big' cnntlnt•d to Athletic field uml lh,ll Instead of Sick Leaves wny, ·they dcclr11 cd the! o will he no sonpmg ol wln­ fi1 st three days of the bird sea· The pn 1ty will he IJCid the nlll'ht clows or trlrolt nncl lrel\t Rllll! son, Consc1 vat1on Officer of Wcdnnlldny, Octobc1 3t, nt Waltc1 Mutchler 1cportcd.
    [Show full text]
  • Flooding Attacks by Exploiting Persistent Forwarding Loops
    Flooding Attacks by Exploiting Persistent Forwarding Loops Jianhong Xia, Lixin Gao and Teng Fei University of Massachusetts, Amherst MA 01003, USA Email: {jxia, lgao, tfei}@ecs.umass.edu Introduction • Routing determines forwarding paths X A Y C B Why Persistent Forwarding Loop Occurs --- Example on Neglecting Pull-up Route • Announces 18.0.0.0/16 to the Internet • Router A has default route pointing to B Internet • Router A uses 18.0.0.0/24 only BB 18.0.0.0/16 ute ult ro AA defa • Any traffic to 18.0.0.0/24 18.0.1.0~18.0.255.255 will enter a forwarding ` loop between A and B ` ` Risk of Persistent Forwarding Loops • Flooding Attacks to legitimate hosts X Traffic to X Imperiled Ra Rb Rc Addresses Traffic to Y Y Shadowed Addresses • How many shadowed addresses in the Internet? • How many imperiled addresses in the Internet? Measurement Design •Design – Balancing granularity and overhead – Samples 2 addresses in each /24 IP block • Addresses space collection – Addresses covered by RouteView table – De-aggregate prefixes to /24 prefixes • Fine-grained prefixes • Data traces – Traceroute to 5.5 million fine-grained prefixes – Measurement lasts for 3 weeks in Sep. 2005 Shadowed vs. Imperiled Addresses • Shadowed addresses/prefixes – 135,973 shadowed prefixes – 2.47% of routable addresses – Located in 5341 ASes • Imperiled addresses/prefixes – 42,887 imperiled prefixes – 0.78% of routable addresses – Located in 2117 ASes Validating Persistent Forwarding Loops • Validation from various locations – From Asia, Europe, West and East coast of US
    [Show full text]
  • 3Com Homeconnect Pc Digital Camera
    © 2001. All rights reserved. Black Box Corporation. Black Box Corporation • 1000 Park Drive • Lawrence, PA 15055-1018 • Tech Support: 724-746-5500 • www.blackbox.com • e-mail: [email protected] 3COM HOMECONNECT PC DIGITAL CAMERA Have a face-to-face conversation with your out-of- state relative or a co-worker down the hall—all without leaving your chair. Key Features ometimes an email just isn’t In addition, you can view your the images so that the picture Camera uses your PC’s Senough. For some conver- coworkers in return. See and talk looks brighter and clearer. USB port. sations, you need interact face to to several people—all in different Requirements include a PC face. But what if the person you places—simultaneously, using with at least a 166-MHz Supports 24- or 16-bit need to talk to is halfway around your phone line or the Internet. processor, 32 MB of RAM, a USB video. Uses DSP for the country? Then what? The Camera operates with port, and a CD-ROM drive. high-quality images. Before you make hotel plug-and-play installation. Simply Software on the included CD- reservations, pack your suitcase, plug it into your PC’s USB port and ROM gives you extensive video It’s easy to install and and board your flight, check out install the included software. capabilities, including video perform video editing, the 3Com HomeConnect PC Because of its slim design, the phone calls, video e-mail, enhance photos, and Digital Camera. Use it to project camera takes up minimal space multiparty video chat, and video have interactive your voice and a full-motion video on your PC.
    [Show full text]
  • Growth of the Internet
    Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] Preliminary version, July 6, 2001 Abstract The Internet is the main cause of the recent explosion of activity in optical fiber telecommunica- tions. The high growth rates observed on the Internet, and the popular perception that growth rates were even higher, led to an upsurge in research, development, and investment in telecommunications. The telecom crash of 2000 occurred when investors realized that transmission capacity in place and under construction greatly exceeded actual traffic demand. This chapter discusses the growth of the Internet and compares it with that of other communication services. Internet traffic is growing, approximately doubling each year. There are reasonable arguments that it will continue to grow at this rate for the rest of this decade. If this happens, then in a few years, we may have a rough balance between supply and demand. Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] 1. Introduction Optical fiber communications was initially developed for the voice phone system. The feverish level of activity that we have experienced since the late 1990s, though, was caused primarily by the rapidly rising demand for Internet connectivity. The Internet has been growing at unprecedented rates. Moreover, because it is versatile and penetrates deeply into the economy, it is affecting all of society, and therefore has attracted inordinate amounts of public attention. The aim of this chapter is to summarize the current state of knowledge about the growth rates of the Internet, with special attention paid to the implications for fiber optic transmission.
