William Bateson: a Biologist Ahead of His Time

Total Page:16

File Type:pdf, Size:1020Kb

William Bateson: a Biologist Ahead of His Time Ó Indian Academy of Sciences PERSPECTIVES William Bateson: a biologist ahead of his time PATRICK BATESON* Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK William Bateson coined the term genetics and, more than son in a letter to Adam Sedgwick in 1905 when he hoped anybody else, championed the principles of heredity dis- to be appointed to a new chair (B. Bateson 1928). covered by Gregor Mendel. Nevertheless, his reputation William Bateson was the most vigorous promoter of is soured by the positions he took about the discontinui- Mendel’s ideas at the beginning of the twentieth century ties in inheritance that might precede formation of a new and effectively launched the modern subject of genetics. species and by his reluctance to accept, in its full- Historians of biology acknowledge the importance of this blooded form, the view of chromosomes as the control- contribution but criticise his ideas on sudden changes in lers of individual development. Growing evidence sug- evolution leading to the origin of new species and his gests that both of these positions have been vindicated. questioning of the role of chromosomes (Mayr 1982). In New species are now thought to arise as the result of this article I re-examine these criticisms of Bateson in the genetic interactions, chromosomal rearrangements, or light of modern advances in biology. both, that render hybrids less viable or sterile. Chromo- Bateson was born on 8 August 1861. He was raised in somes are the sites of genes but genes move between a comfortable home and had an eminent father who was chromosomes much more readily than had been previ- for 24 years Master of St John’s College, Cambridge. ously believed and chromosomes are not causal in indi- Family life was filled with conversation and William and vidual development. Development, like speciation, requires his siblings grew up to be strong-willed, disputatious and an understanding of the interactions between genes and highly intellectual. William obtained a first class in natural the interplay between the individual and its environment. sciences at Cambridge, specializing in zoology. His first major study was on the embryology of Balanoglossus living on tidal mudflats; it looks like a worm but is now Introduction regarded as a vertebrate ancestor. It was particularly common in Chesapeake Bay on the east coast of the William Bateson is credited with coining the term ‘gene- United States and it was there that Bateson got to know a tics’ as it is currently used as a noun. The adjective brilliant American zoologist, William K. Brooks, who ‘genetic’ had been introduced into the English language was bringing out a book about heredity at the time in the 1830s. When Charles Darwin was nominated for (Brooks 1883). Although few biologists doubted that the Royal Society’s highest award, the Copley Medal, his Charles Darwin had provided the most coherent and supporters referred, among other things, to his contribu- complete explanation for adaptation by the process of tion to ‘genetic biology’. Darwin was eventually awarded natural selection, the necessary conditions for one species the Copley Medal in 1864, but mention of this contribu- to become distinct from another remained a source of tion was omitted as grounds for making the award by a dispute. timorous Council of the Royal Society because On the origin of species was still so controversial (Burkhardt Discontinuous variation 2001). It is clear in the usage applied to Darwin’s then disputed contribution that ‘genetic’ meant ‘pertaining to origins’. Anyhow, genetics as a noun, meaning the study Darwin’s mechanism for evolutionary change consisted of heredity and variation, was first used by William Bate- of three crucial steps. Each step must have been in place if adaptation by the organism to the environment occur- red in the course of biological evolution. First, variation *E-mail: [email protected]. Correspondence to Prof. Patrick Bateson, must have existed. Second, some variants must have sur- The Provost’s Lodge, King’s College, Cambridge CB2 1ST, UK. vived more readily than others. Third, the variation must T Journal of Genetics, Vol. 81, No. 2, August 2002 49 Patrick Bateson have been inherited. While Darwin’s proposal provided a discontinuities could provide evidence for steps that powerful and plausible mechanism for generating adapta- might lead to the appearance of a new species. This inter- tions, it was less obvious that it would provide what was est prepared him for the rediscovery of Mendel’s work needed for the formation of a new species. His friends which provided the rules for how the qualitative differ- Thomas Henry Huxley and Francis Galton were doubtful. ences between members of the same species could be In his excellent book, Donald Forsdyke (2001) describes inherited. Bateson was sometimes thought to be anti- how George Romanes developed a