12.1 | Mendel's Experiments and the Laws of Probability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
B. Sample Multiple Choice Questions 1
Genetics Review B. Sample Multiple Choice Questions 1. A represents the dominant allele and a represents the recessive allele of a pair. If, in 1000 offspring, 500 are aa and 500 are of some other genotype, which of the following are most probably the genotypes of the parents? a. Aa and Aa b. Aa and aa c. AA and Aa d. AA and aa e. aa and aa 2. A form of vitamin D-resistant rickets, known as hypophosphatemia, is inherited as an X-linked dominant trait. If a male with hypophosphatemia marries a normal female, which of the following predictions concerning their potential progeny would be true? a. All of their sons would inherit the disease b. All of their daughters would inherit the disease c. About 50% of their sons would inherit the disease d. About 50% of their daughters would inherit the disease e. None of their daughters would inherit the disease 3. Which of the following best describes the parents in a testcross? a. One individual has the dominant phenotype and the other has the recessive phenotype. b. Both individuals are heterozygous. c. Both individuals have the dominant phenotype. d. Both individuals have the recessive phenotype. e. Both individuals have an unknown phenotype. 4. Which of the following is the most likely explanation for a high rate of crossing-over between two genes? a. The two genes are far apart on the same chromosome. b. The two genes are both located near the centromere. c. The two genes are sex-linked. d. The two genes code for the same protein. -
Use of Genomic Tools to Discover the Cause of Champagne Dilution Coat Color in Horses and to Map the Genetic Cause of Extreme Lordosis in American Saddlebred Horses
University of Kentucky UKnowledge Theses and Dissertations--Veterinary Science Veterinary Science 2014 USE OF GENOMIC TOOLS TO DISCOVER THE CAUSE OF CHAMPAGNE DILUTION COAT COLOR IN HORSES AND TO MAP THE GENETIC CAUSE OF EXTREME LORDOSIS IN AMERICAN SADDLEBRED HORSES Deborah G. Cook University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cook, Deborah G., "USE OF GENOMIC TOOLS TO DISCOVER THE CAUSE OF CHAMPAGNE DILUTION COAT COLOR IN HORSES AND TO MAP THE GENETIC CAUSE OF EXTREME LORDOSIS IN AMERICAN SADDLEBRED HORSES" (2014). Theses and Dissertations--Veterinary Science. 15. https://uknowledge.uky.edu/gluck_etds/15 This Doctoral Dissertation is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Veterinary Science by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
Assortative Mating (4 P.)
Evolutionary Dynamics: Population Genetics and Ecological Models WS 2019/2020 course number: MA4453-KP05 Assignment 1 due: October 28 Mendel's experiments & Punnett squares (4 P.) In the lecture, we discussed Mendel's experiments with garden peas in which he considered one character (e.g. ower color or seed shape). In a second step, he considered two characters simultaneously. He started with two pure lines. One had yellow (dominant allele Y ), wrinkled (recessive allele r) seeds. The other had green (recessive allele y), round (dominant allele R) seeds. I.e. the genotypes of these pure lines were Y Y rr and yyRR. He crossed these two lines to obtain the F1 generation. He then obtained the F2 generation through selng of individuals from the F1 generation. Draw the corresponding Punnett square to determine the genotypes and phenotypes that are generated in this way. What are the proportions of the observed phenotypes if you determine proportions by counting the respective cells in the Punnett square? Mendel indeed observed these proportions. However, in 1905, William Bateson, Edith Re- becca Saunders, and Reginald Punnett performed a similar experiment in sweet pea plants. They simultaneously considered ower color and pollen shape and found dierent proportions than Mendel. How can this discrepancy be explained? You can read Mendel's original publication here (in German!): http: // www. deutschestextarchiv. de/ book/ view/ mendel_ pflanzenhybriden_ 1866? p= 14 Assortative mating (4 P.) In the lecture, we studied randomly mating individuals. However, in reality, mating is often non-random. E.g. individuals may prefer to mate with individuals that are similar to them with respect to some trait. -
The Punnett Square Was Created in the Early 1900S by Reginald Punnett
