Pathway Analysis of Commonly Expressed Genes Found in Primates and in Mouse During Naïve State of Pluripotenc Keggid Kegg Names

Total Page:16

File Type:pdf, Size:1020Kb

Pathway Analysis of Commonly Expressed Genes Found in Primates and in Mouse During Naïve State of Pluripotenc Keggid Kegg Names Pathway analysis of commonly expressed genes found in primates and in mouse during naïve state of pluripotency. keggid kegg_namesig_pw n_pw n_all n_sig p_hyper q_hyper genes hsa04110 Cell cycle 105 128 5869 2561 2.02E-19 4.64E-17 CDK2,CDK4,CDK6,CDK7,CDKN1A,CDKN1B,STAG1,CDKN2B,ANAPC10,MAD2L2,STAG2,GADD45G,DBF4,YWHAQ,CHEK1,CHEK2,CREBBP,GADD45A,E2F1,E2F3,E2F4,E2F5,EP300,ORC3,CDC26,ABL1,ANAPC13,SFN,GSK3B,ANAPC2,ANAPC4,HDAC1,HDAC2,MAD2L1,SMAD2,SMAD3,SMAD4,MCM2,MCM3,MCM4,MCM5,MCM6,MCM7,MDM2,MYC,GADD45B,ATM,ORC1,ORC2,ORC4,ORC5,FZR1,ANAPC7,ANAPC11,PLK1,ATR,PRKDC,RAD21,RB1,RBL1,CCND1,ANAPC1,SKP2,BUB1,BUB1B,TFDP1,TFDP2,TGFB1,TGFB2,TTK,WEE1,YWHAB,YWHAE,YWHAG,YWHAH,YWHAZ,ZBTB17,SMC1A,CDC7,CDC45,MAD1L1,CDC14A,CDC23,CDC16,CCNA2,CCNB1,CCND2,CCND3,CCNE1,CCNH,PKMYT1,SMC3,CCNB2,CCNE2,BUB3,PTTG1,ESPL1,CDK1,CDC6,CDC20,CDC25A,CDC25B,CDC25C,CDC27,RBX1 hsa03013 RNA transport116 152 5869 2561 1.03E-16 1.18E-14 SNUPN,EIF1,POP7,SRRM1,SAP18,EIF1B,PRMT5,TACC3,NXF1,RPP30,RPP38,PAIP1,POP4,RPP40,RNPS1,POP1,STRAP,DDX20,XPOT,CLNS1A,NUP35,RPP25L,EEF1A1,EEF1A2,EIF2S1,EIF2B1,EIF4A1,EIF4B,EIF4E,EIF4EBP1,EIF4G1,EIF4G2,EIF5,CASC3,NCBP2,ACIN1,NUP205,NUP210,NUP62,GEMIN5,UPF2,PABPC1,NXT1,NUP43,EIF3E,KPNB1,MAGOH,NCBP1,NUP88,NUP98,GEMIN4,NMD3,POP5,PHAX,NUP54,PNN,RPP25,GEMIN8,MAGOHB,ELAC1,NDC1,NUP133,NXT2,NUP107,THOC2,XPO5,RAN,RANBP2,RANGAP1,SENP2,UPF1,ELAC2,SEC13,UPF3B,SMN1,SUMO3,SUMO2,TPR,SUMO1,XPO1,NUP37,DDX39B,THOC6,GEMIN7,GEMIN6,RPP21,NUP85,THOC7,NUP214,AAAS,SEH1L,THOC3,RAE1,THOC5,EIF3A,EIF3B,EIF3C,EIF3D,EIF3F,EIF3G,EIF3H,EIF3I,EIF4G3,PABPC4,EIF2B4,EIF2B2,EIF2B5,EIF2S2,EIF4E2,NUP155,EIF5B,TGS1,NUP93,EIF4A3,NUP153,THOC1 hsa04141 Protein processing123 in endoplasmic168 5869reticulum 2561 3.13E-15 2.39E-13 