Conasauga Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stratigraphy of the Upper Carboniferous Schooner Formation, Southern North Sea: Chemostratigraphy, Mineralogy, Palynology and Sm–Nd Isotope Analysis
Stratigraphy of the Upper Carboniferous Schooner Formation, southern North Sea: chemostratigraphy, mineralogy, palynology and Sm–Nd isotope analysis T. J. Pearce,1 D. McLean,2 D. Wray,3 D. K. Wright,4 C. J. Jeans,5 E. W. Mearns6 1, 4: Chemostrat Ltd, Units 3 & 4, Llanfyllin Enterprise Park, Llanfyllin, Powys, SY22 5DD 2: Palynology Research Facility, Department of Animal and Plant Sciences, Western Bank, Sheffield, S10 2TN 3: Department of Earth Sciences, University of Greenwich, Chatham Maritime, Kent, ME4 4TB 5: Department of Earth Sciences, Cambridge University, Downing Street, Cambridge, CB2 3EQ 6: Isotopic Ltd, Craigiebuckler House, Macaulay Drive, Aberdeen, AB15 8QH Summary The continental, predominantly redbed sequences of the Upper Carboniferous Schooner Formation (“Barren Red Measures”) from the southern North Sea represent a significant gas reservoir, but, as they are largely devoid of microfossils, interwell corre- lations are difficult. The stratigraphy of the formation is re-evaluated by applying a multidisciplinary approach, which includes chemostratigraphy, mineralogy, palynology, Sm–Nd isotopes, petrophysics and sedimentology, to well 44/21-3, as it has encountered a thick, relatively complete section through the Schooner Formation. The formation is divided into three chemo- stratigraphical units (S1, S2 and S3) and eleven sub-units on the basis of variations in the mudstone and sandstone data, these variations being linked to changes in provenance, depositional environment and climate. The chemostratigraphical zonation is compared with the biostratigraphical zonation of the same section – heavy-mineral data confirm the sediment source, and Sm– Nd isotope data provide a provenance age for the well 44/21-3 interval. The correlation potential of the new stratigraphical frame- work is tested on several scales, using data acquired from other southern North Sea wells and from Upper Carboniferous strata of the English Midlands. -
The Carboniferous Bowland Shale Gas Study: Geology and Resource Estimation
THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION The Carboniferous Bowland Shale gas study: geology and resource estimation i © DECC 2013 THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION Disclaimer This report is for information only. It does not constitute legal, technical or professional advice. The Department of Energy and Climate Change does not accept any liability for any direct, indirect or consequential loss or damage of any nature, however caused, which may be sustained as a result of reliance upon the information contained in this report. All material is copyright. It may be produced in whole or in part subject to the inclusion of an acknowledgement of the source, but should not be included in any commercial usage or sale. Reproduction for purposes other than those indicated above requires the written permission of the Department of Energy and Climate Change. Suggested citation: Andrews, I.J. 2013. The Carboniferous Bowland Shale gas study: geology and resource estimation. British Geological Survey for Department of Energy and Climate Change, London, UK. Requests and enquiries should be addressed to: Toni Harvey Senior Geoscientist - UK Onshore Email: [email protected] ii © DECC 2013 THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION Foreword This report has been produced under contract by the British Geological Survey (BGS). It is based on a recent analysis, together with published data and interpretations. Additional information is available at the Department of Energy and Climate Change (DECC) website. https://www.gov.uk/oil-and-gas-onshore-exploration-and-production. This includes licensing regulations, maps, monthly production figures, basic well data and where to view and purchase data. -
Stratigraphic Succession in Lower Peninsula of Michigan
STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation -
Further Paleomagnetic Evidence for Oroclinal Rotation in the Central Folded Appalachians from the Bloomsburg and the Mauch Chunk Formations
TECTONICS, VOL. 7, NO. 4, PAGES 749-759, AUGUST 1988 FURTHER PALEOMAGNETIC EVIDENCE FOR OROCLINAL ROTATION IN THE CENTRAL FOLDED APPALACHIANS FROM THE BLOOMSBURG AND THE MAUCH CHUNK FORMATIONS Dennis V. Kent Lamont-DohertyGeological Observatory and Departmentof GeologicalSciences ColumbiaUniversity, Palisades, New York Abstract.Renewed paleomagnetic investigations of red fromthe Bloomsburg, Mauch Chunk, and revised results bedsof theUpper Silurian Bloomsburg and the Lower recentlyreported for theUpper Devonian Catskill Formation Carboniferous Mauch Chunk Formations were undertaken togetherindicate 22.8•>+_11.9 oof relativerotation, accounting with theobjective of obtainingevidence regarding the for approximatelyhalf thepresent change in structuraltrend possibilityof oroclinalbending as contributing to thearcuate aroundthe Pennsylvania salient. The oroclinalrotation can be structuraltrend of thePennsylvania salient. These formations regardedas a tightenS.*'.3 o/'a lessarcuate depositional package cropout on both limbs of thesalient and earlier, but less thatdeveloped across a basementreentrant, to achievea definitivepaleomagnetic studies on these units indicate that curvaturecloser to that of the earlierzigzag continental margin earlyacquired magnetizations can be recovered. Oriented outline. sampleswere obtained from nine sites on the southern limb of thesalient and eight sites from the northern limb in the INTRODUCTION Bloomsburg.The naturalremanent magnetizations are multivectorial,dominated by a component(B) with a A testof the oroclinehypothesis -
