Introduction to Electronic Structure Theory 1 Introduction 2 What Is

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Electronic Structure Theory 1 Introduction 2 What Is Introduction to Electronic Structure Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2002 Last Revised: June 2003 1 Introduction The purpose of these notes is to give a brief introduction to electronic structure theory and to introduce some of the commonly used notation. Chapters 1-2 of Szabo and Ostlund [1] are highly recommended for this topic. 2 What is Electronic Structure Theory? Electronic Structure Theory describes the motions of electrons in atoms or molecules. Generally this is done in the context of the Born-Oppenheimer Approximation, which says that electrons are so much lighter (and therefore faster) than nuclei that they will ¯nd their optimal distribution for any given nuclear con¯guration. The electronic energy at each nuclear con¯guration is the potential energy that the nuclei feel, so solving the electronic problem for a range of nuclear con¯gurations gives the potential energy surface. Because the electrons are so small, one needs to use quantum mechanics to solve for their motion. Quantum mechanics tells us that the electrons will not be localized at particular points in space, but they are best thought of as \matter waves" which can interfere. The probability of ¯nding a single electron at a given point in space is given by ª¤(x)ª(x) for its wavefunction ª at the point x. The wavefunction can be determined by solving the time-independent SchrÄodinger equation H^ ª = Eª. If the problem is time-dependent, then the time-dependent SchrÄodinger @ª ^ equation {h¹ @t = Hª must be used instead; otherwise, the solutions to the time-independent problem are also solutions to the time-dependent problem when they are multiplied by the energy dependent phase factor e¡iEt=h¹ . Since we have ¯xed the nuclei under the Born-Oppenheimer approximation, we solve for the nonrelativistic electronic SchrÄodinger equation: 2 2 2 2 2 ^ h¹ 2 h¹ 2 ZAe ZAZBe e H = i A + + ; (1) ¡2m Xi r ¡ XA 2MA r ¡ XA;i 4¼²0rAi A>BX 4¼²0RAB Xi>j 4¼²0rij 1 where i; j refer to electrons and A; B refer to nuclei. In atomic units, this simpli¯es to: ^ 1 2 1 2 ZA ZAZB 1 H = i A + + : (2) ¡2 Xi r ¡ XA 2MA r ¡ XA;i rAi A>BX RAB Xi>j rij This Hamiltonian is appropriate as long as relativistic e®ects are not important for the system in question. Roughly speaking, relativistic e®ects are not generally considered important for atoms with atomic number below about 25 (Mn). For heavier atoms, the inner electrons are held more tightly to the nucleus and have velocities which increase as the atomic number increases; as these velocities approach the speed of light, relativistic e®ects become more important. There are various approaches for accounting for relativistic e®ects, but the most popular is to use relativistic e®ective core potentials (RECPs), often along with the standard nonrelativistic Hamiltonian above. 3 Properties Predicted by Electronic Structure Theory According to one of the postulates of quantum mechanics (see below), if we know the wavefunction ª(r; t) for a given system, then we can determine any property of that system, at least in principle. Obviously if we use approximations in determining the wavefunction, then the properties obtained from that wavefunction will also be approximate. Since we almost always invoke the Born-Oppenheimer approximation, we only have the elec- tronic wavefunction, not the full wavefunction for electrons and nuclei. Therefore, some properties involving nuclear motion are not necessarily available in the context of electronic structure theory. To fully understand the details of a chemical reaction, we need to use the electronic structure results to carry out subsequent dynamics computations. Fortunately, however, quite a few prop- erties are within the reach of just the electronic problem. For example, since the electronic energy is the potential energy felt by the nuclei, minimizing the electronic energy with respect to nuclear coordinates gives an equilibrium con¯guration of the molecule (which may be the global or just a local minimum). The electronic wavefunction or its various derivatives are su±cient to determine the following properties: Geometrical structures (rotational spectra) ² Rovibrational energy levels (infrared and Raman spectra) ² Electronic energy levels (UV and visible spectra) ² Quantum Mechanics + Statistical Mechanics Thermochemistry (¢H, ¢S, ¢G, Cv, Cp), ² primarily gas phase. ! 