United States Patent Office 2,830,873

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office 2,830,873 2,830,873 United States Patent Office Patented Apr. 15, 1958 2 active, so that any recovery process must be capable of being carried out by remote control. Second, plutonium 2,830,873 and uranium are members of the actinide rare earth FLUORDE voLATILITY PROCESS FOR THE family and, although they do not have identical charac RECOVERY OF URANUM 5 teristics, the chemical characteristics are sufficiently close Joseph J. Katz and Herbert H. Hyman, Chicago, and that it does increase the difficulty of separation of these Erving. Sheft, Oak Park, I., assignors to the United two elements by chemical methods. States of America as represented by the United States An ideal separation process for the recovery of ura Atomic Energy Commission nium from neutron-irradiated uranium would include the No Drawing. Application May 10, 1956 O following characteristics. The process should be one capable of continuous operation. The process must be Serial No. 584,153 one which can be operated by remote control because of 25 Claims. (CI. 23-145) the radiation hazards involved. Furthermore, it is desir able that the non-radioactive uranium be separated in an The present invention is concerned with the separation 15 early step of the process from the radioactive fission and recovery of uranium from contaminants by a halo products, so that the further processing of uranium may genation and volatilization method. The invention is par be carried on without the shielding required for process ticularly concerned with the recovery of uranium from . ing radioactive materials. The efficiency of the separa contaminants arising from the neutron irradiation of ura 20 tion of the uranium from the plutonium and fission prod nium. w - lucts must be very good. If complete separation of ura At the present time nearly all nuclear reactors employ nium, plutonium and fission products is not achieved in uranium in one form or another as the primary fuel, a single continuous process, it is desirable that the frac The employment of uranium as a nuclear fuel in reactors tions containing the plutonium and/or fission products has produced a great need for efficient methods for sepa should be in as small bulk as possible. Thus a plutonium rating uranium from contaminants. The uranium used 25 fraction or a fission product fraction having a large bulk in reactors must be very pure. Therefore it must be sep of materials added during the processing is undesirable. arated from contaminants native to uranium ores as well It is desirable that the uranium fraction be obtained as as those introduced in processing the ores. After the the metal or in the form of a compound such as uranium uranium is neutron-irradiated in a reactor for a period hexafluoride which can be readily converted to the metal. of time, it must be separated from the nuclear reaction 30 Uranium hexafluoride also may be used directly as the products. These include the fission products which are feed material in isotopic separation processes. the elements having atomic numbers 32 to 64, inclusive, It is an object of the present invention to provide a and if the isotope U238 is present, it will also include the Volatilization method of separating uranium from con higher actinide elements such as neptunium and pluto taminants. nium. There are also various additional uranium mix 35 It is an additional object of the present invention to "tures from which it is desirable to recover purified ura provide a method of recovering purified uranium from nium. For example, a great deal of neutron-irradiated neutron-irradiated uranium. uranium has been processed to remove the plutonium Other objects of the present invention will be apparent from the uranium without removing the fission products 40 from the description which follows. from the uranium. Therefore it is now desirable to sep In accordance with the present invention uranium con arate and recover uranium from this partially processed taminated with other elements, for example the radio uranium containing the fission products and various chem active fission products, may be conveniently recovered icals which were added during the plutonium removal from such contaminants by a process the initial step of process. 45 which comprises dissolving said contaminated uranium There are several factors which make the recovery of in a halogen fluoride in the liquid phase. This dissolution uranium from neutron-irradiated uranium a particularly Step effects a partial phase separation of the uranium and difficult problem. The normal starting material for a sep certain contaminants. The uranium is converted to the ... aration process for the recovery of uranium from neutron halogen fluoride-soluble uranium hexafluoride compound irradiated uranium is a metal uranium slug which has 50 whereas the fluorides of certain contaminating elements been irradiated in a neutronic reactor for a sufficient time are insoluble in liquid halogen fluorides and the reaction to produce fission products, and plutonium. These fission rate of halogen fluorides with certain other solid ura products and plutonium are normally present in about 1. nium contaminants is sufficiently slower than the reac part fission products and 1 part plutonium per 1000 parts tion rate with uranium that substantial portions of these ... uranium. A successful separation process must separate 55 contaminating elements will remain as solids in the liquid the uranium from the fission products and plutonium so phase halogen fluoride. These foregoing solids are then that the recovered uranium has not more than 1 part of Separated from the solution by a distillation step, or other fission products in 109 parts of uranium and not more convenient method of separating solids from liquid, such than 1. part of plutonium in 108 parts of uranium. There as filtration, centrifugation, etc. The uranium hexaflu are two main factors which complicate recovery proc 60 oride (UF6) is then separated from the balance of the esses. First, these fission products are exceedingly radio impurities and solvent by one or more distillation steps, 2,880,873 3 4. as will be more fully described in the following para portant factor in the reactivity of these solutions towards graphs. other materials such as uranium. Some measure of the The use of the halogen fluorides as fluorinating agents reactivity may be correlated with the conductivity of in the liquid phase provides several advantages over the the halogen fluorides. The order of the conductivity of use of fluorine. A liquid phase fluorination greatly re various halogen fluorides is as follows: duces the corrosion of equipment that is found with gase ous fluorination. Hurthermore, the health hazard in the TABLE I fluorination of radioactive fission products or materials containing fission products by gaseous fluorinating agents Compound Conductivity at 25° is greatly reduced by the fluorination in the liquid phase. 