PREB,PDIA6,BCAP31,STUB1,UBE4B,DNAJA2,MARCH6,SEC24B,UBE2E3,SEC23B,SEC23A,HYOU1,SEC24A,HSPH1,MAN1A2,SEC61B,OS9,LMAN2,ERP29,CKAP4,SEC63,MAN1B1,ATF6B,DAD1,DDIT3,DDOST,EIF2S1,STT3B,HSPA4L,ATF6,GANAB,TRAM1,SEC61G,HSPBP1,PPP1R15A,SVIP,AMFR,EIF2AK1,ERLEC1,PDIA3,SEC61A1,UBQLN2,UBQLN1,DNAJB2,DNAJA1,HSPA1B,HSPA5,HSPA8,HSP90AB1,DNAJB1,STT3A,LMAN1,ATXN3,EIF2AK4,ATF4,NFE2L2,P4HB,DERL2,SAR1B,UBE2J1,DNAJC10,DNAJB12,SEC61A2,YOD1,NPLOC4,EDEM2,NGLY1,PRKCSH,NSFL1C,MAPK8,MAPK9,MAP2K7,DNAJC3,UGGT1,UBQLN4,MAN1C1,BAG1,BAK1,BAX,RAD23A,RAD23B,RNF5,RPN1,RPN2,RRBP1,SEC13,SEL1L,DNAJC1,SIL1,SSR1,SSR2,SSR3,SSR4,SEC62,HSP90B1,TRAF2,UBE2D1,UBE2E1,UBE2E2,UBE2G1,UBE2G2,UFD1L,VCP,WFS1,XBP1,MOGS,DERL1,TUSC3,EDEM3,UBXN6,CALR,CANX,CAPN1,CAPN2,SYVN1,MBTPS1,PLAA,EIF2AK3,BAG2,SEC24C,EDEM1,HERPUD1,RBX1 hsa03040 Spliceosome97 128 5869 2561 7.86E-14 4.5E-12 PQBP1,SMNDC1,BCAS2,SF3A1,PPIE,PPIH,CHERP,SLU7,PRPF8,USP39,TXNL4A,TCERG1,SF3A3,SF3B2,SNRNP27,LSM6,DDX42,CCDC12,ZMAT2,DDX5,DHX15,HNRNPA3,PUF60,NCBP2,ACIN1,SNRNP200,U2SURP,SF3B3,SF3B1,LSM5,PRPF6,LSM4,SYF2,PRPF31,LSM3,PRPF19,TRA2A,HNRNPA1,HNRNPC,HNRNPK,HNRNPU,HSPA1B,HSPA8,MAGOH,HNRNPM,NCBP1,PCBP1,CRNKL1,CWC15,LSM7,WBP11,PLRG1,MAGOHB,PRPF38B,PRPF40A,RBM22,XAB2,THOC2,LSM2,SRSF1,SRSF2,SRSF3,SRSF4,SRSF6,SRSF7,TRA2B,SNRNP70,SNRPA,SNRPB,SNRPB2,SNRPC,SNRPD1,SNRPD2,SNRPD3,SNRPE,SNRPF,U2AF1,DDX39B,SF3A2,SF3B5,THOC3,DHX16,PHF5A,PRPF38A,PRPF18,SRSF9,BUD31,SART1,PRPF4,PRPF3,EFTUD2,DDX23,AQR,EIF4A3,DDX46,CDC5L,THOC1 hsa03008 Ribosome biogenesis65 in81 eukaryotes5869 2561 1.23E-11 5.61E-10 RCL1,MPHOSPH10,POP7,EMG1,NXF1,NOP56,RPP30,RPP38,POP4,RPP40,UTP14A,WDR3,POP1,WDR36,RPP25L,CSNK2A1,CSNK2A2,CSNK2B,SPATA5,DKC1,FBL,XRN2,WDR43,GTPBP4,REXO2,GNL3,RRP7A,NOB1,DROSHA,NXT1,GNL2,EIF6,NVL,NMD3,FCF1,UTP18,POP5,NOP58,GAR1,XRN1,GNL3L,RPP25,HEATR1,RBM28,NAT10,IMP3,LSG1,NHP2,RIOK2,UTP6,NXT2,REXO1,PWP2,RAN,NOL6,TAF9,TCOF1,XPO1,EFTUD1,RIOK1,WDR75,UTP15,CIRH1A,IMP4,BMS1 hsa03018 RNA degradation58 71 5869 2561 4.06E-11 1.55E-09 TOB1,MPHOSPH6,C1D,TOB2,BTG3,PAPD7,LSM6,EXOSC8,DDX6,DCP2,DHX36,DCP1B,ENO2,PATL1,XRN2,DIS3,EXOSC7,CNOT1,EXOSC2,SKIV2L2,EDC4,LSM5,PAN3,LSM4,CNOT10,PABPC1,LSM1,LSM3,DCPS,CNOT7,HSPA9,HSPD1,CNOT2,CNOT3,CNOT4,PARN,EXOSC3,EXOSC1,LSM7,EXOSC9,EXOSC10,XRN1,EXOSC4,DCP1A,EXOSC5,CNOT6,LSM2,SKIV2L,BTG1,BTG2,EDC3,WDR61,PNPT1,PABPC4,RQCD1,CNOT8,TTC37,PAN2 hsa04120 Ubiquitin mediated98 proteolysis139 5869 2561 8.52E-11 2.79E-09 