Types of Materials, Electron Energy Bands, and Chemical Bonds

Total Page:16

File Type:pdf, Size:1020Kb

Types of Materials, Electron Energy Bands, and Chemical Bonds Chapter 1 Types of Materials, Electron Energy Bands, and Chemical Bonds Look around you; you will easily distinguish three classes of materials: metals, ceramics, and poly- mers. Metals can be bent to shape but are strong; they conduct electricity and are never transparent. Ceramics, like stones, china, and glass, cannot be bent but fracture; they are electric insulators and some are transparent. Polymers (plastics) are lighter than the other materials and relatively soft; they do not keep the new shape when bent; they are used as electric insulators and can be transparent (most eyeglasses are plastic). Semiconductors are selected ceramics that are highly purifi ed and pro- cessed to achieve unique electronic properties. Fiberglass and other composites are artifi cial mixtures of two or three of the material classes mentioned above. Can we understand where these different properties come from? By studying the structure of atoms and the behavior of electrons when atoms are assembled to make materials, the differences between these classes become clear. In fact, these differences have much to do with Pauli’s exclusion principle; at the end of the book, you will be able to answer the following challenge: “ Draw a stone bridge and a steel bridge and explain their different shapes in terms of Pauli’s exclusion principle. ” We can also clas- sify the materials according to their utilization. One distinguishes structural materials, which are used for their strength in the construction of buildings and machines; functional materials, which include the conductors, insulators, semiconductors, optical materials, and magnets; and biomaterials, which are selected and processed for their compatibility with the human body and are used in the fabrication of prostheses and medical devices. In all these classes of utilization, one fi nds metals, ceramics, poly- mers, and composites. LEARNING OBJECTIVES After studying this chapter, the student will be able to: 1. Identify the main classes of materials and describe their distinguishing properties. 2. Describe the electronic structure of an atom in terms of nucleus and electrons. 004_P373587_Ch01.indd4_P373587_Ch01.indd 3 99/18/2008/18/2008 77:31:20:31:20 PPMM 4 CHAPTER 1 Types of Materials, Electron Energy Bands, and Chemical Bonds 3. Describe a chemical bond in terms of the lowering of the energy of shared valence electrons. 4. Defi ne electron energy levels and energy bands. 5. Distinguish between an energy band and a chemical bond. 6. Relate the electrical, optical, and mechanical properties of metals and ceramics to the behavior of the valence electrons in terms of Pauli’s exclusion principle. 7. Describe metallic, covalent, and ionic bonds. 8. Describe secondary bonds and distinguish between van der Waals and permanent dipole bonds. 9. Relate the mechanical, optical, and electrical properties of polymers to the nature of the sec- ondary bonds. 10. Distinguish between thermoplastic and thermoset polymers in terms of the bonds between molecular chains. 11. Relate elasticity and thermal expansion to the force potential of the chemical bond. 1.1 THE CLASSES OF MATERIALS Take a paper clip; it is made of metal . It is solid, but you can bend it and it will keep its new shape. Most of our tools are made of metals because they are strong, hard, and do not break readily under high stress. Let us observe how most metallic objects are fabricated: many consist of sheets or bars of metal that have been bent, stamped, or forged into their fi nal shapes; they have also been cut, sawed, or drilled and can be fabricated to high precision. Now look at a porcelain dish, which is a ceramic . You would not think of trying to bend it: it is very strong but brittle. A knife does not scratch a porcelain plate: porcelain is harder than steel but it will break when dropped to the fl oor. Ceramics remain strong at very high temperatures: ceramic bricks line the inside of furnaces and form the crucibles used in melting metals. These materials can only be machined by abrasion with diamond. Consider a plastic soda bottle. First, notice how light the plastic materials, scientifi cally known as poly- mers , are; this is because they are hydrocarbons, consisting mostly of carbon and hydrogen atoms, which are very light. The plastic is much softer than a metal or a ceramic; you can bend it, but it will not keep the new shape the way a metal does. Most plastics cannot be used at high temperatures; they soften or liquefy at temperatures not much higher than that of boiling water. Let us examine an electric cord. Its core is copper, a metal, which is an excellent conductor of electric- ity. In fact, all metals are good electric conductors. This wire is surrounded by a polymer insulator