0 C. (ohm-1 cm.-1) The halogen fluorides are extremely reactive with wa BrF3--------------------------------------------- 8.0XO-3 ter so that every precaution must be taken in the proc IFs---- 2.3XO-5 ess to avoid bringing the halogen fluorides in contact BrFs------------------- ------- 8.4X107 with any aqueous phase. The materials of construction ClF3-------------------------------------------- 3X10-9 (at 0° C.) for reactors also must be selected with some care. It has been found, however, that such common metals as iron, nickel, aluminum and copper readily form co The reactivity of the halogen fluorides toward uranium herent protective films in the presence of halogen fluo masses is in substantially the same order. However, it rides which make their use as construction materials tnust again be emphasized that by suitably increasing the 20 temperature and pressure of the reactor in which distill for handling the liquid halogen fluorides practical. Of lation is carried out any of these halogen fluorides will these construction materials nickel and high nickel al dissolve uranium masses. loys appear to be least affected by halogen fluorides and One aspect of the present invention is concerned with accordingly are favored for reactor construction. Alu a method of increasing the rate of dissolution of uranium minum, however, is nearly as satisfactory from the cor and similar metals by the halogen fluorides, such as bro rosion standpoint, and much less expensive for use in mine trifluoride. It has been found that the rate of reactor construction. dissolution of uranium metal in pure bromine trifluoride While the process of the present invention is particu is very slow at room temperature. It is believed that larly adapted to the recovery of uranium from con this is probably due to the absence of the bromine tri taminated uranium metallic masses, it may also be used fluoride system cations which are believed to be the to recover uranium from contaminated uranium con prime cause of the attack on the metal. However, where tained in other forms. Thus, any uranium salt or salf uranium is maintained in contact with bromine trifluoride mass may be dissolved by the present process by a suit for a substantial period of time, it is found that the slow able adjustment of reaction temperature and pressure. initial rate of reaction will be followed after a period by The present process is particularly applicable to the re a much faster rate of reaction between the uranium and covery of purified uranium from the uranium wastes bromine trifluoride. This may be due to the accumula which are by-products of the recovery of plutonium from tion of a substantial amount of bromine trifluoride sys uranium by precipitation processes. These wastes are tem cations in the solution as a result of the formation usually primarily in the form of uranium salts such as of bromine and bromine fluoride in the initial, or "incu uranyl ammonium phosphate containing 200-600 parts 40 bation' stage of the reaction.
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Assessment of Portable HAZMAT Sensors for First Responders
    The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Assessment of Portable HAZMAT Sensors for First Responders Author(s): Chad Huffman, Ph.D., Lars Ericson, Ph.D. Document No.: 246708 Date Received: May 2014 Award Number: 2010-IJ-CX-K024 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Assessment of Portable HAZMAT Sensors for First Responders DOJ Office of Justice Programs National Institute of Justice Sensor, Surveillance, and Biometric Technologies (SSBT) Center of Excellence (CoE) March 1, 2012 Submitted by ManTech Advanced Systems International 1000 Technology Drive, Suite 3310 Fairmont, West Virginia 26554 Telephone: (304) 368-4120 Fax: (304) 366-8096 Dr. Chad Huffman, Senior Scientist Dr. Lars Ericson, Director UNCLASSIFIED This project was supported by Award No. 2010-IJ-CX-K024, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Operation Permit Application
    Un; iy^\ tea 0 9 o Operation Permit Application Located at: 2002 North Orient Road Tampa, Florida 33619 (813) 623-5302 o Training Program TRAINING PROGRAM for Universal Waste & Transit Orient Road Tampa, Florida m ^^^^ HAZARDOUS WAb 1 P.ER^AlTTlNG TRAINING PROGRAM MASTER INDEX CHAPTER 1: Introduction Tab A CHAPTER 2: General Safety Manual Tab B CHAPTER 3: Protective Clothing Guide Tab C CHAPTER 4: Respiratory Training Program Tab D APPENDIX 1: Respiratory Training Program II Tab E CHAPTER 5: Basic Emergency Training Guide Tab F CHAPTER 6: Facility Operations Manual Tab G CHAPTER 7: Land Ban Certificates Tab H CHAPTER 8: Employee Certification Statement Tab. I CHAPTER ONE INTRODUCTION prepared by Universal Waste & Transit Orient Road Tampa Florida Introducti on STORAGE/TREATMENT PERSONNEL TRAINING PROGRAM All personnel involved in any handling, transportation, storage or treatment of hazardous wastes are required to start the enclosed training program within one-week after the initiation of employment at Universal Waste & Transit. This training program includes the following: Safety Equipment Personnel Protective Equipment First Aid & CPR Waste Handling Procedures Release Prevention & Response Decontamination Procedures Facility Operations Facility Maintenance Transportation Requirements Recordkeeping We highly recommend that all personnel involved in the handling, transportation, storage or treatment of hazardous wastes actively pursue additional technical courses at either the University of South Florida, or Tampa Junior College. Recommended courses would include general chemistry; analytical chemistry; environmental chemistry; toxicology; and additional safety and health related topics. Universal Waste & Transit will pay all registration, tuition and book fees for any courses which are job related. The only requirement is the successful completion of that course.