physiological theory Darwinian because of his search for discontinuities in for hybrid sterility (e.g. Romanes 1886). The theory was natural variation (Bowler 1983). Mark Ridley (1996) has intended to solve the speciation problem, but it was argued that Darwin himself was only a gradualist as far roundly attacked by Darwin’s defenders and Romanes’s as adaptation was concerned and that he had not nailed contributions to evolutionary theory were forgotten, his colours to the mast over speciation. Anyhow, Bateson although his book Animal intelligence is read to this day. was never opposed to the Darwinian proposal for the William Brooks was also doubtful whether speciation evolution of adaptations, although he did not share the could be explained by natural selection. Much of this belief, usually attributed to Darwin, that the evolution of scepticism rubbed off on Bateson in the course of their a new species always involved continuous and gradual long discussions after work in Chesapeake Bay. modification. In the first phase of his life’s work, Bateson wanted to know what variation within a species might look like. He was particularly interested in finding major discontinui- Principles of inheritance ties in characters. He amassed a great quantity of examples in his book Materials for the study of variation which Having established that discontinuities were to be found appeared in 1894 (W. Bateson 1894). He believed that such in nature, the next step was to discover what happened to Figure 1. William Bateson (1861–1926). 50 Journal of Genetics, Vol. 81, No. 2, August 2002 William Bateson: a biologist ahead of his time such discontinuities from one generation to the next. stained deeply by the black urine. The critical compound Bateson set to work on the experimental breeding of in the urine of people with alkaptonuria, as the condition animals and plants to find out how variations might be is called, is homogentisic acid, of which 2.5 to 6.0 grams inherited. Before the rediscovery of Mendel’s work, the is produced each day. Alkaptonuria is much more com- best known principle was the Law of Ancestral Heredity, mon in men than in women and, though always rare, is promulgated in the nineteenth century most actively by particularly likely to occur in the offspring of first cousin Francis Galton (1897). Those of a mathematical bent marriages. Bateson got to hear of this and in December liked it because it meant that a prediction about the char- 1901 he and Saunders reported Garrod’s finding to the acteristics of an individual could be derived probabilisti- Evolution Committee of the Royal Society. They wrote: cally from the characteristics of the ancestors. Galton ‘. the mating of first cousins gives exactly the condi- produced two forms of the Law of Ancestral Heredity, tions most likely to enable a rare and usually recessive but these were mathematically inconsistent (Provine character to show itself. If the bearer of such a gamete 1971). Karl Pearson subsequently cleaned up the mathe- mates with individuals not bearing it, the character would matics (Pearson 1898) but did not help matters when he hardly ever be seen; but first cousins will frequently be called his revision ‘Galton’s theory’. Confusion reigned. bearers of similar gametes, which may in such unions The independent rediscovery of Mendel’s work by De meet each other, and thus lead to the manifestation of the Vries, Tschermak and Correns changed all that. An peculiar recessive characters in the zygote’. (Royal Society. enjoyable account is given by Henig (2000). When Bateson Reports to the Evolution Committee 1902) became aware of Mendel’s work he realized, supposedly Alexander Bearn, biographer of Garrod (Bearn 1993), in a flash, that here were the principles that would make found a long letter from Garrod to Bateson dated 11 sense of heredity. Supposedly, he was reading a paper by January 1902 beginning: ‘It was a great pleasure to De Vries on a train when he was travelling from Cam- receive your letter and to learn that you are interested in bridge to London to address the Royal Horticultural Society. the family occurrence of alkaptonuria.’ This suggests that It is worth noting that Olby (1987) has expressed some Bateson initiated the correspondence. Anyway, Garrod scepticism about both the suddenness and the site of this was quick to see the significance of Mendelism for con- realization. genital human conditions and referred explicitly to this Mendel’s discoveries may be summarized as follows. insight in his next paper (Garrod 1902). No case of two Inherited factors influencing the characteristics of an alkaptonurics having children together was known. Garrod organism come in pairs; while this is usually true, sex had both male and female alkaptonuric patients and he linkage (arising from unequal pairings of the sex chro- used to get them into the ward at the same time in the mosome in male mammals and female birds) was only hope that they might become fond of each other, marry discovered later.