that can withstand high voltages without passage of any measurable current. Now look at a spark plug. The sparks are generated by a high voltage applied between two metallic electrodes. These are surrounded 004_P373587_Ch01.indd4_P373587_Ch01.indd 4 99/18/2008/18/2008 77:31:21:31:21 PPMM 1.1 The Classes of Materials 5 Table 1.1 Distinctive Properties of Metals, Ceramics and Polymers . Metals Ceramics Polymers Mechanical Properties Strong Hard Soft Deformable Not deformable Cannot be shaped Impact resistant Brittle like metals Electrical Properties Electric conductors Insulators Insulators Optical Properties Always opaque Can be transparent Can be transparent Composition Elements of columns 1 to 3 Diamond, Si, Ge and Hydrocarbons: molecules of the periodic table and all compounds: oxides, of C with H and some other transition metals and rare carbides, nitrides, sulfi des, elements. earths. selenides of metals. by a white ceramic insulator that can withstand a high voltage and tolerates the high temperatures of the engine. Ceramic insulators are also used to insulate high-voltage power lines from the metallic towers. Metals are good electric conductors; ceramics and polymers are electric insulators . Windows, glasses, diamond, sapphire (Al2 O3 ), quartz (SiO2 ), and many other ceramics are transpar- ent. Other ceramics are translucent, which means that light passes through them but is scattered by internal defects; some ceramics are colored; they are transparent to some wavelengths of light but not to others. Plastics can be transparent, translucent, or colored as well. The lenses of eyeglasses are now most often made of a polymer because of its low weight. Plastic soda bottles and many other polymers are trans- parent or translucent. No metal is transparent. Light of all wavelengths is absorbed and refl ected by metals. Metals are used as mirrors. Our observations are recapitulated in Table 1.1 . What about semiconductors and composites such as fi berglass or graphite tennis rackets? These mate- rials do not constitute different classes by nature. Semiconductors are ceramics (mostly silicon and compounds such as GaAs, GaP, etc.) or polymers; they are highly refi ned and processed to obtain their remarkable electronic properties. Composites are artifi cial mixtures of different materials that combine the properties of their constituents (fi berglass composites combine the strength of glass fi bers with the light weight of polymers; metal-ceramic composites possess the hardness of ceramics and the fracture resistance of metals). These will be discussed in later chapters. Can we understand what makes a material a metal, a ceramic, or a polymer? The major properties of the classes of materials are a direct consequence of the behavior of their valence electrons. In order to show that, we start by reviewing the structure of atoms and the periodic table, then we examine the behavior of the electrons when atoms join to form a molecule, and fi nally 004_P373587_Ch01.indd4_P373587_Ch01.indd 5 99/18/2008/18/2008 77:31:21:31:21 PPMM 6 CHAPTER 1 Types of Materials, Electron Energy Bands, and Chemical Bonds we examine the behavior of the electrons in a solid consisting of a very large number of atoms. With this knowledge, we analyze how the behavior of these electrons generates the distinctive properties of metals, ceramics, and polymers. 1.2 THE STRUCTURE OF ATOMS All matter is made of atoms. We know that every atom is formed of a small, positively charged nucleus that is surrounded by electrons. The nucleus is composed of protons and neutrons. Each pro- ton carries the electric charge q ϭ ϩ 1.6 ϫ 10 Ϫ 19 C; the neutron carries no charge. Each electron car- ries the negative charge q ϭ Ϫ 1.6 ϫ 10 Ϫ 19 C. A neutral atom contains the same number of protons and electrons. If this number is not equal, the atom carries a positive or negative charge and is called an ion. The number of protons in its nucleus characterizes every element; this is the atomic number . The proton and the neutron are about 1,840 times heavier than the electron; the number of protons and neutrons in the nucleus of an atom determines the atomic mass of an element . Not all atoms of a given element have the same number of neutrons. Atoms of a particular element that have different numbers of neutrons are referred to as isotopes . Because most elements are mixtures of different iso- topes, the atomic mass characterizing a given element is not necessarily an integer. Iron, for instance, has atomic number 26 and atomic mass 55.85. Iron atoms contain 26 protons and 26 electrons. About 85% of iron atoms contain 30 neutrons and 15% of them have 29 neutrons. The molecular weight of a compound is the sum of the atomic masses of the elements it contains. The molecu- ϭ ϩ ϫ lar weight of water is 18.016 16.00 (O) 2 1.008 (H); the molecular weight of alumina (Al2 O3 ) is ϭ 2 ϫ 26.98 (Al) ϩ 3 ϫ 16 (O) ϭ 101.98.