2 Potential energy surfaces (barrier heights, transition states); with a treatment of dynamics, ² this leads to reaction rates and mechanisms. Ionization potentials (photoelectron and X-ray spectra) ² Electron a±nities ² Franck-Condon factors (transition probabilities, vibronic intensities) ² IR and Raman intensities ² Dipole moments ² Polarizabilities ² Electron density maps and population analyses ² Magnetic shielding tensors NMR spectra ² ! 4 Postulates of Quantum Mechanics 1. The state of a quantum mechanical system is completely speci¯ed by the wavefunction ª(r; t). 2. To every observable in classical mechanics, there corresponds a linear, Hermitian opera- tor in quantum mechanics. For example, in coordinate space, the momentum operator P^x corresponding to momentum p in the x direction for a single particle is ih¹ @ . x ¡ @x 3. In any measurement of the observable associated with operator A^, the only values that will ever be observed are the eigenvalues a which satisfy A^ª = aª. Although measurements must always yield an eigenvalue, the state does not originally have to be in an eigenstate of A^. An arbitrary state can be expanded in the complete set of eigenvectors of A^ (AÃ^ i = aiÃi) as ª = i ciÃi, where the sum can run to in¯nity in principle. The probability of observing P ¤ eigenvalue ai is given by ci ci. 4. The average value of the observable corresponding to operator A^ is given by 1 ¤ ^ ¡1 ª Aªd¿ A = R 1 ¤ : (3) h i ¡1 ª ªd¿ R 5. The wavefunction evolves in time according to the time-dependent SchrÄodinger equation @ª H^ ª(r; t) = ih¹ (4) @t 3 6. The total wavefunction must be antisymmetric with respect to the interchange of all coor- dinates of one fermion with those of another. Electronic spin must be included in this set of coordinates. The Pauli exclusion principle is a direct result of this antisymmetry principle. 5 Dirac Notation For the purposes of solving the electronic SchrÄodinger equation on a computer, it is very convenient to turn everything into linear algebra. We can represent the wavefunctions ª(r) as vectors: n ª = ai ª^ i ; (5) j i Xi=1 j i where ª is called a \state vector," a are the expansion coe±cients (which may be complex), j i i and ª^ i are ¯xed \basis" vectors. A suitable (in¯nite-dimensional) linear vector space for such decompj iositions is called a \Hilbert space." We can write the set of coe±cients a as a column vector, f ig a1 0 a2 1 ª = B . C : (6) j i B . C B C B C @ an A In Dirac's \bracket" (or bra-ket) notation, we call ª a \ket." What about the adjoint of this vector? It is a row vector denoted by ª , which is calledj i a \bra" (to spell \bra-ket"), h j ¤ ¤ ¤ ª = (a1a2 a ): (7) h j ¢ ¢ ¢ n In linear algebra, the scalar product (ªa; ªb) between two vectors ªa and ªb is just b1 0 2 1 n ¤ ¤ ¤ b ¤ (ªa; ªb) = (a1a2 an) B . C = ai bi; (8) ¢ ¢ ¢ B . C X=1 B C i B C @ bn A assuming the two vectors are represented in the same basis set and that the basis vectors are orthonormal (otherwise, overlaps between the basis vectors, i.e., the \metric," must be included). The quantum mechanical shorthand for the above scalar product in bra-ket notation is just n ¤ ªa ªb = ai bi: (9) h j i Xi=1 4 Frequently, one only writes the subscripts a and b in the Dirac notation, so that the above dot product might be referred to as just a b . The order of the vectors ªa and ªb in a dot product h j i ¤ matters if the vectors can have complex numbers for their components, since (ªa; ªb) = (ªb; ªa) . Now suppose that we want our basis set to be every possible value of coordinate x. Apart from giving us a continuous (and in¯nite) basis set, there is no formal di±culty with this. We can then represent an arbitrary state as: 1 ª = ax x dx: (10) j i Z¡1 j i What are the coe±cients ax? It turns out that these coe±cients are simply the value of the wavefunction at each point x. That is, 1 ª = ª(x) x dx: (11) j i Z¡1 j i Since any two x coordinates are considered orthogonal (and their overlap gives a Dirac delta function), the scalar product of two state functions in coordinate space becomes 1 ¤ ªa ªb = ªa(x)ªb(x)dx: (12) h j i Z¡1 Now we turn our attention to matrix representations of operators. An operator A^ can be characterized by its e®ect on the basis vectors. The action of A^ on a basis vector ª^ j yields some 0 j i new vector ªj which can be expanded in terms of the basis vectors so long as we have a complete basis set. j i n ^ ^ 0 ^ A ªj = ªj = ªi Aij (13) j i j i Xi j i If we know the e®ect of A^ on the basis vectors, then we know the e®ect of A^ on any arbitrary vector because of the linearity of A^.