Recommended publications
  • Download The
    GENIUS, WOMANHOOD AND THE STATISTICAL IMAGINARY: 1890s HEREDITY THEORY IN THE BRITISH SOCIAL NOVEL by ZOE GRAY BEAVIS B.A. Hons., La Trobe University, 2006 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (English) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2014 © Zoe Gray Beavis, 2014 Abstract The central argument of this thesis is that several tropes or motifs exist in social novels of the 1890s which connect them with each other in a genre, and which indicate a significant literary preoccupation with contemporary heredity theory. These tropes include sibling and twin comparison stories, the woman musician’s conflict between professionalism and domesticity, and speculation about biparental inheritance. The particulars of heredity theory with which these novels engage are consistent with the writings of Francis Galton, specifically on hereditary genius and regression theory, sibling and twin biometry, and theoretical population studies. Concurrent with the curiosity of novelists about science, was the anxiety of scientists about discursive linguistic sharing. In the thesis, I illuminate moments when science writers (Galton, August Weismann, William Bates, and Karl Pearson) acknowledged the literary process and the reading audience. I have structured the thesis around the chronological appearance of heredity themes in 1890s social novels, because I am arguing for the existence of a broader cultural curiosity about heredity themes, irrespective of authors’ primary engagement with scientific texts. Finally, I introduce the statistical imaginary as a framework for understanding human difference through populations and time, as evidenced by the construction of theoretical population samples – communities, crowds, and peer groups – in 1890s social fictions.
    [Show full text]
  • Use of Genomic Tools to Discover the Cause of Champagne Dilution Coat Color in Horses and to Map the Genetic Cause of Extreme Lordosis in American Saddlebred Horses
    University of Kentucky UKnowledge Theses and Dissertations--Veterinary Science Veterinary Science 2014 USE OF GENOMIC TOOLS TO DISCOVER THE CAUSE OF CHAMPAGNE DILUTION COAT COLOR IN HORSES AND TO MAP THE GENETIC CAUSE OF EXTREME LORDOSIS IN AMERICAN SADDLEBRED HORSES Deborah G. Cook University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cook, Deborah G., "USE OF GENOMIC TOOLS TO DISCOVER THE CAUSE OF CHAMPAGNE DILUTION COAT COLOR IN HORSES AND TO MAP THE GENETIC CAUSE OF EXTREME LORDOSIS IN AMERICAN SADDLEBRED HORSES" (2014). Theses and Dissertations--Veterinary Science. 15. https://uknowledge.uky.edu/gluck_etds/15 This Doctoral Dissertation is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Veterinary Science by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Part I April 1952
    HEREDITY VOLUME 6 PART I APRIL 1952 STATISTICALMETHODS IN GENETICS R. A. FISHER Being the Bateson Lecture delivered at the John lnnes Horticultural Institution on Friday, 6th July 1951 * THEtitle chosen for this lecture is "StatisticalMethods in Genetics," but after hearing what I have written you may think that it is not so much an account of the contributions which the study of Statistics has made to the advance of Genetics, as an examination of the nature of genetical Science from the point of view of a statistician,. My reason for taking this point of view is that for many active years of my life I was fully engaged in doing what I could to further the progress of statistical methods, and that though for 25 years or so I have enjoyed the excitements of genetic experimentation, Genetics has only gradually come to be, for me, a whole time study, in place of a very fascinating hobby. Since that experience is in itself exceptional, it may be that the refiexions gathered on the way are worthy of record, and of interest to my genetical colleagues. Genetics and Statistics have in common that they are both characteristic products of the twentieth century. As we should recognise them now, neither of them existed before the year 1900. Of course I do not ignore the fact that earlier workers of many nations, Naudin and Godron, for example, Knight, Gaertner and Kohlreuter broached the practical problems of experimentation in heredity, or that on the theoretical side Galton and Weismann put forward speculations sometimes to an interesting extent near the truth.
    [Show full text]
  • Assortative Mating (4 P.)
