Introduction to Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Development of the Periodic Table and Its Consequences Citation: J
Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1. -
Dmitri Mendeleev
DOWNLOADABLE EXTRAS Atomic Structure: Part 1 1 Dmitri Mendeleev Dmitri Mendeleev was born on the 8th of February 1834 in Siberia, Russia. His father who was a teacher of the arts and politics, died when he was only thirteen. He was one of a large family and is thought to possibly have had 17 brothers and sisters. Due to his father’s death and a failed family business (a glass factory that burnt down) the family were very poor. Despite this, his mother wanted him to be educated at a higher level so she moved the family to St Petersburg in order for Dmitri to attend school. After graduating he became a teacher in the area of science. His passion was chemistry and he studied the capillarity of liquids (ability of a liquid to fl ow in a narrow space without any suction or pumping, like when water moves against gravity up a straw placed in a glass of water), the components of petrol and the spectroscope (a device that uses light to identify unknown materials). Because chemistry at the time was so disorganised, Mendeleev saw a need to establish a set of rules and guidelines that would be universal (able to be used across the world). He started by writing two very successful text books that included all of his chemistry knowledge. However he felt that this wasn’t enough and that the concepts of chemistry were too broad and unlinked. In 1869 he started to write a system that ordered the elements as these were the main concept behind a lot of other chemistry. -
Which Pnictogen Is Best?† Cite This: New J
NJC PAPER Pnictogen bonding with alkoxide cages: which pnictogen is best?† Cite this: New J. Chem., 2019, 43,14305 Henry J. Trubenstein, ‡ Shiva Moaven, ‡ Maythe Vega, Daniel K. Unruh and Anthony F. Cozzolino * Pnictogen bonding is beginning to emerge as a useful supramolecular interaction. The design strategies for these systems are still in the early stages of development and much attention has been focused on the lighter pnictogens. Pnictogen bond donors can have up to three independent sites for binding which can result in triple pnictogen bonding. This has been observed in the self-assembly of antimony alkoxide cages, but not with the lighter congeners. This work reports structural characterization of an analogous arsenic alkoxide cage that engages in a single pnictogen bond and synthetic explorations of Received 14th July 2019, the bismuth congener. DFT calculations are used to evaluate the differences between the structures. Accepted 13th August 2019 Ultimately the partial charge on the pnictogen and the energy of the pnictogen lone pair dictate the DOI: 10.1039/c9nj03648b strength, orientation and number of pnictogen bonds that these cages form. Antimony cages strike the best balance between strength and directionality, allowing them to achieve triple pnictogen bonding rsc.li/njc where the other congeners do not. Introduction or bismuth.15–23 Recently, antimony centred PnBs have been purposefully designed into molecules to actively direct the self- A pnictogen bond (PnB), in analogy to a halogen or chalcogen assembly of reversed bilayer vesicles,24 enable anion binding bond (XB/HaB or ChB), is ‘‘the net attractive interaction between with applications in sensing and transport,25–28 self-assembly an electrophilic region associated with a [pnictogen] atom in a complex architectures through triple pnictogen bonding29 and molecular entity [the PnB donor] and a nucleophilic region in allow for supramolecular catalysis.30 These applications rely on another, or the same, molecular entity [the PnB acceptor].’’1 the predictable formation of PnBs. -
Of the Periodic Table
of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use. -
Unit 5.1 Periodic Table: Its Structure and Function
