Surface Electronic Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Surface Vs Bulk Electronic Structures of a Moderately Correlated
Surface vs bulk electronic structures of a moderately correlated topological insulator YbB6 revealed by ARPES N. Xu,1* C. E. Matt,1,2 E. Pomjakushina,3 J. H. Dil,4,1 G. Landolt, 1,5 J.-Z. Ma,1,6 X. Shi,1,6 R. S. Dhaka,1,4,7 N. C. Plumb,1 M. Radović,1,8 V. N. Strocov, 1 T. K. Kim,9 M. Hoesch, 9 K. Conder,3 J. Mesot,1,2,4 H. Ding,6, 10 and M. Shi1,† 1Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland 2Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland 3Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland 4Institute of Condensed Matter Physics, Ecole Polytechnique Fedé ralé de Lausanne, CH-1015 Lausanne, Switzerland 5Physik-Institut, Universität Zürich, Winterthurerstrauss 190, CH-8057 Zürich, Switzerland 6Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 7Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India 8 SwissFEL, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland 9Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK, 10 Collaborative Innovation Center of Quantum Matter, Beijing, China Page: 1 Systematic angle-resolved photoemission spectroscopy (ARPES) experiments have been carried out to investigate the bulk and (100) surface electronic structures of a topological mixed-valence insulator candidate, YbB6. The bulk states of YbB6 were probed with bulk-sensitive soft X-ray ARPES, which show strong three-dimensionality as required by cubic symmetry. -
Density Functional Theory
Density Functional Theory Fundamentals Video V.i Density Functional Theory: New Developments Donald G. Truhlar Department of Chemistry, University of Minnesota Support: AFOSR, NSF, EMSL Why is electronic structure theory important? Most of the information we want to know about chemistry is in the electron density and electronic energy. dipole moment, Born-Oppenheimer charge distribution, approximation 1927 ... potential energy surface molecular geometry barrier heights bond energies spectra How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Theoretical Musings! ● Ψ is complicated. ● Difficult to interpret. ● Can we simplify things? 1/2 ● Ψ has strange units: (prob. density) , ● Can we not use a physical observable? ● What particular physical observable is useful? ● Physical observable that allows us to construct the Hamiltonian a priori. How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Pierre Hohenberg and Walter Kohn 1964 — density functional theory All the information is contained in the density, a simple function of 3 coordinates. Electronic structure (continued) Erwin Schrödinger -
“Band Structure” for Electronic Structure Description
www.fhi-berlin.mpg.de Fundamentals of heterogeneous catalysis The very basics of “band structure” for electronic structure description R. Schlögl www.fhi-berlin.mpg.de 1 Disclaimer www.fhi-berlin.mpg.de • This lecture is a qualitative introduction into the concept of electronic structure descriptions different from “chemical bonds”. • No mathematics, unfortunately not rigorous. • For real understanding read texts on solid state physics. • Hellwege, Marfunin, Ibach+Lüth • The intention is to give an impression about concepts of electronic structure theory of solids. 2 Electronic structure www.fhi-berlin.mpg.de • For chemists well described by Lewis formalism. • “chemical bonds”. • Theorists derive chemical bonding from interaction of atoms with all their electrons. • Quantum chemistry with fundamentally different approaches: – DFT (density functional theory), see introduction in this series – Wavefunction-based (many variants). • All solve the Schrödinger equation. • Arrive at description of energetics and geometry of atomic arrangements; “molecules” or unit cells. 3 Catalysis and energy structure www.fhi-berlin.mpg.de • The surface of a solid is traditionally not described by electronic structure theory: • No periodicity with the bulk: cluster or slab models. • Bulk structure infinite periodically and defect-free. • Surface electronic structure theory independent field of research with similar basics. • Never assume to explain reactivity with bulk electronic structure: accuracy, model assumptions, termination issue. • But: electronic -