UBA2,SAE1,HUWE1,STUB1,UBE4B,ANAPC10,PIAS3,UBE2E3,WWP1,WWP2,UBE2F,DDB1,DDB2,TRIM32,RHOBTB2,FBXW11,MGRN1,PPIL2,CDC26,ANAPC13,RCHY1,HERC4,FBXW8,UBE2S,PRPF19,ANAPC2,ANAPC4,UBE2K,BIRC2,XIAP,MDM2,MAP3K1,MID1,TRIM37,NEDD4,FZR1,UBR5,ANAPC7,UBE2J1,ANAPC11,PIAS4,UBE2R2,DET1,FANCL,UBA6,UBE2W,UBE2Q1,KLHL9,SMURF1,BIRC6,UBE2O,RFWD2,ANAPC1,SMURF2,SKP2,UBE2Z,BRCA1,TCEB1,TCEB2,TRAF6,UBE2B,UBE2D1,UBE2E1,UBE2E2,UBE2G1,UBE2G2,UBE2H,UBE2L3,VHL,CUL5,ITCH,SYVN1,CUL4B,CUL4A,CUL3,CUL2,PIAS1,SOCS1,CBL,CBLB,CDC23,CDC16,HERC2,HERC1,BTRC,SOCS3,UBA3,UBE2M,UBE2Q2,TRIP12,UBE4A,RNF7,KEAP1,CUL7,CDC20,CDC27,CDC34,RBX1 hsa05220 Chronic myeloid57 leukemia73 5869 2561 1.64E-09 4.71E-08 AKT3,CDK4,CDK6,CDKN1A,CDKN1B,CHUK,CRK,CRKL,CTBP1,E2F1,E2F3,AKT1,AKT2,ABL1,GRB2,HDAC1,HDAC2,HRAS,IKBKB,ARAF,KRAS,SMAD3,SMAD4,MDM2,MYC,NFKB1,NFKBIA,NRAS,PIK3CA,PIK3CB,PIK3R1,PIK3R2,SHC3,MAPK1,MAPK3,MAP2K1,MAP2K2,BAD,PTPN11,RAF1,RB1,CCND1,RELA,BCL2L1,BCR,SHC1,SOS1,SOS2,STAT5B,TGFB1,TGFB2,TGFBR1,TGFBR2,PIK3R3,CBL,CBLB,GAB2 hsa05210 Colorectal cancer47 62 5869 2561 2.31E-07 5.88E-06 AKT3,CTNNB1,AKT1,AKT2,GSK3B,APC,BIRC5,ARAF,JUN,KRAS,RHOA,SMAD2,SMAD3,SMAD4,MLH1,MSH2,MSH3,MYC,LEF1,PIK3CA,PIK3CB,PIK3R1,PIK3R2,CYCS,MAPK1,MAPK3,MAPK8,MAPK9,MAP2K1,BAD,BAX,RAC1,RAC2,RAC3,RAF1,CCND1,TCF7L2,TGFB1,TGFB2,TGFBR1,TGFBR2,AXIN1,AXIN2,TCF7L1,CASP3,CASP9,PIK3R3 hsa04722 Neurotrophin83 signaling 127pathway 5869 2561 5.15E-07 1.18E-05 AKT3,SH2B3,SH2B2,FRS2,YWHAQ,PRDM4,CRK,CRKL,CSK,AKT1,AKT2,FOXO3,ABL1,GAB1,RPS6KA6,GRB2,GSK3B,HRAS,IKBKB,IRS1,JUN,KRAS,RHOA,ARHGDIA,ARHGDIB,MAP3K1,MAP3K3,ATF4,NFKB1,NFKBIA,NGFR,NRAS,PDK1,PIK3CA,PIK3CB,PIK3R1,PIK3R2,PLCG1,SHC3,PRKCD,MAPK1,MAPK3,MAPK7,MAPK8,MAPK9,MAP2K1,MAP2K2,MAP2K5,MAP2K7,PSEN1,PSEN2,BAD,KIDINS220,PTPN11,BAX,RAC1,RAF1,RAP1B,RELA,RPS6KA2,RPS6KA3,SORT1,MAPK12,SHC1,SOS1,SOS2,TRAF6,YWHAB,YWHAE,YWHAG,YWHAH,YWHAZ,CALM1,CALM3,CAMK2D,CAMK2G,IRS4,PIK3R3,IRS2,RIPK2,MAPKAPK2,MAGED1,CDC42 hsa03420 Nucleotide excision36 repair45 5869 2561 6.15E-07 1.28E-05 CDK7,CETN2,POLD3,DDB1,DDB2,ERCC1,ERCC2,ERCC3,ERCC4,GTF2H1,GTF2H2,GTF2H3,GTF2H4,GTF2H5,MNAT1,POLE3,POLD1,POLD2,POLE2,POLE4,POLD4,RAD23A,RAD23B,RFC2,RFC3,RFC4,RFC5,RPA1,RPA2,RPA3,XPA,XPC,CUL4B,CUL4A,CCNH,RBX1 hsa00240 Pyrimidine metabolism67 99 5869 2561 9.86E-07 1.75E-05 