    [Show full text]
  • Prohibited and Restricted Chemical List
    School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List PROHIBITED AND RESTRICTED CHEMICAL LIST Introduction After incidents of laboratory chemical contamination at several schools, DCPS, The American Association for the Advancement of Science (AAAS) and DC Fire and Emergency Management Services developed an aggressive program for chemical control to eliminate student and staff exposure to potential hazardous chemicals. Based upon this program, all principals are required to conduct a complete yearly inventory of all chemicals located at each school building to identify for the removal and disposal of any prohibited/banned chemicals. Prohibited chemicals are those that pose an inherent, immediate, and potentially life- threatening risk, injury, or impairment due to toxicity or other chemical properties to students, staff, or other occupants of the school. These chemicals are prohibited from use and/or storage at the school, and the school is prohibited from purchasing or accepting donations of such chemicals. Restricted chemicals are chemicals that are restricted by use and/or quantities. If restricted chemicals are present at the school, each storage location must be addressed in the school's written emergency plan. Also, plan maps must clearly denote the storage locations of these chemicals. Restricted chemicals—demonstration use only are a subclass in the Restricted chemicals list that are limited to instructor demonstration. Students may not participate in handling or preparation of restricted chemicals as part of a demonstration. If Restricted chemicals—demonstration use only are present at the school, each storage location must be addressed in the school's written emergency plan. Section 7: Appendices – October 2009 37 School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List Following is a table of chemicals that are Prohibited—banned, Restricted—academic curriculum use, and Restricted—demonstration use only.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Good Practices for Occupational Radiological Protection in Plutonium
    Not Measurement Sensitive DOE- STD-1128-2013 April 2013 DOE STANDARD GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1128-2013 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii DOE-STD-1128-2013 Foreword This Technical Standard does not contain any new requirements. Its purpose is to provide information on good practices, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. U.S. Department of Energy (DOE) health physicists may adapt the recommendations in this Technical Standard to similar situations throughout the DOE complex. The Standard provides information to assist plutonium facilities in complying with Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection. The Standard also supplements the DOE 10 CFR 835 Implementation Guide, DOE Orders, and DOE standard, DOE-STD-1098-2008, Radiological Control, (RCS) and has as its sole purpose the protection of workers and the public from the radiological hazards that are inherent in plutonium storage and handling. This Standard uses the word “shall” to identify a required practice or the minimum acceptable level of performance. The word “should” is used to identify good practices (preferred practices) recommended by this Standard. The word “may” is used to identify permitted practice (neither a requirement nor a recommendation). This Standard includes provisions in the 2007 amendment to 10 CFR 835.