Punnett Square The Punnett Square was created in the early 1900s by Reginald Punnett. Punnett was born in 1875 and was the eldest of three children. He grew up in England and was fascinated by the natural sciences at an early age. When he was young, he was often stricken by appendix issues and had to stay quiet during recovery. During one particular recovery period, he spent a large amount of time reading his father’s library on natural history, which sparked his interest and had a lasting impact on his career choices (Crew 1967). As Punnett continued his love for science, he eventually became one of the first scientists to study genetics at Cambridge University and helped to establish the field there. He spent a significant amount of time conducting genetics research with the leading scientists of his day, including William Bateson and G. H. Hardy (Cold Spring Harbor Laboratory 2011). Together they were strong proponents of the genetic work of Gregor Mendel, who today is credited as the father of genetics. In 1905, Punnett devised what is known today as the Punnett Square (Arizona State University 2012). The Punnett Square is used to illustrate some of Mendel’s discoveries including the segregation of DNA into different gametes upon gamete formation. The Punnett Square was designed as a teaching tool and is still used in classrooms today. The premise is simple; the genetic contribution of the two individuals under study is listed on each side of the square. For example, we are to cross two sweet pea individuals that have the genotypes Gg and gg. -
STORIA DEL PENSIERO BIOLOGICO EVOLUTIVO Con Riflessioni Di Filosofia Ambientale
STORIA DEL PENSIERO BIOLOGICO EVOLUTIVO con riflessioni di filosofia ambientale STORIA DEL PENSIERO BIOLOGICO EVOLUTIVO con riflessioni di filosofia ambientale Piergiacomo Pagano 2013 ENEA Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile Lungotevere Thaon di Revel, 76 00196 ROMA ISBN 978-88-8286-288-6 Foto in copertina In alto: fotografie di Fabio Conte Sfondo e riquadro: fotografie di Piergiacomo Pagano (Pellicani a Hervey Bay, Queensland, Australia, novembre 2003; Baobab, mousse du Senegal, febbraio 1991) STORIA DEL PENSIERO BIOLOGICO EVOLUTIVO con riflessioni di filosofia ambientale PIERGIACOMO PAGANO P. Pagano, Storia del Pensiero Biologico Evolutivo, ENEA INDICE Premessa …………………………………………………………………………………………..… 11 Introduzione ………………………………………………………………………………………… 13 1 Sui tre inspiegabili fatti che misero in dubbio la Creazione ……………………………………... 17 1.1 In antichità: cause finali e progetto …………………………………………………………...……... 17 1.2 L’età moderna ……………………………………………………………………………………...... 18 1.3 La grande diversità degli animali e delle piante …………………………………………………….. 19 1.4 Le palesi ingiustizie ……………………………………………………………………...………….. 20 1.5 La presenza di fossili inglobati nelle rocce ………………………………………………………..... 21 2 La Natura, gli organismi e la loro classificazione ……………………………………………...… 23 2.1 La classificazione in Platone …………………………………………………………………...…… 23 2.2 Classificazioni …………………………………………………………………………………...….. 25 2.3 Dopo Platone ………………………………………………………………………………………... 25 2.4 Aristotele e lo studio della Natura -
3Rd Period Allele: Alternate Forms of a Genetic Locus
Glossary of Terms Commonly Encountered in Plant Breeding 1st Period - 3rd Period Allele: alternate forms of a genetic locus. For example, at a locus determining eye colour, an individual might have the allele for blue eyes, brown, etc. Breeding: the intentional development of new forms or varieties of plants or animals by crossing, hybridization, and selection of offspring for desirable characteristics Chromosome: the structure in the eukaryotic nucleus and in the prokaryotic cell that carries most of the DNA Cross-over: The point along the meiotic chromosome where the exchange of genetic material takes place. This structure can often be identified through a microscope Crossing-over: The reciprocal exchange of material between homologous chromosomes during meiosis, which is responsible for genetic recombination. The process involves the natural breaking of chromosomes, the exchange of chromosome pieces, and the reuniting of DNA molecules Domestication: the process by which plants are genetically modified by selection over time by humans for traits that are more desirable or advantageous for humans DNA: an abbreviation for “deoxyribose nucleic acid”, the carrier molecule of inherited genetic information Dwarfness: The genetically controlled reduction in plant height. For many crops, dwarfness, as long as it is not too extreme, is an advantage, because it means that less of the crop's energy is used for growing the stem. Instead, this energy is used for seed/fruit/tuber production. The Green Revolution wheat and rice varieties were based on dwarfing genes Emasculation: The removal of anthers from a flower before the pollen is shed. To produce F1 hybrid seed in a species bearing monoecious flowers, emasculation is necessary to remove any possibility of self-pollination Epigenetic: heritable variation caused by differences in the chemistry of either the DNA (methylation) or the proteins associated with the DNA (histone acetylation), rather than in the DNA sequence itself Gamete: The haploid cell produced by meiosis. -
12.2 Characteristics and Traits