Surface and Quantum-Well States in Ultra Thin Pt Films on the Au(111) Surface
materials Article Formation of Surface and Quantum-Well States in Ultra Thin Pt Films on the Au(111) Surface Igor V. Silkin 1,*, Yury M. Koroteev 1,2,3, Pedro M. Echenique 4,5 and Evgueni V. Chulkov 3,4,5 1 Department of Physics, Tomsk State University, 634050 Tomsk, Russia; [email protected] 2 Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634050 Tomsk, Russia 3 Department of Physics, Saint Petersburg State University, 198504 Saint Petersburg, Russia 4 Donostia International Physics Center (DIPC), 20018 San Sebastian/Donostia, Basque Country, Spain; [email protected] (P.M.E.); [email protected] (E.V.C.) 5 Department of Materials Physics, Materials Physics Center CFM-MPC and Mixed Center CSIC-UPV, 20080 San Sebastian/Donostia, Basque Country, Spain * Correspondence: igor [email protected]; Tel.: +34-943-01-8284 Received: 21 November 2017; Accepted: 7 December 2017; Published: 9 December 2017 Abstract: The electronic structure of the Pt/Au(111) heterostructures with a number of Pt monolayers n ranging from one to three is studied in the density-functional-theory framework. The calculations demonstrate that the deposition of the Pt atomic thin films on gold substrate results in strong modifications of the electronic structure at the surface. In particular, the Au(111) s-p-type Shockley surface state becomes completely unoccupied at deposition of any number of Pt monolayers. The Pt adlayer generates numerous quantum-well states in various energy gaps of Au(111) with strong spatial confinement at the surface. As a result, strong enhancement in the local density of state at the surface Pt atomic layer in comparison with clean Pt surface is obtained. -
Simple Molecular Orbital Theory Chapter 5
Simple Molecular Orbital Theory Chapter 5 Wednesday, October 7, 2015 Using Symmetry: Molecular Orbitals One approach to understanding the electronic structure of molecules is called Molecular Orbital Theory. • MO theory assumes that the valence electrons of the atoms within a molecule become the valence electrons of the entire molecule. • Molecular orbitals are constructed by taking linear combinations of the valence orbitals of atoms within the molecule. For example, consider H2: 1s + 1s + • Symmetry will allow us to treat more complex molecules by helping us to determine which AOs combine to make MOs LCAO MO Theory MO Math for Diatomic Molecules 1 2 A ------ B Each MO may be written as an LCAO: cc11 2 2 Since the probability density is given by the square of the wavefunction: probability of finding the ditto atom B overlap term, important electron close to atom A between the atoms MO Math for Diatomic Molecules 1 1 S The individual AOs are normalized: 100% probability of finding electron somewhere for each free atom MO Math for Homonuclear Diatomic Molecules For two identical AOs on identical atoms, the electrons are equally shared, so: 22 cc11 2 2 cc12 In other words: cc12 So we have two MOs from the two AOs: c ,1() 1 2 c ,1() 1 2 2 2 After normalization (setting d 1 and _ d 1 ): 1 1 () () [2(1 S )]1/2 12 [2(1 S )]1/2 12 where S is the overlap integral: 01 S LCAO MO Energy Diagram for H2 H2 molecule: two 1s atomic orbitals combine to make one bonding and one antibonding molecular orbital. -
Electronic Structure Methods