Geologic Cross Section
Geologic Cross Section I–I′ Through the Appalachian Basin from the Eastern Margin of the Illinois Basin, Jefferson County, Kentucky, to the Valley and Ridge Province, Scott County, Virginia By Robert T. Ryder, Michael H. Trippi, and Christopher S. Swezey Pamphlet B to accompany Scientific Investigations Map 3343 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copy- righted items must be secured from the copyright owner. Suggested citation: Ryder, R.T., Trippi, M.H., and Swezey, C.S., 2015, Geologic cross section I–I′ through the Appalachian basin from the eastern margin of the Illinois basin, Jefferson County, Kentucky, to the Valley and Ridge province, Scott County, Virginia: U.S. Geological Survey Scientific Investigations Map 3343, 2 sheets and pamphlet A, 41 p.; pamphlet B, 102 p., http://dx.doi.org/10.3133/sim3343. -
Exhibit 5 Town of Barton Geology and Seismicity Report Sections
GEOLOGY AND SEISMICITY REPORT SNYDER E1-A WELL TOWN OF BARTON TIOGA COUNTY, NEW YORK Prepared for: Couch White, LLP 540 Broadway P.O. Box 22222 Albany, New York 12201 Prepared by: Continental Placer Inc. II Winners Circle Albany, New York 12205 July 25, 2017 Table of Contents 1.0 EXECUTIVE SUMMARY............................................................................................................. 1 2.0 INTRODUCTION ........................................................................................................................... 2 2.1 Depositional Sequences and General Stratigraphic Sequence ................................................ 2 2.1.1 Upper Devonian Lithologies ........................................................................................................ 4 2.1.2 Marcellus-Hamilton ..................................................................................................................... 4 2.1.3 Tristates-Onondaga ...................................................................................................................... 4 2.1.4 Helderberg .................................................................................................................................... 4 2.1.5 Oneida-Clinton-Salina ................................................................................................................. 4 2.1.6 Black River-Trenton-Utica-Frankfort .......................................................................................... 5 2.1.7 Potsdam-Beekmantown .............................................................................................................. -
IC-29 Geology and Ground Water Resources of Walker County, Georgia
IC 29 GEORGIA STATE DIVISION OF CONSERVATION DEPARTMENT OF MINES, MINING AND GEOLOGY GARLAND PEYTON, Director THE GEOLOGICAL SURVEY Information Circular 29 GEOLOGY AND GROUND-WATER RESOURCES OF WALKER COUNTY, GEORGIA By Charles W. Cressler U.S. Geological Survey Prepared in cooperation with the U.S. Geological Survey ATLANTA 1964 CONTENTS Page Abstract _______________________________________________ -··---------------------------- _____________________ ----------------·----- _____________ __________________________ __ 3 In trodu ction ------------------------------------------ ________________________________ --------------------------------------------------------------------------------- 3 Purpose and scope ------------------------------"--------------------------------------------------------------------------------------------------------- 3 Previous inv es tigati o ns ____ _____ ________ _______ __________ ------------------------------------------------------------------------------------------ 5 Geo Io gy _________________________________________________________________ --- ___________________ -- ___________ ------------- __________________ ---- _________________ ---- _______ 5 Ph ys i ogr a p hy ______________________________________________________ ---------------------------------------- __________________ -------------------------------- 5 Geo Io gi c his tory __________________________ _ __ ___ ___ _______ _____________________________________________ ------------------------------------------------- 5 Stratigraphy -·· __________________ -
Geologic Cross Section C–C' Through the Appalachian Basin from Erie
Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p. -
Stratigraphic Framework of Cambrian and Ordovician Rocks in The
Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Medina County, Ohio, through Southwestern and South-Central Pennsylvania to Hampshire County, West Virginia U.S. GEOLOGICAL SURVEY BULLETIN 1839-K Chapter K Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Medina County, Ohio, through Southwestern and South-Central Pennsylvania to Hampshire County, West Virginia By ROBERT T. RYDER, ANITA G. HARRIS, and JOHN E. REPETSKI Stratigraphic framework of the Cambrian and Ordovician sequence in part of the central Appalachian basin and the structure of underlying block-faulted basement rocks U.S. GEOLOGICAL SURVEY BULLETIN 1839 EVOLUTION OF SEDIMENTARY BASINS-APPALACHIAN BASIN U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1992 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25286 Denver, CO 80225 Library of Congress Cataloging in Publication Data Ryder, Robert T. Stratigraphic framework of Cambrian and Ordovician rocks in the central Appalachian Basin from Medina County, Ohio, through southwestern and south-central Pennsylvania to Hampshire County, West Virginia / by Robert T. Ryder, Anita C. Harris, and John E. Repetski. p. cm. (Evolution of sedimentary basins Appalachian Basin ; ch. K) (U.S. Geological Survey bulletin ; 1839-K) Includes bibliographical references. Supt. of Docs, no.: I 19.3:1839-K 1. Geology, Stratigraphic Cambrian. -
Overview of the Strategic and Structural Evolution of the Talladega Slate Belt, Alabama Appalachians
fl d029-08 1st pgs page 1 The Geological Society of America Field Guide 29 2012 Overview of the stratigraphic and structural evolution of the Talladega slate belt, Alabama Appalachians James F. Tull* Department of Earth, Ocean, and Atmospheric Science, Florida State University Clinton I. Barineau* Department of Earth and Space Sciences, Columbus State University ABSTRACT The allochthonous Talladega belt of eastern-northeastern Alabama and north- western Georgia is a northeast striking, fault bounded block of lower greenschist facies metasedimentary and metaigneous rocks that formed along the margin of Lau- rentia at or outboard of the seaward edge of the Alabama promontory. Bounded by metamorphic rocks of the higher grade Neoproterozoic(?) to Carboniferous eastern Blue Ridge on the southeast and unmetamorphosed to anchimetamorphic Paleozoic rocks of the Appalachian foreland on the northwest, the Talladega belt includes shelf facies rocks of the latest Neoproterozoic/earliest Cambrian Kahatchee Mountain Group, Cambrian-Ordovician Sylacauga Marble Group, and the latest Silurian(?) to uppermost Devonian/earliest Mississippian Talladega Group. Along the southeast- ern fl ank of these metasedimentary sequences, a Middle Ordovician back-arc terrane (Hillabee Greenstone) was tectonically emplaced along a cryptic pre-metamorphic thrust fault (Hillabee thrust) and subsequently dismembered with units of the upper Talladega Group along the post-metamorphic Hollins Line fault system. Importantly, strata within the Talladega belt are critical for understanding the tectonic evolution of the southern Appalachian orogen when coupled with the geologic history of adjacent terranes. Rocks of the lower Talladega Group, the Lay Dam Formation, suggest latest Silurian-earliest Devonian tectonism that is only now being recognized in other areas of the southern Appalachians. -
Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St. -
Stratigraphy and Structure of the Subsurface Cambrian and Ordovician Carbonates of New York
DOCUMENT RESUME ED 093 640 SE 017 316 AUTHOR Rickard, Lawrence V. TITLE Stratigraphy and Structure of the Subsurface Cambrian and Ordovician Carbonates of New York. INSTITUTION New York State Education Dept., Albany. PUB DATE 73 NOTE 30p. EDRS PRICE EF-$0.75 HC-$1.85 PLUS POSTAGE DESCRIPTORS Bibliographies; Earth Science; *Geology; Instruction; *Instructional Materials; *Maps; *Paleontology; Science Education IDENTIFIERS New York State Museum and Science Service ABSTRACT This publication presents a description pf 137 wells in New York State and adjacent parts of Pennsylvania. Correlations with surface exposures are established. Maps and cross sections display the thickness, structure, and stratigraphic relationships of the carbonates described. ,A paleogeologic map of New York State at the end of the Early Ordovician is presented. Two distinct series of rocks which comprise the Cambrian and Ordovician carbonates of New York'are described and studied in detail. The monograpil includes an extensive bibliography, several schematic figures and diagrams, and two appendices which give data relevant to the identification of control wells and subsurface data from control wells. (Author/EB) U S. DEPARTMENT OF HEALTH. EDUCATION B WELFARE NATIONAL INSTITUTE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO OUCEO EXACTLY AS RECEIVED FRO': THE PERSON OR ORGANIZATION ORIGIN ATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRE SENT OFFICIAL NATIONAL INSTITUTE DI EDUCATION POSITION OR POLICY Stratigraphy and Structure of .the', Subsurface Cambrian OrdoVician arbonates of New York LAWRENCE V. RICKARD NEW YORK STATE MUSEUM AND SCIENCE SERVICE MAP AND CHART SERIES NUMBER 18 The Ulu:Trill) of the Slate of New .York The Stale Education Department Albany, 1973 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of the University (with years when terms expire) 1984 JOSEPH W.