Recommended publications
  • Density Functional Theory
    Density Functional Theory Fundamentals Video V.i Density Functional Theory: New Developments Donald G. Truhlar Department of Chemistry, University of Minnesota Support: AFOSR, NSF, EMSL Why is electronic structure theory important? Most of the information we want to know about chemistry is in the electron density and electronic energy. dipole moment, Born-Oppenheimer charge distribution, approximation 1927 ... potential energy surface molecular geometry barrier heights bond energies spectra How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Theoretical Musings! ● Ψ is complicated. ● Difficult to interpret. ● Can we simplify things? 1/2 ● Ψ has strange units: (prob. density) , ● Can we not use a physical observable? ● What particular physical observable is useful? ● Physical observable that allows us to construct the Hamiltonian a priori. How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Pierre Hohenberg and Walter Kohn 1964 — density functional theory All the information is contained in the density, a simple function of 3 coordinates. Electronic structure (continued) Erwin Schrödinger
    [Show full text]
  • “Band Structure” for Electronic Structure Description
    www.fhi-berlin.mpg.de Fundamentals of heterogeneous catalysis The very basics of “band structure” for electronic structure description R. Schlögl www.fhi-berlin.mpg.de 1 Disclaimer www.fhi-berlin.mpg.de • This lecture is a qualitative introduction into the concept of electronic structure descriptions different from “chemical bonds”. • No mathematics, unfortunately not rigorous. • For real understanding read texts on solid state physics. • Hellwege, Marfunin, Ibach+Lüth • The intention is to give an impression about concepts of electronic structure theory of solids. 2 Electronic structure www.fhi-berlin.mpg.de • For chemists well described by Lewis formalism. • “chemical bonds”. • Theorists derive chemical bonding from interaction of atoms with all their electrons. • Quantum chemistry with fundamentally different approaches: – DFT (density functional theory), see introduction in this series – Wavefunction-based (many variants). • All solve the Schrödinger equation. • Arrive at description of energetics and geometry of atomic arrangements; “molecules” or unit cells. 3 Catalysis and energy structure www.fhi-berlin.mpg.de • The surface of a solid is traditionally not described by electronic structure theory: • No periodicity with the bulk: cluster or slab models. • Bulk structure infinite periodically and defect-free. • Surface electronic structure theory independent field of research with similar basics. • Never assume to explain reactivity with bulk electronic structure: accuracy, model assumptions, termination issue. • But: electronic
    [Show full text]
  • Simple Molecular Orbital Theory Chapter 5
    Simple Molecular Orbital Theory Chapter 5 Wednesday, October 7, 2015 Using Symmetry: Molecular Orbitals One approach to understanding the electronic structure of molecules is called Molecular Orbital Theory. • MO theory assumes that the valence electrons of the atoms within a molecule become the valence electrons of the entire molecule. • Molecular orbitals are constructed by taking linear combinations of the valence orbitals of atoms within the molecule. For example, consider H2: 1s + 1s + • Symmetry will allow us to treat more complex molecules by helping us to determine which AOs combine to make MOs LCAO MO Theory MO Math for Diatomic Molecules 1 2 A ------ B Each MO may be written as an LCAO: cc11 2 2 Since the probability density is given by the square of the wavefunction: probability of finding the ditto atom B overlap term, important electron close to atom A between the atoms MO Math for Diatomic Molecules 1 1 S The individual AOs are normalized: 100% probability of finding electron somewhere for each free atom MO Math for Homonuclear Diatomic Molecules For two identical AOs on identical atoms, the electrons are equally shared, so: 22 cc11 2 2 cc12 In other words: cc12 So we have two MOs from the two AOs: c ,1() 1 2 c ,1() 1 2 2 2 After normalization (setting d 1 and _ d 1 ): 1 1 () () [2(1 S )]1/2 12 [2(1 S )]1/2 12 where S is the overlap integral: 01 S LCAO MO Energy Diagram for H2 H2 molecule: two 1s atomic orbitals combine to make one bonding and one antibonding molecular orbital.