NME6,POLR3F,POLR3G,POLR3C,POLD3,POLR3A,CANT1,UPRT,DCK,DCTD,POLR3H,DHODH,DUT,NT5C2,POLA2,POLR1A,NME7,NT5C,ZNRD1,NUDT2,ITPA,NME3,NME4,PNP,AK3,POLR1D,CMPK1,POLR3K,POLE3,POLA1,POLD1,POLD2,POLE2,POLR2B,POLR2C,POLR2D,POLR2E,POLR2F,POLR2G,POLR2H,POLR2I,POLR2J,POLR2K,POLR2L,UCKL1,PRIM1,POLR3B,CTPS2,POLE4,POLD4,RRM1,RRM2,POLR1E,POLR3D,TK1,TYMS,UCK2,UMPS,CAD,UCK1,POLR1B,PNPT1,POLR1C,ENTPD6,ENTPD5,ENTPD4,CDA hsa03015 mRNA surveillance58 pathway83 5869 2561 1.04E-06 1.75E-05 SRRM1,SAP18,NXF1,HBS1L,CPSF4,PAPOLA,RNPS1,CLP1,NUDT21,CPSF6,CSTF1,CSTF2,CSTF3,ETF1,CASC3,NCBP2,ACIN1,CSTF2T,SMG6,SMG5,GSPT2,UPF2,DAZAP1,PABPC1,NXT1,GSPT1,CPSF1,MAGOH,MSI1,NCBP1,PCF11,CPSF3,CPSF2,PNN,MAGOHB,PPP2CA,PPP2CB,PPP2R1A,PPP2R1B,PPP2R3A,PPP2R5A,PPP2R5B,PPP2R5D,PPP2R5E,PPP2R2D,NXT2,UPF1,PAPOLG,UPF3B,DDX39B,CPSF7,PABPN1,SYMPK,RNMT,RNGTT,PABPC4,EIF4A3,SMG7 hsa03030 DNA replication30 36 5869 2561 1.07E-06 1.75E-05 RNASEH2A,POLD3,DNA2,FEN1,POLA2,RNASEH1,MCM2,MCM3,MCM4,MCM5,MCM6,MCM7,POLE3,POLA1,POLD1,POLD2,POLE2,PRIM1,POLE4,POLD4,RFC2,RFC3,RFC4,RFC5,RPA1,RPA2,RPA3,SSBP1,RNASEH2B,RNASEH2C hsa04520 Adherens junction52 73 5869 2561 1.48E-06 2.26E-05 WASF2,WASF3,CREBBP,CSNK2A1,CSNK2A2,CSNK2B,CTNNA1,CTNNB1,CTNND1,EP300,FER,FYN,IGF1R,INSR,RHOA,LMO7,SMAD2,SMAD3,SMAD4,MET,MLLT4,LEF1,NLK,ACP1,MAPK1,MAPK3,PTPN1,PTPN6,PTPRJ,PVRL2,RAC1,RAC2,RAC3,ACTB,SNAI2,SNAI1,SRC,MAP3K7,TCF7L2,TGFBR1,TGFBR2,TJP1,VCL,YES1,ACTN4,TCF7L1,ACTN1,IQGAP1,WASF1,WASL,CDC42,CDH1 hsa05016 Huntington's111 disease 183 5869 2561 1.92E-06 2.74E-05 DNAL4,ATP5H,CREB3,DCTN2,PPARGC1A,AP2M1,AP2S1,CLTA,CLTB,CLTC,NDUFA11,COX4I1,COX5B,COX6B1,COX6C,COX7B,COX8A,CREB1,CREBBP,CYC1,AP2A1,AP2A2,AP2B1,DCTN1,EP300,RCOR1,GNAQ,GPX1,SLC25A4,SLC25A5,UQCR10,HTT,HDAC1,HDAC2,HIP1,APAF1,NDUFS7,NDUFA1,NDUFA2,NDUFA4,NDUFA6,NDUFA7,NDUFA8,NDUFAB1,NDUFB4,NDUFB5,NDUFB6,NDUFB7,NDUFB9,NDUFC1,NDUFC2,NDUFS1,NDUFS2,NDUFV1,NDUFS4,NDUFS6,NDUFS8,NDUFV2,NDUFV3,ATP5A1,ATP5C1,NDUFA13,DCTN4,ATP5D,ATP5E,ATP5F1,ATP5G1,ATP5G3,ATP5J,PLCB3,CYCS,POLR2B,POLR2C,POLR2D,POLR2E,POLR2F,POLR2G,POLR2H,POLR2I,POLR2J,POLR2K,POLR2L,NDUFB11,PPID,IFT57,NDUFA12,BAX,REST,SDHA,SDHB,SDHC,CREB3L2,SOD1,SP1,TAF4B,TBP,TFAM,TGM2,UQCRC1,UQCRC2,UQCRH,VDAC1,VDAC2,VDAC3,DNAL1,CASP3,CASP9,CREB3L1,COX7A2L,COX5A,TBPL1 hsa05212 Pancreatic cancer50 70 5869 2561 2.07E-06 2.74E-05 