Recommended publications
  • Density Functional Theory
    Density Functional Theory Fundamentals Video V.i Density Functional Theory: New Developments Donald G. Truhlar Department of Chemistry, University of Minnesota Support: AFOSR, NSF, EMSL Why is electronic structure theory important? Most of the information we want to know about chemistry is in the electron density and electronic energy. dipole moment, Born-Oppenheimer charge distribution, approximation 1927 ... potential energy surface molecular geometry barrier heights bond energies spectra How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Theoretical Musings! ● Ψ is complicated. ● Difficult to interpret. ● Can we simplify things? 1/2 ● Ψ has strange units: (prob. density) , ● Can we not use a physical observable? ● What particular physical observable is useful? ● Physical observable that allows us to construct the Hamiltonian a priori. How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Pierre Hohenberg and Walter Kohn 1964 — density functional theory All the information is contained in the density, a simple function of 3 coordinates. Electronic structure (continued) Erwin Schrödinger
    [Show full text]
  • “Band Structure” for Electronic Structure Description
    www.fhi-berlin.mpg.de Fundamentals of heterogeneous catalysis The very basics of “band structure” for electronic structure description R. Schlögl www.fhi-berlin.mpg.de 1 Disclaimer www.fhi-berlin.mpg.de • This lecture is a qualitative introduction into the concept of electronic structure descriptions different from “chemical bonds”. • No mathematics, unfortunately not rigorous. • For real understanding read texts on solid state physics. • Hellwege, Marfunin, Ibach+Lüth • The intention is to give an impression about concepts of electronic structure theory of solids. 2 Electronic structure www.fhi-berlin.mpg.de • For chemists well described by Lewis formalism. • “chemical bonds”. • Theorists derive chemical bonding from interaction of atoms with all their electrons. • Quantum chemistry with fundamentally different approaches: – DFT (density functional theory), see introduction in this series – Wavefunction-based (many variants). • All solve the Schrödinger equation. • Arrive at description of energetics and geometry of atomic arrangements; “molecules” or unit cells. 3 Catalysis and energy structure www.fhi-berlin.mpg.de • The surface of a solid is traditionally not described by electronic structure theory: • No periodicity with the bulk: cluster or slab models. • Bulk structure infinite periodically and defect-free. • Surface electronic structure theory independent field of research with similar basics. • Never assume to explain reactivity with bulk electronic structure: accuracy, model assumptions, termination issue. • But: electronic
    [Show full text]
  • Simple Molecular Orbital Theory Chapter 5
    Simple Molecular Orbital Theory Chapter 5 Wednesday, October 7, 2015 Using Symmetry: Molecular Orbitals One approach to understanding the electronic structure of molecules is called Molecular Orbital Theory. • MO theory assumes that the valence electrons of the atoms within a molecule become the valence electrons of the entire molecule. • Molecular orbitals are constructed by taking linear combinations of the valence orbitals of atoms within the molecule. For example, consider H2: 1s + 1s + • Symmetry will allow us to treat more complex molecules by helping us to determine which AOs combine to make MOs LCAO MO Theory MO Math for Diatomic Molecules 1 2 A ------ B Each MO may be written as an LCAO: cc11 2 2 Since the probability density is given by the square of the wavefunction: probability of finding the ditto atom B overlap term, important electron close to atom A between the atoms MO Math for Diatomic Molecules 1 1 S The individual AOs are normalized: 100% probability of finding electron somewhere for each free atom MO Math for Homonuclear Diatomic Molecules For two identical AOs on identical atoms, the electrons are equally shared, so: 22 cc11 2 2 cc12 In other words: cc12 So we have two MOs from the two AOs: c ,1() 1 2 c ,1() 1 2 2 2 After normalization (setting d 1 and _ d 1 ): 1 1 () () [2(1 S )]1/2 12 [2(1 S )]1/2 12 where S is the overlap integral: 01 S LCAO MO Energy Diagram for H2 H2 molecule: two 1s atomic orbitals combine to make one bonding and one antibonding molecular orbital.