    [Show full text]
  • Electronic Structure Methods
    Electronic Structure Methods • One-electron models – e.g., Huckel theory • Semiempirical methods – e.g., AM1, PM3, MNDO • Single-reference based ab initio methods •Hartree-Fock • Perturbation theory – MP2, MP3, MP4 • Coupled cluster theory – e.g., CCSD(T) • Multi-configurational based ab initio methods • MCSCF and CASSCF (also GVB) • MR-MP2 and CASPT2 • MR-CI •Ab Initio Methods for IPs, EAs, excitation energies •CI singles (CIS) •TDHF •EOM and Greens function methods •CC2 • Density functional theory (DFT)- Combine functionals for exchange and for correlation • Local density approximation (LDA) •Perdew-Wang 91 (PW91) • Becke-Perdew (BP) •BeckeLYP(BLYP) • Becke3LYP (B3LYP) • Time dependent DFT (TDDFT) (for excited states) • Hybrid methods • QM/MM • Solvation models Why so many methods to solve Hψ = Eψ? Electronic Hamiltonian, BO approximation 1 2 Z A 1 Z AZ B H = − ∑∇i − ∑∑∑+ + (in a.u.) 2 riA iB〈〈j rij A RAB 1/rij is what makes it tough (nonseparable)!! Hartree-Fock method: • Wavefunction antisymmetrized product of orbitals Ψ =|φ11 (τφτ ) ⋅⋅⋅NN ( ) | ← Slater determinant accounts for indistinguishability of electrons In general, τ refers to both spatial and spin coordinates For the 2-electron case 1 Ψ = ϕ (τ )ϕ (τ ) = []ϕ (τ )ϕ (τ ) −ϕ (τ )ϕ (τ ) 1 1 2 2 2 1 1 2 2 2 1 1 2 Energy minimized – variational principle 〈Ψ | H | Ψ〉 Vary orbitals to minimize E, E = 〈Ψ | Ψ〉 keeping orbitals orthogonal hi ϕi = εi ϕi → orbitals and orbital energies 2 φ j (r2 ) 1 2 Z J = dr h = − ∇ − A + (J − K ) i ∑ ∫ 2 i i ∑ i i j ≠ i r12 2 riA ϕϕ()rr () Kϕϕ()rdrr= ji22 () ii121∑∫ j ji≠ r12 Characteristics • Each e- “sees” average charge distribution due to other e-.
    [Show full text]
  • The Electronic Structure of Molecules an Experiment Using Molecular Orbital Theory
    The Electronic Structure of Molecules An Experiment Using Molecular Orbital Theory Adapted from S.F. Sontum, S. Walstrum, and K. Jewett Reading: Olmstead and Williams Sections 10.4-10.5 Purpose: Obtain molecular orbital results for total electronic energies, dipole moments, and bond orders for HCl, H 2, NaH, O2, NO, and O 3. The computationally derived bond orders are correlated with the qualitative molecular orbital diagram and the bond order obtained using the NO bond force constant. Introduction to Spartan/Q-Chem The molecule, above, is an anti-HIV protease inhibitor that was developed at Abbot Laboratories, Inc. Modeling of molecular structures has been instrumental in the design of new drug molecules like these inhibitors. The molecular model kits you used last week are very useful for visualizing chemical structures, but they do not give the quantitative information needed to design and build new molecules. Q-Chem is another "modeling kit" that we use to augment our information about molecules, visualize the molecules, and give us quantitative information about the structure of molecules. Q-Chem calculates the molecular orbitals and energies for molecules. If the calculation is set to "Equilibrium Geometry," Q-Chem will also vary the bond lengths and angles to find the lowest possible energy for your molecule. Q- Chem is a text-only program. A “front-end” program is necessary to set-up the input files for Q-Chem and to visualize the results. We will use the Spartan program as a graphical “front-end” for Q-Chem. In other words Spartan doesn’t do the calculations, but rather acts as a go-between you and the computational package.