AKT3,CDK4,CDK6,RALBP1,CHUK,E2F1,E2F3,AKT1,AKT2,IKBKB,ARAF,JAK1,KRAS,SMAD2,SMAD3,SMAD4,NFKB1,PIK3CA,PIK3CB,PIK3R1,PIK3R2,MAPK1,MAPK3,MAPK8,MAPK9,MAP2K1,BAD,RAC1,RAC2,RAC3,RAD51,RAF1,RALA,RALB,RB1,CCND1,RELA,BCL2L1,BRCA2,STAT1,STAT3,TGFB1,TGFB2,TGFBR1,TGFBR2,VEGFA,VEGFB,CASP9,PIK3R3,CDC42 hsa05221 Acute myeloid43 leukemia58 5869 2561 2.16E-06 2.74E-05 AKT3,PIM2,CHUK,EIF4EBP1,AKT1,AKT2,MTOR,GRB2,HRAS,IKBKB,ARAF,JUP,KIT,KRAS,MYC,NFKB1,NRAS,LEF1,PIK3CA,PIK3CB,PIM1,PIK3R1,PIK3R2,PPARD,MAPK1,MAPK3,MAP2K1,MAP2K2,BAD,RAF1,RARA,CCND1,RELA,RPS6KB1,RPS6KB2,SOS1,SOS2,STAT3,STAT5B,TCF7L2,TCF7L1,PIK3R3,RUNX1T1 hsa03020 RNA polymerase25 29 5869 2561 2.55E-06 3.07E-05 POLR3F,POLR3G,POLR3C,POLR3A,POLR3H,POLR1A,ZNRD1,POLR1D,POLR3K,POLR2B,POLR2C,POLR2D,POLR2E,POLR2F,POLR2G,POLR2H,POLR2I,POLR2J,POLR2K,POLR2L,POLR3B,POLR1E,POLR3D,POLR1B,POLR1C hsa04114 Oocyte meiosis74 114 5869 2561 3.14E-06 3.59E-05 CDK2,ANAPC10,MAD2L2,ADCY3,YWHAQ,CHP1,SGOL1,FBXW11,CDC26,ANAPC13,FBXO5,RPS6KA6,FBXO43,ANAPC2,ANAPC4,IGF1R,AR,MAD2L1,ANAPC7,ANAPC11,PLK1,PPP1CA,PPP1CC,PPP2CA,PPP2CB,PPP2R1A,PPP2R1B,PPP2R5A,PPP2R5B,PPP2R5D,PPP2R5E,PPP3CA,PPP3CB,PPP3CC,PPP3R1,PRKACA,MAPK1,MAPK3,MAP2K1,PRKX,RPS6KA2,RPS6KA3,MAPK12,CPEB1,ANAPC1,AURKA,BUB1,YWHAB,YWHAE,YWHAG,YWHAH,YWHAZ,CALM1,CALM3,CAMK2D,CAMK2G,SMC1A,CDC23,CDC16,CCNB1,BTRC,CCNE1,PKMYT1,SMC3,CCNB2,CCNE2,PTTG1,ESPL1,SLK,CDK1,CDC20,CDC25C,CDC27,RBX1
Recommended publications
  • Dynamin Functions and Ligands: Classical Mechanisms Behind
    1521-0111/91/2/123–134$25.00 http://dx.doi.org/10.1124/mol.116.105064 MOLECULAR PHARMACOLOGY Mol Pharmacol 91:123–134, February 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics MINIREVIEW Dynamin Functions and Ligands: Classical Mechanisms Behind Mahaveer Singh, Hemant R. Jadhav, and Tanya Bhatt Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Rajasthan, India Received May 5, 2016; accepted November 17, 2016 Downloaded from ABSTRACT Dynamin is a GTPase that plays a vital role in clathrin-dependent pathophysiology of various disorders, such as Alzheimer’s disease, endocytosis and other vesicular trafficking processes by acting Parkinson’s disease, Huntington’s disease, Charcot-Marie-Tooth as a pair of molecular scissors for newly formed vesicles originating disease, heart