334 Chapter 12 | Mendel's Experiments and Heredity 12.2 | Characteristics and Traits By the end of this section, you will be able to do the following: • Explain the relationship between genotypes and phenotypes in dominant and recessive gene systems • Develop a Punnett square to calculate the expected proportions of genotypes and phenotypes in a monohybrid cross • Explain the purpose and methods of a test cross • Identify non-Mendelian inheritance patterns such as incomplete dominance, codominance, recessive lethals, multiple alleles, and sex linkage Physical characteristics are expressed through genes carried on chromosomes. The genetic makeup of peas consists of two similar, or homologous, copies of each chromosome, one from each parent. Each pair of homologous chromosomes has the same linear order of genes. In other words, peas are diploid organisms in that they have two copies of each chromosome. The same is true for many other plants and for virtually all animals. Diploid organisms produce haploid gametes, which contain one copy of each homologous chromosome that unite at fertilization to create a diploid zygote. For cases in which a single gene controls a single characteristic, a diploid organism has two genetic copies that may or may not encode the same version of that characteristic. Gene variants that arise by mutation and exist at the same relative locations on homologous chromosomes are called alleles. Mendel examined the inheritance of genes with just two allele forms, but it is common to encounter more than two alleles for any given gene in a natural population. Phenotypes and Genotypes Two alleles for a given gene in a diploid organism are expressed and interact to produce physical characteristics. -
William Bateson: Scientific Correspondence and Papers (MS Add.8634)
Cambridge University Library, Department of Archives and Modern Manuscripts Finding Aid - William Bateson: Scientific Correspondence and Papers (MS Add.8634) Generated by Access to Memory (AtoM) 2.4.0 Printed: February 27, 2019 Language of description: English Cambridge University Library, Department of Archives and Modern Manuscripts https://archive.lib.cam.ac.uk/index.php/william-bateson-scientific-correspondence-and-papers William Bateson: Scientific Correspondence and Papers Table of contents Summary information .................................................................................................................................... 20 Administrative history / Biographical sketch ................................................................................................ 20 Scope and content ......................................................................................................................................... 20 Notes .............................................................................................................................................................. 21 Access points ................................................................................................................................................. 21 Collection holdings ........................................................................................................................................ 22 MS Add.8634/A.1-A.84, Biographical papers (c.1859-1935 & 1972) ..................................................... -
Lecture No. IV
Course: Fundamentals of Genetics Class: - Ist Year, IInd Semester Lecture No. IV Title of topic: - Monohybrid crosses, Di-hybrid crosses, Test cross and Back cross Prepared by- Vinod Kumar, Assistant Professor, (PB & G) College of Agriculture, Powarkheda Monohybrid crosses:—Crosses between parents that differed in a single characteristic. The character (S) being studied in a monohybrid cross are governed by two or multiple variations for a single locus. The Mendel’s first law i.e. Law of segregation or purity of gametes can be explained by considering the monohybrid ratio i.e. by studying inheritance of only one character. For example: In pea, round seed shape is dominant over wrinkled seed shape. Generation Parental Parents Female X Male Phenotype Round X Wrinkled Genotype RR X rr Gametes R r Generation F1 Rr (Heterozygous) Round On selfing: Parents Female X Male Phenotype Round X round Genotype Rr X Rr Gametes R r R r Generation F2 ♂ R r ♀ RR Rr R Round Round r Rr rr Round Wrinkled Phenotype ratio: 3 round : 1 wrinkled Genotypic ratio: 1 RR : 2Rr : 1rr Two different alleles of the same gene i.e. ‘R’ and ‘r’ were brought together in the hybrid (F1). Even though the hybrid was round seeded in the next generation (F2) it produced both round and wrinkled seeded progeny. Thus both the alleles for round shape (R) and wrinkled shape (r) remained together in the hybrid without contaminating each other. In F2 generation (selfing of (F1) hybrid), the different phenotypes could be recovered because the two alleles in F1 remained pure and did not contaminate each other thus producing two types of gametes from F1 i.e. -
William Bateson: a Biologist Ahead of His Time