    [Show full text]
  • Electronic Structure Calculations and Density Functional Theory
    Electronic Structure Calculations and Density Functional Theory Rodolphe Vuilleumier P^olede chimie th´eorique D´epartement de chimie de l'ENS CNRS { Ecole normale sup´erieure{ UPMC Formation ModPhyChem { Lyon, 09/10/2017 Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 1 / 56 Many applications of electronic structure calculations Geometries and energies, equilibrium constants Reaction mechanisms, reaction rates... Vibrational spectroscopies Properties, NMR spectra,... Excited states Force fields From material science to biology through astrochemistry, organic chemistry... ... Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 2 / 56 Length/,("-%0,11,("2,"3,4)(",3"2,"1'56+,+&" and time scales 0,1 nm 10 nm 1µm 1ps 1ns 1µs 1s Variables noyaux et atomes et molécules macroscopiques Modèles Gros-Grains électrons (champs) ! #$%&'(%')$*+," #-('(%')$*+," #.%&'(%')$*+," !" Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 3 / 56 Potential energy surface for the nuclei c The LibreTexts libraries Rodolphe Vuilleumier (ENS { UPMC) Electronic Structure and DFT ModPhyChem 4 / 56 Born-Oppenheimer approximation Total Hamiltonian of the system atoms+electrons: H^T = T^N + V^NN + H^ MI me approximate system wavefunction: ! ~ ~ ~ ΨS (RI ; ~r1;:::; ~rN ) = Ψ(RI )Ψ0(~r1;:::; ~rN ; RI ) ~ Ψ0(~r1;:::; ~rN ; RI ): the ground state electronic wavefunction of the ~ electronic Hamiltonian H^ at fixed ionic configuration RI n o Energy of the electrons at this ionic configuration: ~ E0(RI ) = Ψ0
    [Show full text]
  • The Atomic and Electronic Structure of Dislocations in Ga Based Nitride Semiconductors Imad Belabbas, Pierre Ruterana, Jun Chen, Gérard Nouet
    The atomic and electronic structure of dislocations in Ga based nitride semiconductors Imad Belabbas, Pierre Ruterana, Jun Chen, Gérard Nouet To cite this version: Imad Belabbas, Pierre Ruterana, Jun Chen, Gérard Nouet. The atomic and electronic structure of dislocations in Ga based nitride semiconductors. Philosophical Magazine, Taylor & Francis, 2006, 86 (15), pp.2245-2273. 10.1080/14786430600651996. hal-00513682 HAL Id: hal-00513682 https://hal.archives-ouvertes.fr/hal-00513682 Submitted on 1 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Philosophical Magazine & Philosophical Magazine Letters For Peer Review Only The atomic and electronic structure of dislocations in Ga based nitride semiconductors Journal: Philosophical Magazine & Philosophical Magazine Letters Manuscript ID: TPHM-05-Sep-0420.R2 Journal Selection: Philosophical Magazine Date Submitted by the 08-Dec-2005 Author: Complete List of Authors: BELABBAS, Imad; ENSICAEN, SIFCOM Ruterana, Pierre; ENSICAEN, SIFCOM CHEN, Jun; IUT, LRPMN NOUET, Gérard; ENSICAEN, SIFCOM Keywords: GaN, atomic structure, dislocations, electronic structure Keywords (user supplied): http://mc.manuscriptcentral.com/pm-pml Page 1 of 87 Philosophical Magazine & Philosophical Magazine Letters 1 2 3 4 The atomic and electronic structure of dislocations in Ga 5 6 based nitride semiconductors 7 8 9 10 11 12 1,3 1 2 1 13 I.
