Large-Scale Electronic Structure Calculations of High-Z Metals on the BlueGene/L Platform Francois Gygi Erik W. Draeger, Martin Schulz, Department of Applied Science Bronis R. de Supinski University of California, Davis Center for Applied Scientific Computing Davis, CA 95616 Lawrence Livermore National Laboratory 530-752-4042 Livermore, CA 94551
[email protected] {draeger1,schulz6,bronis}@llnl.gov John A.Gunnels, Vernon Austel, Franz Franchetti James C. Sexton Department of Electrical and Computer Engineering Carnegie Mellon University IBM Thomas J. Watson Research Center Pittsburgh, PA 15213 Yorktown Heights, NY 10598
[email protected] {gunnels,austel,sextonjc}@us.ibm.com Stefan Kral, Christoph W. Ueberhuber, Juergen Lorenz Institute of Analysis and Scientific Computing Vienna University of Technology, Vienna, Austria
[email protected],
[email protected] [email protected] ABSTRACT First-principles simulations of high-Z metallic systems using the Qbox code on the BlueGene/L supercomputer demonstrate General Terms unprecedented performance and scaling for a quantum simulation Algorithms, Measurement, Performance. code. Specifically designed to take advantage of massively- parallel systems like BlueGene/L, Qbox demonstrates excellent parallel efficiency and peak performance. A sustained peak Keywords performance of 207.3 TFlop/s was measured on 65,536 nodes, Electronic structure. First-principles Molecular Dynamics. Ab corresponding to 56.5% of the theoretical full machine peak using initio simulations. Parallel computing. BlueGene/L, Qbox. all 128k CPUs. 1. INTRODUCTION Categories and Subject Descriptors First-Principles Molecular Dynamics (FPMD) is an accurate J.2 [Physical Sciences and Engineering]:– Chemistry, Physics. atomistic simulation approach that is routinely applied to a variety of areas including solid-state physics, chemistry, biochemistry and nanotechnology [1].