failure, schizophrenia, epilepsy, cancer, dominant ’ from the plasma membrane. Dynamins and related proteins are optic atrophy, osteoporosis, and Down s syndrome. This review is molpharm.aspetjournals.org important components for the cleavage of clathrin-coated vesicles, an attempt to illustrate the dynamin-related mechanisms involved phagosomes, and mitochondria. These proteins help in organelle in the above-mentioned disorders and to help medicinal chemists division, viral resistance, and mitochondrial fusion/fission. Dys- to design novel dynamin ligands, which could be useful in the function and mutations in dynamin have been implicated in the treatment of dynamin-related disorders. Introduction GTP hydrolysis–dependent conformational change of GTPase dynamin assists in membrane fission, leading to the generation Dynamins were originally discovered in the brain and identi- of endocytic vesicles (Praefcke and McMahon, 2004; Ferguson at ASPET Journals on September 23, 2021 fied as microtubule binding partners.
    [Show full text]
  • The Role of LIM Kinase 1 and Its Substrates in Cell Cycle Progression
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2014 The Role of LIM Kinase 1 and its Substrates in Cell Cycle Progression Lisa Ritchey University of Central Florida Part of the Medical Sciences Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Ritchey, Lisa, "The Role of LIM Kinase 1 and its Substrates in Cell Cycle Progression" (2014). Electronic Theses and Dissertations, 2004-2019. 1300. https://stars.library.ucf.edu/etd/1300 THE ROLE OF LIM KINASE 1 AND ITS SUBSTRATES IN CELL CYCLE PROGRESSION by LISA RITCHEY B.S. Florida State University 2007 M.S. University of Central Florida 2010 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Graduate Studies at the University of Central Florida Orlando, Florida Summer Term 2014 Major Professor: Ratna Chakrabarti © 2014 Lisa Ritchey ii ABSTRACT LIM Kinase 1 (LIMK1), a modulator of actin and microtubule dynamics, has been shown to be involved in cell cycle progression. In this study we examine the role of LIMK1 in G1 phase and mitosis. We found ectopic expression of LIMK1 resulted in altered expression of p27Kip1, the G1 phase Cyclin D1/Cdk4 inhibitor.