Unit 5.1 Periodic Table: Its Structure and Function Teacher: Dr. Van Der Sluys Objectives • Mendeleev • Information in the Periodic Table – Metals, nonmetals and metalloids – Main Group, Transition Metals, Rare Earth and Actinide Dmitri Mendeleev (1869) In 1869 Mendeleev and Lothar Meyer (Germany) published nearly identical classification schemes for elements known to date. The periodic table is base on the similarity of properties and reactivities exhibited by certain elements. Later, Henri Moseley ( England,1887-1915) established that each elements has a unique atomic number, which is how the current periodic table is organized. http://www.chem.msu.su/eng/misc/mendeleev/welcome.html 1 Information About Each Element Atomic Number 1 H Atomic Symbol Average Atomic 1.00794 Mass Periodic Table Expanded View •The way the periodic table usually seen is a compress view, placing the Lanthanides and actinides at the bottom of the stable. •The Periodic Table can be arrange by subshells. The s-block is Group IA and & IIA, the p-block is Group IIIA - VIIIA. The d-block is the transition metals, and the f-block are the Lanthanides and Actinide metals 2 Periodic Table: Metals and Nonmetals 1 18 IA VIIIA 2 13 14 15 16 17 1 IIA IIIA IVA VA VIA VIIA • Layout of the Periodic Table: Metals vs. nonmetals 2 3 4 5 6 7 8 9 10 11 12 3 IIIB IVB VB VIB VIIB VIIIB IB IIB 4 Nonmetals 5 Metals 6 7 Periodic Table: Classification • Metals - Solids, luster, conduct heat and electricity, malleable and ductile • Nonmetals - Gases, liquids or low melting solids that are sometimes brittle and nonconducting • Metalloids - Have properties of both metals and nonmetals. -
Dmitry I. Mendeleev and His Time
Firenze University Press www.fupress.com/substantia Historical Article Dmitry I. Mendeleev and his time Citation: D. Pushcharovsky (2019) Dmitry I. Mendeleev and his time. Sub- Dmitry Pushcharovsky stantia 3(1): 119-129. doi: 10.13128/ Substantia-173 Lomonosov Moscow State University, Department of Geology, Vorob’evy gori, 1, 119899 Moscow, Russia Copyright: © 2019 D. Pushcharovsky. E-mail: [email protected] This is an open access, peer-reviewed article published by Firenze University Press (http://www.fupress.com/substan- Abstract. The history of the creation of Periodic table and of the Mendeleev’s discovery tia) and distribuited under the terms of Periodic Law is considered. The different approaches used by Mendeleev’s colleagues of the Creative Commons Attribution are discussed. The contribution of the Periodic system to the extension of the scientific License, which permits unrestricted ideas in geology and best of all in geochemistry and mineralogy is illustrated by the use, distribution, and reproduction discovery of new chemical elements and by the isomorphic replacements in minerals. in any medium, provided the original author and source are credited. The details of uneasy history of Mendeleev’s nomination to the St. Petersburg Academy and for the Nobel Prize are given. Data Availability Statement: All rel- evant data are within the paper and its Keywords. Periodic table, isomorphism, Nobel Prize, electronic structure of atom. Supporting Information files. Competing Interests: The Author(s) declare(s) no conflict of interest. Periodic table of chemical elements on the front of the main building of the Central Board of Weights and Measures in St. Petersburg; height – 9 m, area – 69 m2; red colour - ele- ments, known in the Mendeleev lifetime, blue colour – elements discovered after 1907 (Pub- lic domain) Substantia. -
Periodic Table 1 Periodic Table
Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table. -
Techniques of Preparation and Crystal Chemistry of Transuranic Chalcogenides and Pnictides D
Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides D. Damien, R. Haire, J. Peterson To cite this version: D. Damien, R. Haire, J. Peterson. Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides. Journal de Physique Colloques, 1979, 40 (C4), pp.C4-95-C4-100. 10.1051/jphyscol:1979430. jpa-00218826 HAL Id: jpa-00218826 https://hal.archives-ouvertes.fr/jpa-00218826 Submitted on 1 Jan 1979 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C4, supplément au n° 4, Tome 40, avril 1979, page C4-95 Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides (*) D. A. Damien (**), R. G. Haire and J. R. Peterson (t) Transuranium Research Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37830, U.S.A. Résumé. — La cristallochimie d'un certain nombre de chalcogénures et pnictures d'éléments transuraniens a été étudiée en utilisant les isotopes Am, Cm, Bk et Cf. Les composés ont été préparés par réaction directe du métal avec l'élément chalcogène ou pnictogène à température élevée. Les chalcogénures supérieurs ont été dissociés thermiquement pour donner des composés à stœchiométrie plus basse dont les sesquichalco- génures constituent la limite. -
Chapter 7 Periodic Properties of the Elements Learning Outcomes
Chapter 7 Periodic Properties of the Elements Learning Outcomes: Explain the meaning of effective nuclear charge, Zeff, and how Zeff depends on nuclear charge and electron configuration. Predict the trends in atomic radii, ionic radii, ionization energy, and electron affinity by using the periodic table. Explain how the radius of an atom changes upon losing electrons to form a cation or gaining electrons to form an anion. Write the electron configurations of ions. Explain how the ionization energy changes as we remove successive electrons, and the jump in ionization energy that occurs when the ionization corresponds to removing a core electron. Explain how irregularities in the periodic trends for electron affinity can be related to electron configuration. Explain the differences in chemical and physical properties of metals and nonmetals, including the basicity of metal oxides and the acidity of nonmetal oxides. Correlate atomic properties, such as ionization energy, with electron configuration, and explain how these relate to the chemical reactivity and physical properties of the alkali and alkaline earth metals (groups 1A and 2A). Write balanced equations for the reactions of the group 1A and 2A metals with water, oxygen, hydrogen, and the halogens. List and explain the unique characteristics of hydrogen. Correlate the atomic properties (such as ionization energy, electron configuration, and electron affinity) of group 6A, 7A, and 8A elements with their chemical reactivity and physical properties. Development of Periodic Table •Dmitri Mendeleev and Lothar Meyer (~1869) independently came to the same conclusion about how elements should be grouped in the periodic table. •Henry Moseley (1913) developed the concept of atomic numbers (the number of protons in the nucleus of an atom) 1 Predictions and the Periodic Table Mendeleev, for instance, predicted the discovery of germanium (which he called eka-silicon) as an element with an atomic weight between that of zinc and arsenic, but with chemical properties similar to those of silicon. -
Hobart Mendeleev 2-3-11.Pdf
Czar Nicholas II and Alexi at Tobolsk, Siberia in 1917 - Beinecke Library, Yale University Dr. David Hobart Los Alamos National Laboratory Academician Boris Myasoedov Secretary General Russian Academy of Sciences U N C L A S S I F I E D LA-UR-09-05702 U N C L A S S I F I E D National Laboratory From Modest Beginnings Dmitri Ivanovich Mendeleev was born on February 8th, 1834 in Verhnie Aremzyani near Tobolsk, Russian Empire From modest beginnings in a small village in Siberia an extraordinary Russian chemist conceived of a profound and revolutionary scientific contribution to modern science: the Periodic Table of the Elements. The Greek Periodic Table ~ 400 BC As with most profound discoveries a number of important developments and observations were made prior to that discovery Definition of an Element In 1661 Boyle criticized the experiments of “alchemists” - Chemistry is the science of the composition of substances - not merely an adjunct to the art of alchemy - Elements are the un-decomposable constituents of material bodies - Understanding the distinction between mixtures and compounds, he made progress in detecting their ingredients - which he termed analysis Robert Boyle 1627-1691 The Atomic Theory The Greek philosopher Democritus first proposed the atomic theory but centuries later John Dalton established the scientific foundation: - All atoms of a given element are identical - The atoms of different elements can be distinguished by their relative weights Democritus of Abdera John Dalton 460-370 BC 1766-1844 Early Knowledge and Discovery The elements gold, silver, copper, tin, Searching for the “Philosopher’s lead, mercury, and others were known Stone” German alchemist Henning from antiquity. -
