Rotorcraft (I)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Future Battlefield Rotorcraft Capability (FBRC) – Anno 2035 and Beyond
November 2018 Future Battle eld Rotorcraft Capability Anno 2035 and Beyond Joint Air Power Competence Centre Cover picture © Airbus © This work is copyrighted. No part may be reproduced by any process without prior written permission. Inquiries should be made to: The Editor, Joint Air Power Competence Centre (JAPCC), [email protected] Disclaimer This document is a product of the Joint Air Power Competence Centre (JAPCC). It does not represent the opinions or policies of the North Atlantic Treaty Organization (NATO) and is designed to provide an independent overview, analysis and food for thought regarding possible ways ahead on this subject. Comments and queries on this document should be directed to the Air Operations Support Branch, JAPCC, von-Seydlitz-Kaserne, Römerstraße 140, D-47546 Kalkar. Please visit our website www.japcc.org for the latest information on JAPCC, or e-mail us at [email protected]. Author Cdr Maurizio Modesto (ITA Navy) Release This paper is releasable to the Public. Portions of the document may be quoted without permission, provided a standard source credit is included. Published and distributed by The Joint Air Power Competence Centre von-Seydlitz-Kaserne Römerstraße 140 47546 Kalkar Germany Telephone: +49 (0) 2824 90 2201 Facsimile: +49 (0) 2824 90 2208 E-Mail: [email protected] Website: www.japcc.org Denotes images digitally manipulated JAPCC |Future BattlefieldRotorcraft Capability and – AnnoBeyond 2035 | November 2018 Executive Director, JAPCC Director, Executive DEUAF General, Lieutenant Klaus Habersetzer port Branchviae-mail [email protected]. AirOperationsSup contact to theJAPCC’s free feel thisdocument.Please to withregard have you may comments welcome any We thisstudy. -
National Rappel Operations Guide
National Rappel Operations Guide 2019 NATIONAL RAPPEL OPERATIONS GUIDE USDA FOREST SERVICE National Rappel Operations Guide i Page Intentionally Left Blank National Rappel Operations Guide ii Table of Contents Table of Contents ..........................................................................................................................ii USDA Forest Service - National Rappel Operations Guide Approval .............................................. iv USDA Forest Service - National Rappel Operations Guide Overview ............................................... vi USDA Forest Service Helicopter Rappel Mission Statement ........................................................ viii NROG Revision Summary ............................................................................................................... x Introduction ...................................................................................................... 1—1 Administration .................................................................................................. 2—1 Rappel Position Standards ................................................................................. 2—6 Rappel and Cargo Letdown Equipment .............................................................. 4—1 Rappel and Cargo Letdown Operations .............................................................. 5—1 Rappel and Cargo Operations Emergency Procedures ........................................ 6—1 Documentation ................................................................................................ -
Adventures in Low Disk Loading VTOL Design
NASA/TP—2018–219981 Adventures in Low Disk Loading VTOL Design Mike Scully Ames Research Center Moffett Field, California Click here: Press F1 key (Windows) or Help key (Mac) for help September 2018 This page is required and contains approved text that cannot be changed. NASA STI Program ... in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part in or other meetings sponsored or co- helping NASA maintain this important role. sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information technical, or historical information from Officer. It collects, organizes, provides for NASA programs, projects, and missions, archiving, and disseminates NASA’s STI. The often concerned with subjects having NASA STI program provides access to the NTRS substantial public interest. Registered and its public interface, the NASA Technical Reports Server, thus providing one of • TECHNICAL TRANSLATION. the largest collections of aeronautical and space English-language translations of foreign science STI in the world. Results are published in scientific and technical material pertinent to both non-NASA channels and by NASA in the NASA’s mission. NASA STI Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing • TECHNICAL PUBLICATION. Reports of specialized research announcements and feeds, completed research or a major significant providing information desk and personal search phase of research that present the results of support, and enabling data exchange services. -