    [Show full text]
  • 1117 M. Stahl Obsoletes Rfcs: 1062, 1020, 997, 990, 960, 943, M
    Network Working Group S. Romano Request for Comments: 1117 M. Stahl Obsoletes RFCs: 1062, 1020, 997, 990, 960, 943, M. Recker 923, 900, 870, 820, 790, 776, 770, 762, SRI-NIC 758, 755, 750, 739, 604, 503, 433, 349 August 1989 Obsoletes IENs: 127, 117, 93 INTERNET NUMBERS Status of this Memo This memo is an official status report on the network numbers and the autonomous system numbers used in the Internet community. Distribution of this memo is unlimited. Introduction This Network Working Group Request for Comments documents the currently assigned network numbers and gateway autonomous systems. This RFC will be updated periodically, and in any case current information can be obtained from Hostmaster at the DDN Network Information Center (NIC). Hostmaster DDN Network Information Center SRI International 333 Ravenswood Avenue Menlo Park, California 94025 Phone: 1-800-235-3155 Network mail: [email protected] Most of the protocols used in the Internet are documented in the RFC series of notes. Some of the items listed are undocumented. Further information on protocols can be found in the memo "Official Internet Protocols" [40]. The more prominent and more generally used are documented in the "DDN Protocol Handbook" [17] prepared by the NIC. Other collections of older or obsolete protocols are contained in the "Internet Protocol Transition Workbook" [18], or in the "ARPANET Protocol Transition Handbook" [19]. For further information on ordering the complete 1985 DDN Protocol Handbook, contact the Hostmaster. Also, the Internet Activities Board (IAB) publishes the "IAB Official Protocol Standards" [52], which describes the state of standardization of protocols used in the Internet.
    [Show full text]
  • Elenco Titoli Non Complessi
    Codice prodotto/ISIN Denominazione Tipo prodotto IT0004746647 BNL FRN 29/07/2016 Obbligazione FR0010859967 BNP PARIBAS PS 3,75% 26/02/2020 Obbligazione XS0653885961 BMW FINANCE 3,625% 29/01/2018 Obbligazione XS0490567616 BIRS 3,75% 19/05/2017 Obbligazione AN8068571086 SCHLUMBERGER (NEW YORK) Azione ANN963511061 WHN WORLD HEALTH NETWORK Azione AT00000BENE6 BENE Azione AT0000609631 ALLGEMEINE BAUGESELLSCHAFT Azione AT0000617808 AUSTRIA ANTRIEBESTECHNIK G Azione AT0000624739 BSK BANK PRIV Azione IT0004647522 BP FRIULADRIA FRN 29/08/2017 STEP UP Obbligazione AT0000652201 DIE ERSTE IMMOBILIEN AG AOR Azione GB00B2QM7Y61 BARCLAYS SU BRC RMF DIVERS MAG17 (NQ) Warrant AT0000728209 MANNER JOSEF & CO Azione AT0000734835 MIBA AG Azione AT0000741301 KAPITAL & WERT VERM. SVERWALTUNG Azione AT0000746409 OESTERREICHISCHE ELEKTRIZITAETSW Azione AT0000747555 UPDATE COM SOFTWARE Azione AT0000758305 PALFINGER AG Azione AT0000776307 SANOCHEMIA PHARMAZEUTIKA AG AOR Azione AT0000779038 SCHLUMBERGER AG AOR PREFERRED Azione AT0000793658 ADCON TELEMETRY AG AOR Azione AT0000808209 SW UMWELTTECHNIK STOISER & WOLSCH Azione AT0000816301 UNTERNEHMENS INVEST. AG AOR Azione AT0000820659 BRAIN FORCE SOFTWARE AG Azione AT0000834007 WOLFORD AG Azione AT0000837307 ZUMTOBEL Azione AT0000908520 WIENER STAEDTISCHE VERSICHERUNG AG Azione AT0000A02177 BDI BIODIESEL INT Azione AT0000A08968 AUSTRIA 4,35% 15/03/2019 Obbligazione AT0000A0MS25 CA-IMMOBILIEN ANLAGEN Azione IE00B95FFX04 ETF UBS MAP BALANCED 7 UCITS EUR CL. A (XETRA) Fondo AU000000AMP6 AMP LIMITED Azione AU000000ANZ3
    [Show full text]
  • Multimedia, Internet, On-Line
    Section IV: Multimedia, the Internet, and On-Line Services High-End Digital Video Applications Larry Amiot Electronic and Computing Technologies Division Argonne National Laboratory The emphasis of this paper is on the high-end applications Internet and Intranet that are driving digital video. The research with which I am involved at Argonne National Laboratory is not done on dig- The packet video networks which currently support many ital video per se, but rather on how the research applications applications such as file transfer, Mbone video (talking at the laboratory drive its requirements for digital video. The heads), and World Wide Web browsing are limiting for high- paper will define what digital video is, what some of its com- quality video because of the low throughput one can achieve ponents are, and then discuss a few