    [Show full text]
  • Genome-Wide Analysis of 5-Hmc in the Peripheral Blood of Systemic Lupus Erythematosus Patients Using an Hmedip-Chip
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 1467-1479, 2015 Genome-wide analysis of 5-hmC in the peripheral blood of systemic lupus erythematosus patients using an hMeDIP-chip WEIGUO SUI1*, QIUPEI TAN1*, MING YANG1, QIANG YAN1, HUA LIN1, MINGLIN OU1, WEN XUE1, JIEJING CHEN1, TONGXIANG ZOU1, HUANYUN JING1, LI GUO1, CUIHUI CAO1, YUFENG SUN1, ZHENZHEN CUI1 and YONG DAI2 1Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002; 2Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China Received July 9, 2014; Accepted February 27, 2015 DOI: 10.3892/ijmm.2015.2149 Abstract. Systemic lupus erythematosus (SLE) is a chronic, Introduction potentially fatal systemic autoimmune disease characterized by the production of autoantibodies against a wide range Systemic lupus erythematosus (SLE) is a typical systemic auto- of self-antigens. To investigate the role of the 5-hmC DNA immune disease, involving diffuse connective tissues (1) and modification with regard to the onset of SLE, we compared is characterized by immune inflammation. SLE has a complex the levels 5-hmC between SLE patients and normal controls. pathogenesis (2), involving genetic, immunologic and envi- Whole blood was obtained from patients, and genomic DNA ronmental factors. Thus, it may result in damage to multiple was extracted. Using the hMeDIP-chip analysis and valida- tissues and organs, especially the kidneys (3). SLE arises from tion by quantitative RT-PCR (RT-qPCR), we identified the a combination of heritable and environmental influences. differentially hydroxymethylated regions that are associated Epigenetics, the study of changes in gene expression with SLE.
    [Show full text]
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Targeted Genes and Methodology Details for Neuromuscular Genetic Panels
    Targeted Genes and Methodology Details for Neuromuscular Genetic Panels Reference transcripts based on build GRCh37 (hg19) interrogated by Neuromuscular Genetic Panels Next-generation sequencing (NGS) and/or Sanger sequencing is performed Motor Neuron Disease Panel to test for the presence of a mutation in these genes. Gene GenBank Accession Number Regions of homology, high GC-rich content, and repetitive sequences may ALS2 NM_020919 not provide accurate sequence. Therefore, all reported alterations detected ANG NM_001145 by NGS are confirmed by an independent reference method based on laboratory developed criteria. However, this does not rule out the possibility CHMP2B NM_014043 of a false-negative result in these regions. ERBB4 NM_005235 Sanger sequencing is used to confirm alterations detected by NGS when FIG4 NM_014845 appropriate.(Unpublished Mayo method) FUS NM_004960 HNRNPA1 NM_031157 OPTN NM_021980 PFN1 NM_005022 SETX NM_015046 SIGMAR1 NM_005866 SOD1 NM_000454 SQSTM1 NM_003900 TARDBP NM_007375 UBQLN2 NM_013444 VAPB NM_004738 VCP NM_007126 ©2018 Mayo Foundation for Medical Education and Research Page 1 of 14 MC4091-83rev1018 Muscular Dystrophy Panel Muscular Dystrophy Panel Gene GenBank Accession Number Gene GenBank Accession Number ACTA1 NM_001100 LMNA NM_170707 ANO5 NM_213599 LPIN1 NM_145693 B3GALNT2 NM_152490 MATR3 NM_199189 B4GAT1 NM_006876 MYH2 NM_017534 BAG3 NM_004281 MYH7 NM_000257 BIN1 NM_139343 MYOT NM_006790 BVES NM_007073 NEB NM_004543 CAPN3 NM_000070 PLEC NM_000445 CAV3 NM_033337 POMGNT1 NM_017739 CAVIN1 NM_012232 POMGNT2
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • The Rac Gtpase in Cancer: from Old Concepts to New Paradigms Marcelo G
    Published OnlineFirst August 14, 2017; DOI: 10.1158/0008-5472.CAN-17-1456 Cancer Review Research The Rac GTPase in Cancer: From Old Concepts to New Paradigms Marcelo G. Kazanietz1 and Maria J. Caloca2 Abstract Rho family GTPases are critical regulators of cellular func- mislocalization of Rac signaling components. The unexpected tions that play important roles in cancer progression. Aberrant pro-oncogenic functions of Rac GTPase-activating proteins also activity of Rho small G-proteins, particularly Rac1 and their challenged the dogma that these negative Rac regulators solely regulators, is a hallmark of cancer and contributes to the act as tumor suppressors. The potential contribution of Rac tumorigenic and metastatic phenotypes of cancer cells. This hyperactivation to resistance to anticancer agents, including review examines the multiple mechanisms leading to Rac1 targeted therapies, as well as to the suppression of antitumor hyperactivation, particularly focusing on emerging paradigms immune response, highlights the critical need to develop ther- that involve gain-of-function mutations in Rac and guanine apeutic strategies to target the Rac pathway in a clinical setting. nucleotide exchange factors, defects in Rac1 degradation, and Cancer Res; 77(20); 5445–51. Ó2017 AACR. Introduction directed toward targeting Rho-regulated pathways for battling cancer. Exactly 25 years ago, two seminal papers by Alan Hall and Nearly all Rho GTPases act as molecular switches that cycle colleagues illuminated us with one of the most influential dis- between GDP-bound (inactive) and GTP-bound (active) forms. coveries in cancer signaling: the association of Ras-related small Activation is promoted by guanine nucleotide exchange factors GTPases of the Rho family with actin cytoskeleton reorganization (GEF) responsible for GDP dissociation, a process that normally (1, 2).