    Evolutionary Dynamics: Population Genetics and Ecological Models WS 2019/2020 course number: MA4453-KP05 Assignment 1 due: October 28 Mendel's experiments & Punnett squares (4 P.) In the lecture, we discussed Mendel's experiments with garden peas in which he considered one character (e.g. ower color or seed shape). In a second step, he considered two characters simultaneously. He started with two pure lines. One had yellow (dominant allele Y ), wrinkled (recessive allele r) seeds. The other had green (recessive allele y), round (dominant allele R) seeds. I.e. the genotypes of these pure lines were Y Y rr and yyRR. He crossed these two lines to obtain the F1 generation. He then obtained the F2 generation through selng of individuals from the F1 generation. Draw the corresponding Punnett square to determine the genotypes and phenotypes that are generated in this way. What are the proportions of the observed phenotypes if you determine proportions by counting the respective cells in the Punnett square? Mendel indeed observed these proportions. However, in 1905, William Bateson, Edith Re- becca Saunders, and Reginald Punnett performed a similar experiment in sweet pea plants. They simultaneously considered ower color and pollen shape and found dierent proportions than Mendel. How can this discrepancy be explained? You can read Mendel's original publication here (in German!): http: // www. deutschestextarchiv. de/ book/ view/ mendel_ pflanzenhybriden_ 1866? p= 14 Assortative mating (4 P.) In the lecture, we studied randomly mating individuals. However, in reality, mating is often non-random. E.g. individuals may prefer to mate with individuals that are similar to them with respect to some trait.
    [Show full text]
  • The Punnett Square Was Created in the Early 1900S by Reginald Punnett
    Punnett Square The Punnett Square was created in the early 1900s by Reginald Punnett. Punnett was born in 1875 and was the eldest of three children. He grew up in England and was fascinated by the natural sciences at an early age. When he was young, he was often stricken by appendix issues and had to stay quiet during recovery. During one particular recovery period, he spent a large amount of time reading his father’s library on natural history, which sparked his interest and had a lasting impact on his career choices (Crew 1967). As Punnett continued his love for science, he eventually became one of the first scientists to study genetics at Cambridge University and helped to establish the field there. He spent a significant amount of time conducting genetics research with the leading scientists of his day, including William Bateson and G. H. Hardy (Cold Spring Harbor Laboratory 2011). Together they were strong proponents of the genetic work of Gregor Mendel, who today is credited as the father of genetics. In 1905, Punnett devised what is known today as the Punnett Square (Arizona State University 2012). The Punnett Square is used to illustrate some of Mendel’s discoveries including the segregation of DNA into different gametes upon gamete formation. The Punnett Square was designed as a teaching tool and is still used in classrooms today. The premise is simple; the genetic contribution of the two individuals under study is listed on each side of the square. For example, we are to cross two sweet pea individuals that have the genotypes Gg and gg.
    [Show full text]
  • STORIA DEL PENSIERO BIOLOGICO EVOLUTIVO Con Riflessioni Di Filosofia Ambientale
    STORIA DEL PENSIERO BIOLOGICO EVOLUTIVO con riflessioni di filosofia ambientale STORIA DEL PENSIERO BIOLOGICO EVOLUTIVO con riflessioni di filosofia ambientale Piergiacomo Pagano 2013 ENEA Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile Lungotevere Thaon di Revel, 76 00196 ROMA ISBN 978-88-8286-288-6 Foto in copertina In alto: fotografie di Fabio Conte Sfondo e riquadro: fotografie di Piergiacomo Pagano (Pellicani a Hervey Bay, Queensland, Australia, novembre 2003; Baobab, mousse du Senegal, febbraio 1991) STORIA DEL PENSIERO BIOLOGICO EVOLUTIVO con riflessioni di filosofia ambientale PIERGIACOMO PAGANO P. Pagano, Storia del Pensiero Biologico Evolutivo, ENEA INDICE Premessa …………………………………………………………………………………………..… 11 Introduzione ………………………………………………………………………………………… 13 1 Sui tre inspiegabili fatti che misero in dubbio la Creazione ……………………………………... 17 1.1 In antichità: cause finali e progetto …………………………………………………………...……... 17 1.2 L’età moderna ……………………………………………………………………………………...... 18 1.3 La grande diversità degli animali e delle piante …………………………………………………….. 19 1.4 Le palesi ingiustizie ……………………………………………………………………...………….. 20 1.5 La presenza di fossili inglobati nelle rocce ………………………………………………………..... 21 2 La Natura, gli organismi e la loro classificazione ……………………………………………...… 23 2.1 La classificazione in Platone …………………………………………………………………...…… 23 2.2 Classificazioni …………………………………………………………………………………...….. 25 2.3 Dopo Platone ………………………………………………………………………………………... 25 2.4 Aristotele e lo studio della Natura
    [Show full text]
  • The Third Base