AED Fleet Contact List
AED Fleet Contact List September 2021 Make Model Primary Office Operations - Primary Operations - Secondary Avionics - Primary Avionics - Secondary Maintenance - Primary Maintenance - Secondary Air Tractor All Models MKC Persky, David (FAA) Hawkins, Kenneth (FAA) Marsh, Kenneth (FAA) Rockhill, Thane D (FAA) BadHorse, Jim (FAA) Airbus A300/310 SEA Hutton, Rick (FAA) Dunn, Stephen H (FAA) Gandy, Scott A (FAA) Watkins, Dale M (FAA) Patzke, Roy (FAA) Taylor, Joe (FAA) Airbus A318-321 CEO/NEO SEA Culet, James (FAA) Elovich, John D (FAA) Watkins, Dale M (FAA) Gandy, Scott A (FAA) Hunter, Milton C (FAA) Dodd, Mike B (FAA) Airbus A330/340 SEA Culet, James (FAA) Robinson, David L (FAA) Flores, John A (FAA) Watkins, Dale M (FAA) DiMarco, Joe (FAA) Johnson, Rocky (FAA) Airbus A350 All Series SEA Robinson, David L (FAA) Culet, James (FAA) Watkins, Dale M (FAA) Flores, John A (FAA) Dodd, Mike B (FAA) Johnson, Rocky (FAA) Airbus A380 All Series SEA Robinson, David L (FAA) Culet, James (FAA) Flores, John A (FAA) Watkins, Dale M (FAA) Patzke, Roy (FAA) DiMarco, Joe (FAA) Aircraft Industries All Models, L-410 etc. MKC Persky, David (FAA) McKee, Andrew S (FAA) Marsh, Kenneth (FAA) Pruneda, Jesse (FAA) Airships All Models MKC Thorstensen, Donald (FAA) Hawkins, Kenneth (FAA) Marsh, Kenneth (FAA) McVay, Chris (FAA) Alenia C-27J LGB Nash, Michael A (FAA) Lee, Derald R (FAA) Siegman, James E (FAA) Hayes, Lyle (FAA) McManaman, James M (FAA) Alexandria Aircraft/Eagle Aircraft All Models MKC Lott, Andrew D (FAA) Hawkins, Kenneth (FAA) Marsh, Kenneth (FAA) Pruneda, -
Sikorsky S70i CAL FIRE HAWK Fact Sheet
SIKORSKY S70i CAL FIRE HAWK CALIFORNIA DEPARTMENT OF FORESTRY & FIRE PROTECTION AVIATION PROGRAM MANUFACTURER CREW Sikorsky Aircraft, Stratford, Connecticut (Built in Mielec, Poland) One pilot, two Helitack Captains, an operations supervisor, and up to AIRCRAFT FIRE BUILD-UP nine personnel. United Rotorcraft, Englewood, Colorado PAYLOAD ORIGINAL OWNER Fixed tank - 1000 gallons of water/foam with pilot controlled drop volumes. CAL FIRE, 2019 ACQUIRED BY CAL FIRE SPECIFICATIONS Gross Weight: Internal 22,000 lbs./ In 2018 CAL FIRE received approval from the Governor’s Office to purchase External 23,500 lbs. up to 12 new Sikorsky S70i firefighting helicopters from United Rotorcraft. Cruise Speed: 160 mph These new generation helicopters will replace CAL FIRE’s aging fleet of Night Vision Capable 12 Super Huey Helicopters. The new generation of S70i CAL FIRE HAWK Range: 250 miles helicopters will bring enhanced capabilities including flight safety, higher Endurance: 2.5 hours payloads, increased power margins, and night flying capabilities. Rotor Diameter: 53 feet and 8 inches Engines: Twin turbine engine, T700-GE701D MISSION The CAL FIRE HAWK’s primary mission is responding to initial attack wildfires and rescue missions. When responding to wildfires, the helicopter can quickly deliver up to a 9-person Helitack Crew for ground firefighting operations and quickly transition into water/foam dropping missions. The helicopters are also used for firing operations using either a Helitorch or a Chemical Ignition Device System (CIDS) on wildland fires or prescribed burns, transporting internal cargo loads, mapping, medical evacuations and numerous non-fire emergency missions. The CAL FIRE HAWK is also equipped with an external hoist for rescue missions. -
Over Thirty Years After the Wright Brothers
ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph). -
Los Motores Aeroespaciales, A-Z
Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 < aeroteca.com > Depósito Legal B 9066-2016 Título: Los Motores Aeroespaciales A-Z. © Parte/Vers: 1/12 Página: 1 Autor: Ricardo Miguel Vidal Edición 2018-V12 = Rev. 01 Los Motores Aeroespaciales, A-Z (The Aerospace En- gines, A-Z) Versión 12 2018 por Ricardo Miguel Vidal * * * -MOTOR: Máquina que transforma en movimiento la energía que recibe. (sea química, eléctrica, vapor...) Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 Este facsímil es < aeroteca.com > Depósito Legal B 9066-2016 ORIGINAL si la Título: Los Motores Aeroespaciales A-Z. © página anterior tiene Parte/Vers: 1/12 Página: 2 el sello con tinta Autor: Ricardo Miguel Vidal VERDE Edición: 2018-V12 = Rev. 01 Presentación de la edición 2018-V12 (Incluye todas las anteriores versiones y sus Apéndices) La edición 2003 era una publicación en partes que se archiva en Binders por el propio lector (2,3,4 anillas, etc), anchos o estrechos y del color que desease durante el acopio parcial de la edición. Se entregaba por grupos de hojas impresas a una cara (edición 2003), a incluir en los Binders (archivadores). Cada hoja era sustituíble en el futuro si aparecía una nueva misma hoja ampliada o corregida. Este sistema de anillas admitia nuevas páginas con información adicional. Una hoja con adhesivos para portada y lomo identifi caba cada volumen provisional. Las tapas defi nitivas fueron metálicas, y se entregaraban con el 4 º volumen. O con la publicación completa desde el año 2005 en adelante. -Las Publicaciones -parcial y completa- están protegidas legalmente y mediante un sello de tinta especial color VERDE se identifi can los originales. -
HELICOPTERS (Air-Cushion Vehicles B60V)
CPC - B64C - 2020.02 B64C AEROPLANES; HELICOPTERS (air-cushion vehicles B60V) Special rules of classification The use of the available Indexing Codes under B64C 1/00- B64C 2230/00 is mandatory for classifying additional information. B64C 1/00 Fuselages; Constructional features common to fuselages, wings, stabilising surfaces and the like (aerodynamical features common to fuselages, wings, stabilising surfaces, and the like B64C 23/00; flight-deck installations B64D) Definition statement This place covers: • Overall fuselage shapes and concepts (only documents relating thereto are attributed the symbol B64C 1/00, when the emphasis is on aerodynamic aspects the symbol B64C 1/0009 is attributed). • Structural features (including frames, stringers, longerons, bulkheads, skin panels and interior liners). • Windows and doors (including hatch covers, access panels, drain masts, canopies and windscreens). • Fuselage structures adapted for mounting power plants, floors, integral loading means (such as steps). • Attachment of wing or tail units or stabilising surfaces to the fuselage; • Relatively movable fuselage parts (for improving pilot's view or for reducing size for storage). • Severable/jettisonable parts for facilitating emergency escape. • Inflatable fuselage components. • Fuselage adaptations for receiving aerials or radomes. • Passive cooling of fuselage structures and sound/heat insulation (including isolation mats, and clips for mounting such mats and components such as pipes or cables). References Limiting references This place does not cover: Structural features and concepts are attributed the relevant symbol(s) in B64C 1/06 - B64C 1/12 Aerodynamical features common to fuselages, wings, stabilising B64C 23/00 surfaces, and the like Flight-deck installations B64D Special rules of classification Structures and components for helicopters falling within this main group and/or appended subgroups are additionally attributed the symbol B64C 27/04. -
Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2006 Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment Scott Bennett Trail University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerospace Engineering Commons Recommended Citation Trail, Scott Bennett, "Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/1816 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Scott Bennett Trail entitled "Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aviation Systems. Robert B. Richards, Major Professor We have read this thesis and recommend its acceptance: Rodney Allison, Frank Collins Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Scott Bennett Trail entitled “Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment”. -
ATP® Libraries Catalog