    [Show full text]
  • Supplementary Table S1. Upregulated Genes Differentially
    Supplementary Table S1. Upregulated genes differentially expressed in athletes (p < 0.05 and 1.3-fold change) Gene Symbol p Value Fold Change 221051_s_at NMRK2 0.01 2.38 236518_at CCDC183 0.00 2.05 218804_at ANO1 0.00 2.05 234675_x_at 0.01 2.02 207076_s_at ASS1 0.00 1.85 209135_at ASPH 0.02 1.81 228434_at BTNL9 0.03 1.81 229985_at BTNL9 0.01 1.79 215795_at MYH7B 0.01 1.78 217979_at TSPAN13 0.01 1.77 230992_at BTNL9 0.01 1.75 226884_at LRRN1 0.03 1.74 220039_s_at CDKAL1 0.01 1.73 236520_at 0.02 1.72 219895_at TMEM255A 0.04 1.72 201030_x_at LDHB 0.00 1.69 233824_at 0.00 1.69 232257_s_at 0.05 1.67 236359_at SCN4B 0.04 1.64 242868_at 0.00 1.63 1557286_at 0.01 1.63 202780_at OXCT1 0.01 1.63 1556542_a_at 0.04 1.63 209992_at PFKFB2 0.04 1.63 205247_at NOTCH4 0.01 1.62 1554182_at TRIM73///TRIM74 0.00 1.61 232892_at MIR1-1HG 0.02 1.61 204726_at CDH13 0.01 1.6 1561167_at 0.01 1.6 1565821_at 0.01 1.6 210169_at SEC14L5 0.01 1.6 236963_at 0.02 1.6 1552880_at SEC16B 0.02 1.6 235228_at CCDC85A 0.02 1.6 1568623_a_at SLC35E4 0.00 1.59 204844_at ENPEP 0.00 1.59 1552256_a_at SCARB1 0.02 1.59 1557283_a_at ZNF519 0.02 1.59 1557293_at LINC00969 0.03 1.59 231644_at 0.01 1.58 228115_at GAREM1 0.01 1.58 223687_s_at LY6K 0.02 1.58 231779_at IRAK2 0.03 1.58 243332_at LOC105379610 0.04 1.58 232118_at 0.01 1.57 203423_at RBP1 0.02 1.57 AMY1A///AMY1B///AMY1C///AMY2A///AMY2B// 208498_s_at 0.03 1.57 /AMYP1 237154_at LOC101930114 0.00 1.56 1559691_at 0.01 1.56 243481_at RHOJ 0.03 1.56 238834_at MYLK3 0.01 1.55 213438_at NFASC 0.02 1.55 242290_at TACC1 0.04 1.55 ANKRD20A1///ANKRD20A12P///ANKRD20A2///
    [Show full text]
  • Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
    Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A GTP-State Specific Cyclic Peptide Inhibitor of the Gtpase Gαs
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.054080; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A GTP-state specific cyclic peptide inhibitor of the GTPase Gαs Shizhong A. Dai1,2†, Qi Hu1,2†, Rong Gao3†, Andre Lazar1,4†, Ziyang Zhang1,2, Mark von Zastrow1,4, Hiroaki Suga3*, Kevan M. Shokat1,2* 5 1Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA 2Howard Hughes Medical Institute 3Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 10 4Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94158, USA *Correspondence to: [email protected], [email protected] †These authors contributed equally. 15 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.054080; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The G protein-coupled receptor (GPCR) cascade leading to production of the second messenger cAMP is replete with pharmacologically targetable receptors and enzymes with the exception of the stimulatory G protein α subunit, Gαs.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]