Electronic Structure Methods • One-electron models – e.g., Huckel theory • Semiempirical methods – e.g., AM1, PM3, MNDO • Single-reference based ab initio methods •Hartree-Fock • Perturbation theory – MP2, MP3, MP4 • Coupled cluster theory – e.g., CCSD(T) • Multi-configurational based ab initio methods • MCSCF and CASSCF (also GVB) • MR-MP2 and CASPT2 • MR-CI •Ab Initio Methods for IPs, EAs, excitation energies •CI singles (CIS) •TDHF •EOM and Greens function methods •CC2 • Density functional theory (DFT)- Combine functionals for exchange and for correlation • Local density approximation (LDA) •Perdew-Wang 91 (PW91) • Becke-Perdew (BP) •BeckeLYP(BLYP) • Becke3LYP (B3LYP) • Time dependent DFT (TDDFT) (for excited states) • Hybrid methods • QM/MM • Solvation models Why so many methods to solve Hψ = Eψ? Electronic Hamiltonian, BO approximation 1 2 Z A 1 Z AZ B H = − ∑∇i − ∑∑∑+ + (in a.u.) 2 riA iB〈〈j rij A RAB 1/rij is what makes it tough (nonseparable)!! Hartree-Fock method: • Wavefunction antisymmetrized product of orbitals Ψ =|φ11 (τφτ ) ⋅⋅⋅NN ( ) | ← Slater determinant accounts for indistinguishability of electrons In general, τ refers to both spatial and spin coordinates For the 2-electron case 1 Ψ = ϕ (τ )ϕ (τ ) = []ϕ (τ )ϕ (τ ) −ϕ (τ )ϕ (τ ) 1 1 2 2 2 1 1 2 2 2 1 1 2 Energy minimized – variational principle 〈Ψ | H | Ψ〉 Vary orbitals to minimize E, E = 〈Ψ | Ψ〉 keeping orbitals orthogonal hi ϕi = εi ϕi → orbitals and orbital energies 2 φ j (r2 ) 1 2 Z J = dr h = − ∇ − A + (J − K ) i ∑ ∫ 2 i i ∑ i i j ≠ i r12 2 riA ϕϕ()rr () Kϕϕ()rdrr= ji22 () ii121∑∫ j ji≠ r12 Characteristics • Each e- “sees” average charge distribution due to other e-. -
The Electronic Structure of Molecules an Experiment Using Molecular Orbital Theory
The Electronic Structure of Molecules An Experiment Using Molecular Orbital Theory Adapted from S.F. Sontum, S. Walstrum, and K. Jewett Reading: Olmstead and Williams Sections 10.4-10.5 Purpose: Obtain molecular orbital results for total electronic energies, dipole moments, and bond orders for HCl, H 2, NaH, O2, NO, and O 3. The computationally derived bond orders are correlated with the qualitative molecular orbital diagram and the bond order obtained using the NO bond force constant. Introduction to Spartan/Q-Chem The molecule, above, is an anti-HIV protease inhibitor that was developed at Abbot Laboratories, Inc. Modeling of molecular structures has been instrumental in the design of new drug molecules like these inhibitors. The molecular model kits you used last week are very useful for visualizing chemical structures, but they do not give the quantitative information needed to design and build new molecules. Q-Chem is another "modeling kit" that we use to augment our information about molecules, visualize the molecules, and give us quantitative information about the structure of molecules. Q-Chem calculates the molecular orbitals and energies for molecules. If the calculation is set to "Equilibrium Geometry," Q-Chem will also vary the bond lengths and angles to find the lowest possible energy for your molecule. Q- Chem is a text-only program. A “front-end” program is necessary to set-up the input files for Q-Chem and to visualize the results. We will use the Spartan program as a graphical “front-end” for Q-Chem. In other words Spartan doesn’t do the calculations, but rather acts as a go-between you and the computational package. -
Electronic Structure Calculations and Density Functional Theory
Electronic Structure Calculations and Density Functional Theory Rodolphe Vuilleumier P^olede chimie th´eorique D´epartement de chimie de l'ENS CNRS { Ecole normale sup´erieure{ UPMC Formation ModPhyChem { Lyon, 09/10/2017 Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 1 / 56 Many applications of electronic structure calculations Geometries and energies, equilibrium constants Reaction mechanisms, reaction rates... Vibrational spectroscopies Properties, NMR spectra,... Excited states Force fields From material science to biology through astrochemistry, organic chemistry... ... Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 2 / 56 Length/,("-%0,11,("2,"3,4)(",3"2,"1'56+,+&" and time scales 0,1 nm 10 nm 1µm 1ps 1ns 1µs 1s Variables noyaux et atomes et molécules macroscopiques Modèles Gros-Grains électrons (champs) ! #$%&'(%')$*+," #-('(%')$*+," #.%&'(%')$*+," !" Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 3 / 56 Potential energy surface for the nuclei c The LibreTexts libraries Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 4 / 56 Born-Oppenheimer approximation Total Hamiltonian of the system atoms+electrons: H^T = T^N + V^NN + H^ MI me approximate system wavefunction: ! ~ ~ ~ ΨS (RI ; ~r1;:::; ~rN ) = Ψ(RI )Ψ0(~r1;:::; ~rN ; RI ) ~ Ψ0(~r1;:::; ~rN ; RI ): the ground state electronic wavefunction of the ~ electronic Hamiltonian H^ at fixed ionic configuration RI n o Energy of the electrons at this ionic configuration: ~ E0(RI ) = Ψ0 -
The Atomic and Electronic Structure of Dislocations in Ga Based Nitride Semiconductors Imad Belabbas, Pierre Ruterana, Jun Chen, Gérard Nouet
The atomic and electronic structure of dislocations in Ga based nitride semiconductors Imad Belabbas, Pierre Ruterana, Jun Chen, Gérard Nouet To cite this version: Imad Belabbas, Pierre Ruterana, Jun Chen, Gérard Nouet. The atomic and electronic structure of dislocations in Ga based nitride semiconductors. Philosophical Magazine, Taylor & Francis, 2006, 86 (15), pp.2245-2273. 10.1080/14786430600651996. hal-00513682 HAL Id: hal-00513682 https://hal.archives-ouvertes.fr/hal-00513682 Submitted on 1 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Philosophical Magazine & Philosophical Magazine Letters For Peer Review Only The atomic and electronic structure of dislocations in Ga based nitride semiconductors Journal: Philosophical Magazine & Philosophical Magazine Letters Manuscript ID: TPHM-05-Sep-0420.R2 Journal Selection: Philosophical Magazine Date Submitted by the 08-Dec-2005 Author: Complete List of Authors: BELABBAS, Imad; ENSICAEN, SIFCOM Ruterana, Pierre; ENSICAEN, SIFCOM CHEN, Jun; IUT, LRPMN NOUET, Gérard; ENSICAEN, SIFCOM Keywords: GaN, atomic structure, dislocations, electronic structure Keywords (user supplied): http://mc.manuscriptcentral.com/pm-pml Page 1 of 87 Philosophical Magazine & Philosophical Magazine Letters 1 2 3 4 The atomic and electronic structure of dislocations in Ga 5 6 based nitride semiconductors 7 8 9 10 11 12 1,3 1 2 1 13 I. -
Electronic Structure of Metal-Ceramic Interfaces
ISIJ International, Vol. 30 (1990), No. 12, pp. 1059-l065 Electronic Structure of Metal-Ceramic Interfaces Fumio S. OHUCHIand Qian ZHONG1) Central Research and DevelopmentDepartment, E. l. DuPontde Nemoursand Company,Experimental Sation, Wilmington, DE19880- 0356, U.S A. 1)Department of Materials Science and Engineering, University of Pennsylvania, Piladelphia, PA19104-6272, U.S.A. (Received on March 1, 1990, accepted in the final form on May18. 1990) Increasing technological applications of metal-ceramic systems have demandeda fundamental understanding of the properties of interfaces In this paper, wedescribe our approach to the study of electronib structure of metal-ceramic intertaces. Electron spectroscopies have been used as primary techniques to investigate the interaction betweenmetal overlayers and ceramic substrates under various experimental conditions. Thesedata are further elucidated by theoretical calculations, from which the electronic structures of the interface have beendeduced Atemperature dependenceof the band structures of Al203 is first discussed, then the evolution of the electronic structure and bonding of Cuand Ni to Al203 is studied. The relationship between electronic structures and interfacial properties are also addressed. KEYWORDS:metal-ceramic interface; alumina; copper; nickel; electron spectroscopy; electronic structure; UPS; XPS; LEELS. Introduction have the capability of resolving the distinct nature of 1. evolving chemical and electronic states of both metal Increasing technological applications of metal-ce- and ceramic components. Lastly, the experiments ramic systems, such as structural and electronic mate- need to be free from artifact, particularly contamina- rials, have generated great interest in a variety of' sci- tions, thus an ultra high yacuum(UHV) condition is entific issues concerning interfacial properties. Me- required so as to control the environmcnt. -