Mendeleev's Periodic Table of the Elements the Periodic Table Is Thus
An Introduction to General / Inorganic Chemistry Mendeleev’s Periodic Table of the Elements Dmitri Mendeleev born 1834 in the Soviet Union. In 1869 he organised the 63 known elements into a periodic table based on atomic masses. He predicted the existence and properties of unknown elements and pointed out accepted atomic weights that were in error. The periodic table is thus an arrangement of the elements in order of increasing atomic number. Elements are arranged in rows called periods. Elements with similar properties are placed in the same column. These columns are called groups. An Introduction to General / Inorganic Chemistry The modern day periodic table can be further divided into blocks. http://www.chemsoc.org/viselements/pages/periodic_table.html The s, p, d and f blocks This course only deals with the s and p blocks. The s block is concerned only with the filling of s orbitals and contains groups I and II which have recently been named 1 and 2. The p block is concerned only with the filling of p orbitals and contains groups III to VIII which have recently been named 13 to 18. An Introduction to General / Inorganic Chemistry Groups exist because the electronic configurations of the elements within each group are the same. Group Valence Electronic configuration 1 s1 2 s2 13 s2p1 14 s2p2 15 s2p3 16 s2p4 17 s2p5 18 s2p6 The type of chemistry exhibited by an element is reliant on the number of valence electrons, thus the chemistry displayed by elements within a given group is similar. Physical properties Elemental physical properties can also be related to electronic configuration as illustrated in the following four examples: An Introduction to General / Inorganic Chemistry 1. -
Organometallic Pnictogen Chemistry
Institut für Anorganische Chemie 2014 Fakultät für Chemie und Pharmazie | Sabine Reisinger aus Regensburg, geb. Scheuermayer am 15.07.1983 Studium: Chemie, Universität Regensburg Abschluss: Diplom Promotion: Prof. Dr. Manfred Scheer, Institut für Anorganische Chemie Sabine Reisinger Die vorliegende Arbeit enthält drei Kapitel zu unterschiedlichen Aspekten der metallorganischen Phosphor- und Arsen-Chemie. Zunächst werden Beiträge zur supramolekularen Chemie mit 5 Pn-Ligandkomplexen basierend auf [Cp*Fe(η -P5)] und 5 i [Cp*Fe(η - Pr3C3P2)] gezeigt, gefolgt von der Eisen-vermittelten Organometallic Pnictogen Aktivierung von P4, die zu einer selektiven C–P-Bindungsknüpfung führt, während das dritte Kapitel die Verwendung von Phosphor Chemistry – Three Aspects und Arsen als Donoratome in mehrkernigen Komplexen mit paramagnetischen Metallionen behandelt. Sabine Reisinger 2014 Alumniverein Chemie der Universität Regensburg E.V. [email protected] http://www.alumnichemie-uniregensburg.de Aspects Three – Chemistry Pnictogen Organometallic Fakultät für Chemie und Pharmazie ISBN 978-3-86845-118-4 Universität Regensburg Universitätsstraße 31 93053 Regensburg www.uni-regensburg.de 9 783868 451184 4 Sabine Reisinger Organometallic Pnictogen Chemistry – Three Aspects Organometallic Pnictogen Chemistry – Three Aspects Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Sabine Reisinger, geb. Scheuermayer Regensburg 2014 Die Arbeit wurde von Prof. Dr. Manfred Scheer angeleitet. Das Promotionsgesuch wurde am 20.06.2014 eingereicht. Das Kolloquium fand am 11.07.2014 statt. Prüfungsausschuss: Vorsitzender: Prof. Dr. Helmut Motschmann 1. Gutachter: Prof. Dr. Manfred Scheer 2. Gutachter: Prof. Dr. Henri Brunner weiterer Prüfer: Prof. Dr. Bernhard Dick Dissertationsreihe der Fakultät für Chemie und Pharmazie der Universität Regensburg, Band 4 Herausgegeben vom Alumniverein Chemie der Universität Regensburg e.V.