    Appendix The Third Base Donald Forsdyke If I thought that by learning more and more I should ever arrive at the knowledge of absolute truth, I would leave off studying. But I believe I am pretty safe. Samuel Butler, Notebooks Darwin’s mentor, the geologist Charles Lyell, and Darwin himself, both con- sidered the relationship between the evolution of biological species and the evolution of languages [1]. But neither took the subject to the deep informa- tional level of Butler and Hering. In the twentieth century the emergence of a new science – Evolutionary Bioinformatics (EB) – was heralded by two dis- coveries. First, that DNA – a linear polymer of four base units – was the chromosomal component conveying hereditary information. Second, that much of this information was “a phenomenon of arrangement” – determined by the sequence of the four bases. We conclude with a brief sketch of the new work as it relates to William Bateson’s evolutionary ideas. However, imbued with true Batesonian caution (“I will believe when I must”), it is relegated to an Appendix to indicate its provisional nature. Modern languages have similarities that indicate branching evolution from common ancestral languages [2]. We recognize early variations within a language as dialects or accents. When accents are incompatible, communi- cation is impaired. As accents get more disparate, mutual comprehension de- creases and at some point, when comprehension is largely lost, we declare that there are two languages where there was initially one. The origin of lan- guage begins with differences in accent. If we understand how differences in accent arise, then we may come to understand something fundamental about the origin of language (and hence of a text written in that language).
    [Show full text]
  • Statement About Pnas Paper “The New Mutation Theory of Phenotypic Evolution”
    July 30, 2007 (revised) Brief Historical Perspectives of the Paper “THE NEW MUTATION THEORY OF PHENOTYPIC EVOLUTION” Proceedings of the National Academy of Sciences, USA, 104:12235-12242, Published July 17, 2007 online. Masatoshi Nei The following is the author’s account of the history of development of the mutation theory of phenotypic evolution and related matters. Darwinism (1) Charles Darwin proposed that evolution occurs by natural selection in the presence of fluctuating variation. (2) At his time, the mechanism of generation of new variation was not known, and he assumed that new variation is generated by climatic changes, inheritance of acquired characters, spontaneous variations, etc. However, he believed that new variation occurs in random direction and evolutionary change is caused by natural selection. (3) He assumed that enormous phenotypic diversity among different phyla and classes is the result of accumulation of gradual evolution by natural selection. Saltationism Several biologists such as Thomas Huxley, William Bateson, and Hugo de Vries argued that the extent of variation between species is much greater than that within 1 species and therefore saltational or macromutational change is necessary to form new species rather than gradual evolution as proposed by Darwin. In this view a new species can be produced by a single macromutation, and therefore natural selection is unimportant. This view was strengthened when de Vries discovered several new forms of evening primroses which were very different from the parental species (Oenothera lamarckiana) and appeared to be new species. This discovery suggested that new species can arise by a single step of macromutation. However, it was later shown that O.
    [Show full text]
  • Doctorates Awarded in America in Botany and Zoology More Than Doubled
    DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA 91125 GENETICS IN THE UNITED STATES AND GREAT BRITAIN 1890 to 1930: QUERIES AND SPECULATIONS Daniel J. Kev1es HUMANITIES WORKING PAPER 15 December 1978 According to recent scholarship in the early history of genetics, by the l890s many younger biologists were growing restless with phylogenetic morphology and embryology, the traditional descriptive approaches to the much-debated problems of evolutionary theory. Eager to break away from these approaches, a number of these biologists -- and some older ones such as Alfred R. Wallace called for programs of experimental research in evolution addressed in particular to the problems of heredity and variation. "No problems in the whole range of biology," Charles O. Whitman of Woods Hole typically said, were of 1 "higher scientific interest or deeper practical import to humanity." In England Francis Galton inspired one of the more important experimental research programs -- W. F. R. Weldon's statistical analyses, developed in collaboration with Karl Pearson, of variations in large populations. Another important departure was the program of hybridization experiments exemplified in the research of William Bateson. Pearson and Weldon helped establish the field of heredity studies known as biometry. The research of Bateson and others paved the way for the rediscovery in 2 1900 and then vigorous advocacy of the Mendelian paradigm. Mendel's ideas did not gain rapid acceptance in all biological quarters in either the United States or Great Britain, In England, the biometricians Weldon and Pearson hotly disputed the validity of Mendel's results, the merits of his conceptual scheme, and even the integrity of his British advocates, especially Bateson.