    [Show full text]
  • Removal of Plutonium from Plutonium Hexafluoride--Uranium Hexafluoride
    United States Patent n?) [in 3,708,568 Golliher et al. [45] Jan. 2,1973 [54] REMOVAL OF PLUTONIUM FROM 2,843,453 7/1958 Connicketal. .23/332 PLUTONIUM HEXAFLUORIDE- 3,165,376 1/1965 Golliher.. .23/337 URANIUM HEXAFLUORIDE 3,178,258 4/1965 Cathersetal 23/337 MIXTURES 3,423,190 1/1969 Steindler et al .23/326 [75] Inventors: Waldo R. Golliher; Robert L. Har- Primary Examiner—Carl D. Quarforth ris; Reynold A. LeDoux, Jr., all ol Assistant Examiner—F. M. Gittes Paducah, Ky. Attorney—Roland A. Anderson [73] Assignee: The United States of America as represented by the United State: [57] ABSTRACT Atomic Energy Commission This invention relates to a method of selectively [22] Filed: Oct. 20,1970 removing plutonium values from a fluid mixture con- [21] Appl. No.: 82,508 taining plutonium hexafluoride and uranium hex- afluoride by passing the mixture through a bed of pel- [52] U.S. C! 423/6,423/19, 252/301.1 R letized cobaltous fluoride at a temperature in the [51] Int. CI COlg 56/00 range 134° to 1,000° F. to effect removal of plutonium [58] Field of Search 55/74; 252/301.1 R; 23/332, by the cobaltous fluoride. 23/326, 337, 344, 352; 423/19, 6, 11, 251, 258 [56] References Cited 3 Claims, No Drawings UNITED STATES PATENTS 3,615,267 10/1971 Golliher et al. 23/343 3,725,661 3 4 REMOVAL OF PLUTONIUM FROM PLUTONIUM recovered. The cobaltous fluoride can then be HEXAFLUORIDE-URANIUM HEXAFLUORIDE processed for reuse by contacting with gaseous MIXTURES hydrogen at a temperature in the range 400° to 500° F.
    [Show full text]
  • System Studies of Fission-Fusion Hybrid Molten Salt Reactors
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2013 SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS Robert D. Woolley University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Nuclear Engineering Commons Recommended Citation Woolley, Robert D., "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2628 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Robert D. Woolley entitled "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. Laurence F. Miller, Major Professor We have read this dissertation and recommend its acceptance: Ronald E. Pevey, Arthur E. Ruggles, Robert M. Counce Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Robert D.
    [Show full text]
  • United States Patent Office Patented Mar
    3,373,000 United States Patent Office Patented Mar. 2, 1968 2 3,373,000 monofluoride is also an economical reactant, since it is PROCESS FOR PREPARING TETRAFLUORDES conveniently prepared by the disproportionation of ele AND HEXAFLUOR DES mental chlorine in liquid hydrogen fluoride, thereby avoid James J. Pitts, West Haven, and Albert W. Jache, North ing the use of expensive elemental fluorine. The selective Haven, Conn., assignors to Olin Mathieson Chemical fluorination process of this invention is particularly Sur Corporation, a corporation of Virginia prising and unexpected in view of the prior art which No Drawing. Filed Nov. 1, 1966, Ser. No. 591,079 teaches that chlorine monofluoride adds to a wide variety 9 Claims. (Cl. 23-352) of compounds, thereby acting as a chloro-fluorinating agent. For instance, U.S. Patent 3,035,893 discloses the 10 preparation of sulfur chloride pentafluoride from Sulfur ABSTRACT OF THE DISCLOSURE tetrafluoride and chlorine monofluoride. The tetrafluorides and hexafluorides of sulfur, selenium According to the process of this invention, the tetra and tellurium are provided by reacting chlorine mono fluorides and hexafluorides of sulfur, selenium and tel fluoride with sulfur, selenium, tellurium, metal sulfides, lurium are provided by reacting chlorine monofluoride metal selenides or metal tellurides. The hexafluorides of 15 with a material selected from the group consisting of Sul tungsten, molybdenum and uranium are provided by the fur, selenium, tellurium, metal sulfides, metal selenides reaction of chlorine monofluoride with the metals, their and metal tellurides. The hexafluorides of tungsten, oxides, sulfides and salts containing the metallate anion. molybdenum and uranium are provided by reacting These tetrafluorides and hexafluorides are well-known chlorine monofluoride with a material selected from the compounds, useful as fluorinating agents, gaseous di 20 group consisting of tungsten; molybdenum, uranium; the electrics, sources of high purity metallic powders, etc.
    [Show full text]
  • Export Control Handbook for Chemicals
    Export Control Handbook for Chemicals -Dual-use control list -Common Military List -Explosives precursors -Syria restrictive list -Psychotropics and narcotics precursors ARNES-NOVAU, X 2019 EUR 29879 This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Xavier Arnés-Novau Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy [email protected] Tel.: +39 0332-785421 Filippo Sevini Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy [email protected] Tel.: +39 0332-786793 EU Science Hub https://ec.europa.eu/jrc JRC 117839 EUR 29879 Print ISBN 978-92-76-11971-5 ISSN 1018-5593 doi:10.2760/844026 PDF ISBN 978-92-76-11970-8 ISSN 1831-9424 doi:10.2760/339232 Luxembourg: Publications Office of the European Union, 2019 © European Atomic Energy Community, 2019 The reuse policy of the European Commission is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Reuse is authorised, provided the source of the document is acknowledged and its original meaning or message is not distorted. The European Commission shall not be liable for any consequence stemming from the reuse.
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]