    [Show full text]
  • Electronic Structure of Metal-Ceramic Interfaces
    ISIJ International, Vol. 30 (1990), No. 12, pp. 1059-l065 Electronic Structure of Metal-Ceramic Interfaces Fumio S. OHUCHIand Qian ZHONG1) Central Research and DevelopmentDepartment, E. l. DuPontde Nemoursand Company,Experimental Sation, Wilmington, DE19880- 0356, U.S A. 1)Department of Materials Science and Engineering, University of Pennsylvania, Piladelphia, PA19104-6272, U.S.A. (Received on March 1, 1990, accepted in the final form on May18. 1990) Increasing technological applications of metal-ceramic systems have demandeda fundamental understanding of the properties of interfaces In this paper, wedescribe our approach to the study of electronib structure of metal-ceramic intertaces. Electron spectroscopies have been used as primary techniques to investigate the interaction betweenmetal overlayers and ceramic substrates under various experimental conditions. Thesedata are further elucidated by theoretical calculations, from which the electronic structures of the interface have beendeduced Atemperature dependenceof the band structures of Al203 is first discussed, then the evolution of the electronic structure and bonding of Cuand Ni to Al203 is studied. The relationship between electronic structures and interfacial properties are also addressed. KEYWORDS:metal-ceramic interface; alumina; copper; nickel; electron spectroscopy; electronic structure; UPS; XPS; LEELS. Introduction have the capability of resolving the distinct nature of 1. evolving chemical and electronic states of both metal Increasing technological applications of metal-ce- and ceramic components. Lastly, the experiments ramic systems, such as structural and electronic mate- need to be free from artifact, particularly contamina- rials, have generated great interest in a variety of' sci- tions, thus an ultra high yacuum(UHV) condition is entific issues concerning interfacial properties. Me- required so as to control the environmcnt.
    [Show full text]
  • Density Functional Theory
    NEA/NSC/R(2015)5 Chapter 12. Density functional theory M. Freyss CEA, DEN, DEC, Centre de Cadarache, France Abstract This chapter gives an introduction to first-principles electronic structure calculations based on the density functional theory (DFT). Electronic structure calculations have a crucial importance in the multi-scale modelling scheme of materials: not only do they enable one to accurately determine physical and chemical properties of materials, they also provide data for the adjustment of parameters (or potentials) in higher-scale methods such as classical molecular dynamics, kinetic Monte Carlo, cluster dynamics, etc. Most of the properties of a solid depend on the behaviour of its electrons, and in order to model or predict them it is necessary to have an accurate method to compute the electronic structure. DFT is based on quantum theory and does not make use of any adjustable or empirical parameter: the only input data are the atomic number of the constituent atoms and some initial structural information. The complicated many-body problem of interacting electrons is replaced by an equivalent single electron problem, in which each electron is moving in an effective potential. DFT has been successfully applied to the determination of structural or dynamical properties (lattice structure, charge density, magnetisation, phonon spectra, etc.) of a wide variety of solids. Its efficiency was acknowledged by the attribution of the Nobel Prize in Chemistry in 1998 to one of its authors, Walter Kohn. A particular attention is given in this chapter to the ability of DFT to model the physical properties of nuclear materials such as actinide compounds.
    [Show full text]
  • ELECTRONIC STRUCTURE of the SEMIMETALS Bi and Sb 1571
    PHYSICAL REVIEW 8 VOLUME 52, NUMBER 3 15 JULY 1995-I Electronic structure of the semimetals Bi and Sh Yi Liu and Roland E. Allen Department ofPhysics, Texas ACkM University, Coliege Station, Texas 77843-4242 (Received 22 December 1994; revised manuscript received 13 March 1995) We have developed a third-neighbor tight-binding model, with spin-orbit coupling included, to treat the electronic properties of Bi and Sb. This model successfully reproduces the features near the Fermi surface that will be most important in semimetal-semiconductor device structures, including (a) the small overlap of valence and conduction bands, (b) the electron and hole efFective masses, and (c) the shapes of the electron and hole Fermi surfaces. The present tight-binding model treats these semimetallic proper- ties quantitatively, and it should, therefore, be useful for calculations of the electronic properties of pro- posed semimetal-semiconductor systems, including superlattices and resonant-tunneling devices. I. INTRQDUCTIQN energy gaps in the vicinity of the Fermi energy for Bi and Sb make a multiband treatment necessary; (ii) the band Recently, several groups have reported the successful alignment of these semimetal-semiconductor superlattices fabrication of semimetal-semiconductor superlattices, in- is indirect in momentum space, so a theoretical treatment cluding PbTe-Bi, ' CdTe-Bi, and GaSb-Sb. Bulk Bi and must represent a mixture of bulk states from different Sb are group-V semimetals. They have a weak overlap symmetry points of the Brillouin zone '" (iii) the carrier between the valence and conduction bands, which leads effective masses (particularly along the [111] growth to a small number of free electrons and holes.