    [Show full text]
  • William Bateson: Scientific Correspondence and Papers (MS Add.8634)
    Cambridge University Library, Department of Archives and Modern Manuscripts Finding Aid - William Bateson: Scientific Correspondence and Papers (MS Add.8634) Generated by Access to Memory (AtoM) 2.4.0 Printed: February 27, 2019 Language of description: English Cambridge University Library, Department of Archives and Modern Manuscripts https://archive.lib.cam.ac.uk/index.php/william-bateson-scientific-correspondence-and-papers William Bateson: Scientific Correspondence and Papers Table of contents Summary information .................................................................................................................................... 20 Administrative history / Biographical sketch ................................................................................................ 20 Scope and content ......................................................................................................................................... 20 Notes .............................................................................................................................................................. 21 Access points ................................................................................................................................................. 21 Collection holdings ........................................................................................................................................ 22 MS Add.8634/A.1-A.84, Biographical papers (c.1859-1935 & 1972) .....................................................
    [Show full text]
  • Evolution by Natural Selection
    Approaches to studying animal behavior Foundations of modern study of behavior 1. Evolution by natural selection 2. Genetics and inheritance 3. Comparative method Evolution by natural selection Evolution by natural selection Species are not immutable Alfred Russell Wallace (1823-1913) Charles Darwin (1809-1882) Contributions to the Theory Origin of Species, 1859 of Natural Selection, 1870 Descent of Man, 1871 Thomas Malthus Descent from a common ancestor Evolution by natural selection Comparative method Reasons why Darwin‟s (and Wallace‟s) ideas weren‟t widely accepted: Comparative method: comparing traits and environments across taxa in search of correlations Lord Kelvin: Earth is only 15-20 million years old that test hypotheses about adaptation Darwin had no idea where genetic variability came from Thomas Hunt Morgan Darwin didn‟t George Romanes understand inheritance (1848-1894) Gregor Mendel 1 Ethology Ethology Scientific study of animal behavior Oskar Heinroth (1871-1945) Charles Otis Whitman (1842-1910) Appetitive behavior Wallace Craig (1876-1954) Douglas Spalding (1841-1877) tests the concept of instinct Consummatory behavior Rise of ethology Experimental ethology Karl von Frisch (1886-1982) Jakob von Uexkϋll (1864-1944) von Uexkϋll‟s tick and the Umwelt Ethology’s triumvirate Ethology’s triumvirate Konrad Lorenz Niko Tinbergen Karl von Frisch (1903-1989) (1907-1988) (1886-1982) 2 Sign stimuli Sign stimuli Lorenz‟s accidental discovery of sign stimuli or releasers Experimental ethology Experimental ethology Tinbergen‟s experiments
    [Show full text]
  • Psychology Old and New
    University of Pennsylvania ScholarlyCommons IRCS Technical Reports Series Institute for Research in Cognitive Science 1-1-2001 Psychology Old and New Gary Hatfield University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/ircs_reports Part of the Psychology Commons Hatfield, Gary, "Psychology Old and New" (2001). IRCS Technical Reports Series. 23. https://repository.upenn.edu/ircs_reports/23 University of Pennsylvania Institute for Research in Cognitive Science Technical Report No. IRCS-01-07. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ircs_reports/23 For more information, please contact [email protected]. Psychology Old and New Abstract Psychology as the study of mind was an established subject matter throughout the nineteenth century in Britain, Germany, France, and the United States, taught in colleges and universities and made the subject of books and treatises. During the period 1870-1914 this existing discipline of psychology was being transformed into a new, experimental science, especially in Germany and the United States. The increase in experimentation changed the body of psychological writing, although there remained considerable continuity in theoretical content and non-experimental methodology between the old and new psychologies. This paper follows the emergence of the new psychology out of the old in the national traditions of Britain (primarily England), Germany, and the United States, with some reference to French, Belgian, Austrian, and Italian thinkers. The final section considers some methodological and philosophical issues in these literatures. Disciplines Psychology Comments University of Pennsylvania Institute for Research in Cognitive Science Technical Report No. IRCS-01-07.
    [Show full text]