    [Show full text]
  • Electronic Structure Methods
    Electronic Structure Methods • One-electron models – e.g., Huckel theory • Semiempirical methods – e.g., AM1, PM3, MNDO • Single-reference based ab initio methods •Hartree-Fock • Perturbation theory – MP2, MP3, MP4 • Coupled cluster theory – e.g., CCSD(T) • Multi-configurational based ab initio methods • MCSCF and CASSCF (also GVB) • MR-MP2 and CASPT2 • MR-CI •Ab Initio Methods for IPs, EAs, excitation energies •CI singles (CIS) •TDHF •EOM and Greens function methods •CC2 • Density functional theory (DFT)- Combine functionals for exchange and for correlation • Local density approximation (LDA) •Perdew-Wang 91 (PW91) • Becke-Perdew (BP) •BeckeLYP(BLYP) • Becke3LYP (B3LYP) • Time dependent DFT (TDDFT) (for excited states) • Hybrid methods • QM/MM • Solvation models Why so many methods to solve Hψ = Eψ? Electronic Hamiltonian, BO approximation 1 2 Z A 1 Z AZ B H = − ∑∇i − ∑∑∑+ + (in a.u.) 2 riA iB〈〈j rij A RAB 1/rij is what makes it tough (nonseparable)!! Hartree-Fock method: • Wavefunction antisymmetrized product of orbitals Ψ =|φ11 (τφτ ) ⋅⋅⋅NN ( ) | ← Slater determinant accounts for indistinguishability of electrons In general, τ refers to both spatial and spin coordinates For the 2-electron case 1 Ψ = ϕ (τ )ϕ (τ ) = []ϕ (τ )ϕ (τ ) −ϕ (τ )ϕ (τ ) 1 1 2 2 2 1 1 2 2 2 1 1 2 Energy minimized – variational principle 〈Ψ | H | Ψ〉 Vary orbitals to minimize E, E = 〈Ψ | Ψ〉 keeping orbitals orthogonal hi ϕi = εi ϕi → orbitals and orbital energies 2 φ j (r2 ) 1 2 Z J = dr h = − ∇ − A + (J − K ) i ∑ ∫ 2 i i ∑ i i j ≠ i r12 2 riA ϕϕ()rr () Kϕϕ()rdrr= ji22 () ii121∑∫ j ji≠ r12 Characteristics • Each e- “sees” average charge distribution due to other e-.
    [Show full text]
  • The Electronic Structure of Molecules an Experiment Using Molecular Orbital Theory
    The Electronic Structure of Molecules An Experiment Using Molecular Orbital Theory Adapted from S.F. Sontum, S. Walstrum, and K. Jewett Reading: Olmstead and Williams Sections 10.4-10.5 Purpose: Obtain molecular orbital results for total electronic energies, dipole moments, and bond orders for HCl, H 2, NaH, O2, NO, and O 3. The computationally derived bond orders are correlated with the qualitative molecular orbital diagram and the bond order obtained using the NO bond force constant. Introduction to Spartan/Q-Chem The molecule, above, is an anti-HIV protease inhibitor that was developed at Abbot Laboratories, Inc. Modeling of molecular structures has been instrumental in the design of new drug molecules like these inhibitors. The molecular model kits you used last week are very useful for visualizing chemical structures, but they do not give the quantitative information needed to design and build new molecules. Q-Chem is another "modeling kit" that we use to augment our information about molecules, visualize the molecules, and give us quantitative information about the structure of molecules. Q-Chem calculates the molecular orbitals and energies for molecules. If the calculation is set to "Equilibrium Geometry," Q-Chem will also vary the bond lengths and angles to find the lowest possible energy for your molecule. Q- Chem is a text-only program. A “front-end” program is necessary to set-up the input files for Q-Chem and to visualize the results. We will use the Spartan program as a graphical “front-end” for Q-Chem. In other words Spartan doesn’t do the calculations, but rather acts as a go-between you and the computational package.