2 ATP® Libraries Catalog Revision Date May 24 2016 ATP 101 South Hill Drive Brisbane, CA 94005 (+1) 415-330-9500 www.atp.com ATP® Policies and Legal www.atp.com/policy © Copyright 2016, ATP. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of ATP. The information in this catalog is subject to change without notice.ATP, ATP Knowledge, ATP Aviation Hub, HubConnect, NavigatorV, and their respective logos, are among the registered trademarks or trademarks of ATP. All third-party trademarks used herein are the property of their respective owners and ATP asserts no ownership rights to these items. iPad and iPhone are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc. All original authorship of ATP is protected under U.S. and foreign copyrights and is subject to written license agreements between ATP and its subscribers. Visit www.atp.com/policy for more information ATP Customer Support Please visit www.atp.com/support for customer support information ATP® Libraries Catalog – Revision Date: May 24 2016 3 CONTENTS CONTENTS ...................................................................................................................................................................... 3 REGULATORY LIBRARIES ............................................................................................................................................. -
Air Transport
The History of Air Transport KOSTAS IATROU Dedicated to my wife Evgenia and my sons George and Yianni Copyright © 2020: Kostas Iatrou First Edition: July 2020 Published by: Hermes – Air Transport Organisation Graphic Design – Layout: Sophia Darviris Material (either in whole or in part) from this publication may not be published, photocopied, rewritten, transferred through any electronical or other means, without prior permission by the publisher. Preface ommercial aviation recently celebrated its first centennial. Over the more than 100 years since the first Ctake off, aviation has witnessed challenges and changes that have made it a critical component of mod- ern societies. Most importantly, air transport brings humans closer together, promoting peace and harmo- ny through connectivity and social exchange. A key role for Hermes Air Transport Organisation is to contribute to the development, progress and promo- tion of air transport at the global level. This would not be possible without knowing the history and evolu- tion of the industry. Once a luxury service, affordable to only a few, aviation has evolved to become accessible to billions of peo- ple. But how did this evolution occur? This book provides an updated timeline of the key moments of air transport. It is based on the first aviation history book Hermes published in 2014 in partnership with ICAO, ACI, CANSO & IATA. I would like to express my appreciation to Professor Martin Dresner, Chair of the Hermes Report Committee, for his important role in editing the contents of the book. I would also like to thank Hermes members and partners who have helped to make Hermes a key organisa- tion in the air transport field. -
2012 Alumni Fellow Teaching Award, Penn I Am Also Delighted to Announce That David and Nancy Pauling Have En- State’S Highest Teaching Award
A P U B L I C A T I O N O F A E R O S P A C E E N G I N E E R I N G · F A L L 2 0 1 2 Message from the Department Head ur faculty, students, and staff continue to Susan Stewart, Sven Schmitz, and Dennis McLaughlin continue to lead advance aerospace technology and sys- our efforts to develop new courses related to wind energy. At present, O tems, contributing to national defense, three courses are being developed for online offering, with initial rollout commercial flight, earth observation, exploration, imminent. Elaine Gustus joined our department as instructional designer and new sources of energy. And as the aerospace to assist our faculty content experts in making these courses a reality. The enterprise gears up to address significant work- courses will comprise a graduate certificate program, and will provide a force challenges in the coming decade, our major degree option for a proposed online master’s degree program in Renewa- continues to be in high demand. Our undergradu- ble Energy and Sustainability Systems. ate and graduate programs are ranked 10th and We are pleased to acknowledge Peter and Barbara Papadakos for their 13th by U.S. News & World Report and Penn gifts of a restored AGM-78 missile and a MK-44 torpedo. These have State Engineering was ranked 11th in the annual already found places in our undergraduate structures laboratory, where Academic Ranking of World Universities! students are gaining invaluable experience by performing structural vibra- Our faculty members continue to garner well-deserved recognition.