    [Show full text]
  • An Introduction to the Tight Binding Approximation – Implementation by Diagonalisation
    Institute for Advanced Simulation An Introduction to the Tight Binding Approximation – Implementation by Diagonalisation Anthony T. Paxton published in Multiscale Simulation Methods in Molecular Sciences, J. Grotendorst, N. Attig, S. Bl¨ugel, D. Marx (Eds.), Institute for Advanced Simulation, Forschungszentrum J¨ulich, NIC Series, Vol. 42, ISBN 978-3-9810843-8-2, pp. 145-176, 2009. c 2009 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above. http://www.fz-juelich.de/nic-series/volume42 An Introduction to the Tight Binding Approximation – Implementation by Diagonalisation Anthony T. Paxton Atomistic Simulation Centre School of Mathematics and Physics Queen’s University Belfast Belfast BT1 7NN, UK E-mail: [email protected] 1 What is Tight Binding? “Tight binding” has existed for many years as a convenient and transparent model for the description of electronic structure in molecules and solids. It often provides the basis for construction of many body theories such as the Hubbard model and the Anderson impurity model. Slater and Koster call it the tight binding or “Bloch” method and their historic paper provides the systematic procedure for formulating a tight binding model.1 In their paper you will find the famous “Slater–Koster” table that is used to build a tight binding hamiltonian.
    [Show full text]
  • Large-Scale Electronic Structure Calculations of High-Z Metals on the Bluegene/L Platform
    Large-Scale Electronic Structure Calculations of High-Z Metals on the BlueGene/L Platform Francois Gygi Erik W. Draeger, Martin Schulz, Department of Applied Science Bronis R. de Supinski University of California, Davis Center for Applied Scientific Computing Davis, CA 95616 Lawrence Livermore National Laboratory 530-752-4042 Livermore, CA 94551 [email protected] {draeger1,schulz6,bronis}@llnl.gov John A.Gunnels, Vernon Austel, Franz Franchetti James C. Sexton Department of Electrical and Computer Engineering Carnegie Mellon University IBM Thomas J. Watson Research Center Pittsburgh, PA 15213 Yorktown Heights, NY 10598 [email protected] {gunnels,austel,sextonjc}@us.ibm.com Stefan Kral, Christoph W. Ueberhuber, Juergen Lorenz Institute of Analysis and Scientific Computing Vienna University of Technology, Vienna, Austria [email protected], [email protected] [email protected] ABSTRACT First-principles simulations of high-Z metallic systems using the Qbox code on the BlueGene/L supercomputer demonstrate General Terms unprecedented performance and scaling for a quantum simulation Algorithms, Measurement, Performance. code. Specifically designed to take advantage of massively- parallel systems like BlueGene/L, Qbox demonstrates excellent parallel efficiency and peak performance. A sustained peak Keywords performance of 207.3 TFlop/s was measured on 65,536 nodes, Electronic structure. First-principles Molecular Dynamics. Ab corresponding to 56.5% of the theoretical full machine peak using initio simulations. Parallel computing. BlueGene/L, Qbox. all 128k CPUs. 1. INTRODUCTION Categories and Subject Descriptors First-Principles Molecular Dynamics (FPMD) is an accurate J.2 [Physical Sciences and Engineering]:– Chemistry, Physics. atomistic simulation approach that is routinely applied to a variety of areas including solid-state physics, chemistry, biochemistry and nanotechnology [1].
    [Show full text]