    [Show full text]
  • Electronic Structure Calculations and Density Functional Theory
    Electronic Structure Calculations and Density Functional Theory Rodolphe Vuilleumier P^olede chimie th´eorique D´epartement de chimie de l'ENS CNRS { Ecole normale sup´erieure{ UPMC Formation ModPhyChem { Lyon, 09/10/2017 Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 1 / 56 Many applications of electronic structure calculations Geometries and energies, equilibrium constants Reaction mechanisms, reaction rates... Vibrational spectroscopies Properties, NMR spectra,... Excited states Force fields From material science to biology through astrochemistry, organic chemistry... ... Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 2 / 56 Length/,("-%0,11,("2,"3,4)(",3"2,"1'56+,+&" and time scales 0,1 nm 10 nm 1µm 1ps 1ns 1µs 1s Variables noyaux et atomes et molécules macroscopiques Modèles Gros-Grains électrons (champs) ! #$%&'(%')$*+," #-('(%')$*+," #.%&'(%')$*+," !" Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 3 / 56 Potential energy surface for the nuclei c The LibreTexts libraries Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 4 / 56 Born-Oppenheimer approximation Total Hamiltonian of the system atoms+electrons: H^T = T^N + V^NN + H^ MI me approximate system wavefunction: ! ~ ~ ~ ΨS (RI ; ~r1;:::; ~rN ) = Ψ(RI )Ψ0(~r1;:::; ~rN ; RI ) ~ Ψ0(~r1;:::; ~rN ; RI ): the ground state electronic wavefunction of the ~ electronic Hamiltonian H^ at fixed ionic configuration RI n o Energy of the electrons at this ionic configuration: ~ E0(RI ) = Ψ0
    [Show full text]
  • The Atomic and Electronic Structure of Dislocations in Ga Based Nitride Semiconductors Imad Belabbas, Pierre Ruterana, Jun Chen, Gérard Nouet
    The atomic and electronic structure of dislocations in Ga based nitride semiconductors Imad Belabbas, Pierre Ruterana, Jun Chen, Gérard Nouet To cite this version: Imad Belabbas, Pierre Ruterana, Jun Chen, Gérard Nouet. The atomic and electronic structure of dislocations in Ga based nitride semiconductors. Philosophical Magazine, Taylor & Francis, 2006, 86 (15), pp.2245-2273. 10.1080/14786430600651996. hal-00513682 HAL Id: hal-00513682 https://hal.archives-ouvertes.fr/hal-00513682 Submitted on 1 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Philosophical Magazine & Philosophical Magazine Letters For Peer Review Only The atomic and electronic structure of dislocations in Ga based nitride semiconductors Journal: Philosophical Magazine & Philosophical Magazine Letters Manuscript ID: TPHM-05-Sep-0420.R2 Journal Selection: Philosophical Magazine Date Submitted by the 08-Dec-2005 Author: Complete List of Authors: BELABBAS, Imad; ENSICAEN, SIFCOM Ruterana, Pierre; ENSICAEN, SIFCOM CHEN, Jun; IUT, LRPMN NOUET, Gérard; ENSICAEN, SIFCOM Keywords: GaN, atomic structure, dislocations, electronic structure Keywords (user supplied): http://mc.manuscriptcentral.com/pm-pml Page 1 of 87 Philosophical Magazine & Philosophical Magazine Letters 1 2 3 4 The atomic and electronic structure of dislocations in Ga 5 6 based nitride semiconductors 7 8 9 10 11 12 1,3 1 2 1 13 I.