applications that are dri- via the Internet or intranets. Examples of national packet ving the development of these components. The focus will be switched networks developed in the last several years include on what digital video means to individuals in the research the National Science Foundation Network (NSFNet). The and education community. Department of Energy had its own network called ESNET, and the National Aeronautics and Space Administration The Digital Video Environment (NASA) had a network as well. Recently, the NSFNet was de- commissioned, and commercial interests are now starting to In 1996, a group of people from several universities in the fill that void. Research and education communities are find- Midwest and from Argonne formed a Video Working Group. ing, however, that this new commercial Internet is too re- This body tried to define the areas of digital video of impor- stricting and does not meet their throughput requirements; it tance to their institutions.
    [Show full text]
  • 3Com® Asterisk® Appliance
    3Com® Asterisk® Appliance Administrator’s Guide Release 1.4 Part Number 900-0467-01 Published October 2007 http://www.3com.com/ 3Com Corporation Copyright © 2007, 3Com Corporation. All rights reserved. No part of this 350 Campus Drive documentation may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written Marlborough, MA permission from 3Com Corporation. 01752-3064 3Com Corporation reserves the right to revise this documentation and to make changes in content from time to time without obligation on the part of 3Com Corporation to provide notification of such revision or change. 3Com Corporation provides this documentation without warranty, term, or condition of any kind, either implied or expressed, including, but not limited to, the implied warranties, terms, or conditions of merchantability, satisfactory quality, and fitness for a particular purpose. 3Com may make improvements or changes in the product(s) and/or the program(s) described in this documentation at any time. If there is any software on removable media described in this documentation, it is furnished under a license agreement included with the product as a separate document, in the hardcopy documentation, or on the removable media in a directory file named LICENSE.TXT or !LICENSE.TXT. If you are unable to locate a copy, please contact 3Com and a copy will be provided to you. UNITED STATES GOVERNMENT LEGEND If you are a United States government agency, then this documentation and the software described herein are provided to you subject to the following: All technical data and computer software are commercial in nature and developed solely at private expense.
    [Show full text]
  • An Interview With
    An Interview with WARREN PRINCE OH 413 Conducted by Jeffrey R. Yost on 4 April 2012 Computer Services Project Sunnyvale, California Charles Babbage Institute Center for the History of Information Technology University of Minnesota, Minneapolis Copyright, Charles Babbage Institute Warren Prince Interview 4 April 2012 Oral History 413 Abstract Warren Prince was an executive at Tymshare and served as the leader of TYMNET. He served on the management team at McDonnell Douglas after it acquired TYMNET. The interview concentrates on TYMNET’s history and explaining and providing context to some of the documents he provided for the interview. 2 Prince: So will you produce the chapter in your book out of audio? I’ve got a bunch of papers that might be of interest or might not. Yost: Terrific, I would. Prince: Because it kind of shows; first, on the TYMNET side it shows the growth of it and really, the initial problems of it, which graphically shows it instead of saying it. And then the McDonnell Douglas part. Anyway, we can get into that when the time comes. Yost: Sounds good. My name is Jeffrey Yost, from the Charles Babbage Institute at the University of Minnesota, and I’m here today on April 4th, 2012, with Warren Prince of Tymshare and TYMNET. I’d like to begin just with some brief biographical stuff. Could you tell me where you were born, where you grew up? Prince: Born in Walnut Creek, California but grew up mostly in Arizona; Glendale, Arizona. And went through; started at the University of Arizona, and then joined the Army.
    [Show full text]