Downloaded from molecularcasestudies.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press De novo missense variant in the GTPase effector domain (GED) of DNM1L leads to static encephalopathy and seizures Nurit Assia Batzir1,†, Pranjali K. Bhagwat1,2,†, Tanya N. Eble1, Pengfei Liu1,3, Christine M. Eng1,3, Sarah H. Elsea1,3, Laurie A. Robak1,2, Fernando Scaglia1,4, Alica M. Goldman1, Shweta U. Dhar1,5,* and Michael F. Wangler1,2,* 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA, 2Neurological Research Institute, Texas Children’s Hospital, Houston TX 77030, USA, 3Baylor Genetics, Houston, TX 77021 USA, 4BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, ShaTin, New Territories, Hong Kong SAR, 5Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA † Equal Contribution * To whom correspondence should be addressed at: Neurologic Research Institute, Suite N.1050, 1250 Moursund Ave, Houston, TX 77030 USA. Tel: +1 8328248716; Fax: +1 8328251240; Email:
[email protected] AND Shweta Dhar: One Baylor Plz, MS 228, Baylor College of Medicine, Houston, TX 77030, USA. Tel: +1 7137987764; Fax: +1 7137986450; Email:
[email protected] Running Title: DNM1L GTPase effector domain variant in epilepsy 1 Downloaded from molecularcasestudies.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT DNM1L encodes a GTPase of the dynamin superfamily which plays a crucial role in mitochondrial and peroxisomal fission. Pathogenic variants affecting the middle domain and the GTPase domain of DNM1L have been implicated in encephalopathy due to defective mitochondrial and peroxisomal fission 1 (EMPF1, MIM #614388).