    [Show full text]
  • Electronic Structure of Metal-Ceramic Interfaces
    ISIJ International, Vol. 30 (1990), No. 12, pp. 1059-l065 Electronic Structure of Metal-Ceramic Interfaces Fumio S. OHUCHIand Qian ZHONG1) Central Research and DevelopmentDepartment, E. l. DuPontde Nemoursand Company,Experimental Sation, Wilmington, DE19880- 0356, U.S A. 1)Department of Materials Science and Engineering, University of Pennsylvania, Piladelphia, PA19104-6272, U.S.A. (Received on March 1, 1990, accepted in the final form on May18. 1990) Increasing technological applications of metal-ceramic systems have demandeda fundamental understanding of the properties of interfaces In this paper, wedescribe our approach to the study of electronib structure of metal-ceramic intertaces. Electron spectroscopies have been used as primary techniques to investigate the interaction betweenmetal overlayers and ceramic substrates under various experimental conditions. Thesedata are further elucidated by theoretical calculations, from which the electronic structures of the interface have beendeduced Atemperature dependenceof the band structures of Al203 is first discussed, then the evolution of the electronic structure and bonding of Cuand Ni to Al203 is studied. The relationship between electronic structures and interfacial properties are also addressed. KEYWORDS:metal-ceramic interface; alumina; copper; nickel; electron spectroscopy; electronic structure; UPS; XPS; LEELS. Introduction have the capability of resolving the distinct nature of 1. evolving chemical and electronic states of both metal Increasing technological applications of metal-ce- and ceramic components. Lastly, the experiments ramic systems, such as structural and electronic mate- need to be free from artifact, particularly contamina- rials, have generated great interest in a variety of' sci- tions, thus an ultra high yacuum(UHV) condition is entific issues concerning interfacial properties. Me- required so as to control the environmcnt.
    [Show full text]
  • Density Functional Theory
    NEA/NSC/R(2015)5 Chapter 12. Density functional theory M. Freyss CEA, DEN, DEC, Centre de Cadarache, France Abstract This chapter gives an introduction to first-principles electronic structure calculations based on the density functional theory (DFT). Electronic structure calculations have a crucial importance in the multi-scale modelling scheme of materials: not only do they enable one to accurately determine physical and chemical properties of materials, they also provide data for the adjustment of parameters (or potentials) in higher-scale methods such as classical molecular dynamics, kinetic Monte Carlo, cluster dynamics, etc. Most of the properties of a solid depend on the behaviour of its electrons, and in order to model or predict them it is necessary to have an accurate method to compute the electronic structure. DFT is based on quantum theory and does not make use of any adjustable or empirical parameter: the only input data are the atomic number of the constituent atoms and some initial structural information. The complicated many-body problem of interacting electrons is replaced by an equivalent single electron problem, in which each electron is moving in an effective potential. DFT has been successfully applied to the determination of structural or dynamical properties (lattice structure, charge density, magnetisation, phonon spectra, etc.) of a wide variety of solids. Its efficiency was acknowledged by the attribution of the Nobel Prize in Chemistry in 1998 to one of its authors, Walter Kohn. A particular attention is given in this chapter to the ability of DFT to model the physical properties of nuclear materials such as actinide compounds.
    [Show full text]
  • ELECTRONIC STRUCTURE of the SEMIMETALS Bi and Sb 1571
    PHYSICAL REVIEW 8 VOLUME 52, NUMBER 3 15 JULY 1995-I Electronic structure of the semimetals Bi and Sh Yi Liu and Roland E. Allen Department ofPhysics, Texas ACkM University, Coliege Station, Texas 77843-4242 (Received 22 December 1994; revised manuscript received 13 March 1995) We have developed a third-neighbor tight-binding model, with spin-orbit coupling included, to treat the electronic properties of Bi and Sb. This model successfully reproduces the features near the Fermi surface that will be most important in semimetal-semiconductor device structures, including (a) the small overlap of valence and conduction bands, (b) the electron and hole efFective masses, and (c) the shapes of the electron and hole Fermi surfaces. The present tight-binding model treats these semimetallic proper- ties quantitatively, and it should, therefore, be useful for calculations of the electronic properties of pro- posed semimetal-semiconductor systems, including superlattices and resonant-tunneling devices. I. INTRQDUCTIQN energy gaps in the vicinity of the Fermi energy for Bi and Sb make a multiband treatment necessary; (ii) the band Recently, several groups have reported the successful alignment of these semimetal-semiconductor superlattices fabrication of semimetal-semiconductor superlattices, in- is indirect in momentum space, so a theoretical treatment cluding PbTe-Bi, ' CdTe-Bi, and GaSb-Sb. Bulk Bi and must represent a mixture of bulk states from different Sb are group-V semimetals. They have a weak overlap symmetry points of the Brillouin zone '" (iii) the carrier between the valence and conduction bands, which leads effective masses (particularly along the [111] growth to a small number of free electrons and holes.