Density Functional Theory
NEA/NSC/R(2015)5 Chapter 12. Density functional theory M. Freyss CEA, DEN, DEC, Centre de Cadarache, France Abstract This chapter gives an introduction to first-principles electronic structure calculations based on the density functional theory (DFT). Electronic structure calculations have a crucial importance in the multi-scale modelling scheme of materials: not only do they enable one to accurately determine physical and chemical properties of materials, they also provide data for the adjustment of parameters (or potentials) in higher-scale methods such as classical molecular dynamics, kinetic Monte Carlo, cluster dynamics, etc. Most of the properties of a solid depend on the behaviour of its electrons, and in order to model or predict them it is necessary to have an accurate method to compute the electronic structure. DFT is based on quantum theory and does not make use of any adjustable or empirical parameter: the only input data are the atomic number of the constituent atoms and some initial structural information. The complicated many-body problem of interacting electrons is replaced by an equivalent single electron problem, in which each electron is moving in an effective potential. DFT has been successfully applied to the determination of structural or dynamical properties (lattice structure, charge density, magnetisation, phonon spectra, etc.) of a wide variety of solids. Its efficiency was acknowledged by the attribution of the Nobel Prize in Chemistry in 1998 to one of its authors, Walter Kohn. A particular attention is given in this chapter to the ability of DFT to model the physical properties of nuclear materials such as actinide compounds. -
ELECTRONIC STRUCTURE of the SEMIMETALS Bi and Sb 1571
PHYSICAL REVIEW 8 VOLUME 52, NUMBER 3 15 JULY 1995-I Electronic structure of the semimetals Bi and Sh Yi Liu and Roland E. Allen Department ofPhysics, Texas ACkM University, Coliege Station, Texas 77843-4242 (Received 22 December 1994; revised manuscript received 13 March 1995) We have developed a third-neighbor tight-binding model, with spin-orbit coupling included, to treat the electronic properties of Bi and Sb. This model successfully reproduces the features near the Fermi surface that will be most important in semimetal-semiconductor device structures, including (a) the small overlap of valence and conduction bands, (b) the electron and hole efFective masses, and (c) the shapes of the electron and hole Fermi surfaces. The present tight-binding model treats these semimetallic proper- ties quantitatively, and it should, therefore, be useful for calculations of the electronic properties of pro- posed semimetal-semiconductor systems, including superlattices and resonant-tunneling devices. I. INTRQDUCTIQN energy gaps in the vicinity of the Fermi energy for Bi and Sb make a multiband treatment necessary; (ii) the band Recently, several groups have reported the successful alignment of these semimetal-semiconductor superlattices fabrication of semimetal-semiconductor superlattices, in- is indirect in momentum space, so a theoretical treatment cluding PbTe-Bi, ' CdTe-Bi, and GaSb-Sb. Bulk Bi and must represent a mixture of bulk states from different Sb are group-V semimetals. They have a weak overlap symmetry points of the Brillouin zone '" (iii) the carrier between the valence and conduction bands, which leads effective masses (particularly along the [111] growth to a small number of free electrons and holes.