Ó Indian Academy of Sciences PERSPECTIVES William Bateson: a biologist ahead of his time PATRICK BATESON* Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK William Bateson coined the term genetics and, more than son in a letter to Adam Sedgwick in 1905 when he hoped anybody else, championed the principles of heredity dis- to be appointed to a new chair (B. Bateson 1928). covered by Gregor Mendel. Nevertheless, his reputation William Bateson was the most vigorous promoter of is soured by the positions he took about the discontinui- Mendel’s ideas at the beginning of the twentieth century ties in inheritance that might precede formation of a new and effectively launched the modern subject of genetics. species and by his reluctance to accept, in its full- Historians of biology acknowledge the importance of this blooded form, the view of chromosomes as the control- contribution but criticise his ideas on sudden changes in lers of individual development. Growing evidence sug- evolution leading to the origin of new species and his gests that both of these positions have been vindicated. questioning of the role of chromosomes (Mayr 1982). In New species are now thought to arise as the result of this article I re-examine these criticisms of Bateson in the genetic interactions, chromosomal rearrangements, or light of modern advances in biology. both, that render hybrids less viable or sterile. Chromo- Bateson was born on 8 August 1861. He was raised in somes are the sites of genes but genes move between a comfortable home and had an eminent father who was chromosomes much more readily than had been previ- for 24 years Master of St John’s College, Cambridge. -
Mendel: Darwin's Savior Or Opponent
10/27/11 Mendel: Darwin’s Savior or Opponent Gregor Mendel • An Augustinian monk, Mendel studied physics and natural science in Vienna, but lived most of his adult life in the cloister at Altbrunn (now Brno in the Czech Republic) • Starting in 1856 he conducted plant breeding experiments in the cloister’s garden • Seeking the “law governing the formation and development of hybrids” Mendel’s Breeding Experiments • An lucky choice of model organism. Chose to study peas because • They exhibit relatively easy to distinguish traints • They naturally self pollinated but are easy to cross-pollinate • To characterize their behavior in crosses, Mendel introduced the vocabulary of dominant (traits that appeared in hybrid crosses) and recessive characters (one’s that only appeared in subsequent generations) 1 10/27/11 Mendel’s Procedure n Began by cross-pollinating between pure breeding lines with alternative traits—yellow/green, smooth/dented n Found that all members of the F1 generation exhibited the dominant traits n Allowed members of the F1 generation to self-pollinate, generating the F2 generation n And analyzed the numbers exhibiting the dominant and recessive traits F2 Generation Created from Hybrids Form of seed Round / Wrinkled 5474 1850 2.96:1 Color of albumin Yellow / Green 6022 2001 3.01:1 Color of seed coat Violet flowers / 705 224 3.15:1 White flowers Form of pods Inflated / 822 299 2.95:1 Constricted Color of unripe Green / yellow 428 152 2.81:1 pods Position of Axial / terminal 651 207 3.14:1 flowers Length of stem Long / short -
Revise Meiosis Process and the Relation Between Mendel Laws and Meiosis Before Proceeding with This Lecture
Genetics (BTBio 211) Lecture 3 part 2 2015-2016 Revise Meiosis process and the relation between Mendel laws and Meiosis before proceeding with this lecture. Meiosis Action: For each Parent 2 Chromosomes 2 Chromatids each 2 Chromosomes 1 Chromosome each 4 gametes: 4 Chromatid s 4 Chromatids each 1 Chromosome each each 1 Chromatids each 1 Genetics (BTBio 211) Lecture 3 part 2 2015-2016 LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES I. LINKAGE Genetic linkage is the tendency of genes that are located proximal to each other on a chromosome to be inherited together during meiosis. Genes whose loci are nearer to each other are less likely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be genetically linked. Linked genes: Genes that are inherited together with other gene(s) in form of single unit as they are located on the same chromosome. For example: in fruit flies the genes for eye color and the genes for wing length are on the same chromosome, thus are inherited together. A couple of genes on chromosomes may be present either on the different or on the same chromosome. 1. The independent assortment of two genes located on different chromosomes. Mendel’s Law of Independent Assortment: during gamete formation, segregation of one gene pair is independent of other gene pairs because the traits he studied were determined by genes on different chromosomes. Consider two genes A and B, each with two alleles A a and B b on separate (different) chromosomes. 2 Genetics (BTBio 211) Lecture 3 part 2 2015-2016 Gametes of non-homologous chromosomes assort independently at anaphase producing 4 different genotypes AB, ab, Ab and aB with a genotypic ratio 1:1:1:1.