    [Show full text]
  • An Introduction to the Tight Binding Approximation – Implementation by Diagonalisation
    Institute for Advanced Simulation An Introduction to the Tight Binding Approximation – Implementation by Diagonalisation Anthony T. Paxton published in Multiscale Simulation Methods in Molecular Sciences, J. Grotendorst, N. Attig, S. Bl¨ugel, D. Marx (Eds.), Institute for Advanced Simulation, Forschungszentrum J¨ulich, NIC Series, Vol. 42, ISBN 978-3-9810843-8-2, pp. 145-176, 2009. c 2009 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above. http://www.fz-juelich.de/nic-series/volume42 An Introduction to the Tight Binding Approximation – Implementation by Diagonalisation Anthony T. Paxton Atomistic Simulation Centre School of Mathematics and Physics Queen’s University Belfast Belfast BT1 7NN, UK E-mail: [email protected] 1 What is Tight Binding? “Tight binding” has existed for many years as a convenient and transparent model for the description of electronic structure in molecules and solids. It often provides the basis for construction of many body theories such as the Hubbard model and the Anderson impurity model. Slater and Koster call it the tight binding or “Bloch” method and their historic paper provides the systematic procedure for formulating a tight binding model.1 In their paper you will find the famous “Slater–Koster” table that is used to build a tight binding hamiltonian.
    [Show full text]
  • Large-Scale Electronic Structure Calculations of High-Z Metals on the Bluegene/L Platform
    Large-Scale Electronic Structure Calculations of High-Z Metals on the BlueGene/L Platform Francois Gygi Erik W. Draeger, Martin Schulz, Department of Applied Science Bronis R. de Supinski University of California, Davis Center for Applied Scientific Computing Davis, CA 95616 Lawrence Livermore National Laboratory 530-752-4042 Livermore, CA 94551 [email protected] {draeger1,schulz6,bronis}@llnl.gov John A.Gunnels, Vernon Austel, Franz Franchetti James C. Sexton Department of Electrical and Computer Engineering Carnegie Mellon University IBM Thomas J. Watson Research Center Pittsburgh, PA 15213 Yorktown Heights, NY 10598 [email protected] {gunnels,austel,sextonjc}@us.ibm.com Stefan Kral, Christoph W. Ueberhuber, Juergen Lorenz Institute of Analysis and Scientific Computing Vienna University of Technology, Vienna, Austria [email protected], [email protected] [email protected] ABSTRACT First-principles simulations of high-Z metallic systems using the Qbox code on the BlueGene/L supercomputer demonstrate General Terms unprecedented performance and scaling for a quantum simulation Algorithms, Measurement, Performance. code. Specifically designed to take advantage of massively- parallel systems like BlueGene/L, Qbox demonstrates excellent parallel efficiency and peak performance. A sustained peak Keywords performance of 207.3 TFlop/s was measured on 65,536 nodes, Electronic structure. First-principles Molecular Dynamics. Ab corresponding to 56.5% of the theoretical full machine peak using initio simulations. Parallel computing. BlueGene/L, Qbox. all 128k CPUs. 1. INTRODUCTION Categories and Subject Descriptors First-Principles Molecular Dynamics (FPMD) is an accurate J.2 [Physical Sciences and Engineering]:– Chemistry, Physics. atomistic simulation approach that is routinely applied to a variety of areas including solid-state physics, chemistry, biochemistry and nanotechnology [1].
    [Show full text]