Synthesis of FMN Analogues As Probes for the Photocycle of Avena Sativa

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of FMN Analogues As Probes for the Photocycle of Avena Sativa Synthesis of FMN Analogues as Probes for the Photocycle of Avena sativa Andrew Wood Submitted in fulfilment of the requirement for the degree of Doctor of Philosophy School of Chemistry, Cardiff University February, 2014 Declaration This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed ………………………………………… (candidate) Date ………………………… STATEMENT 1 This thesis is being submitted in partial fulfilment of the requirements for the degree of PhD. Signed ………………………………………… (candidate) Date ………………………… STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated (see below). Other sources are acknowledged by explicit references. The views expressed are my own. Signed ………………………………………… (candidate) Date ………………………… STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- library loan, and for the title and summary to be made available to outside organisations. Signed ………………………………………… (candidate) Date ………………………… i Declaration of Contributions I confirm that the work presented within this thesis was performed by the author, with exceptions summarised here, and explicitly referenced in the relevant sections of the thesis. The original construction of several plasmid vectors used for the expression of recombinant proteins was not performed, as they were freely available (from previous work), and donated to me. Their original preparation is summarised below. Furthermore, during a short side- project the dephosphorylation of 5-deazaFAD was performed (on an analytical scale) by a collaborator (Dr. Hannah Collins, University of Kent) using commercially available Phosphodiesterase I from Crotalus atrox. This is described in section 7.1.5 in order to support other results independently obtained during this research, and full reference is made to the contributing experimenter. C. ammoniagenes RfK-FADS (pMAL-C2-RibF-Ca) The plasmid vector pMAL-C2 containing the gene for Ca-RfK-FADS was originally prepared by others including the project supervisor (Gerald Richter, University of Cardiff), and its sequence and details are reported in a freely available journal1. S. pombe RfK (pET14b-SpRfK): The original cloning of the S. pombe riboflavin kinase from the commercially available gene (GenBank®2,3 reference: NM_001023386.2) into the plasmid expression vector pET-14b was performed by Dr. Hannah Collins (University of Kent), and the construct was gifted to me during a short side-project. A.sativa PHOT1-LOV2 (pNCO113-HISACT(C49S)-AsLOV2) The creation of the plasmid pNCO113-HISACT(C49S)-AsLOV2(WT) was performed by others including the project supervisor (Gerald Richter); this is described in freely available literature1,4, and its sequence added to the GenBank®2,3 (reference: ef493211.1). This construct allowed expression of the wild-type AsLOV2 domain as a hisactophilin fusion protein, and was also used as the basis for subsequent mutagenesis of the AsLOV2 domain. ii Abstract The effect of light on plants is fundamental to our understanding of the biological world. Photo-activated processes within botanical cells are controlled by two distinct colours; red light provides the energy required for photosynthesis, and blue light stimulates responses of the cell (growth, stomatal opening, etc.) necessary for biological progression. The key step in blue-light controlled processes has recently been determined to be the formation of a covalent bond between a tightly-bound molecule of flavin and a conserved cysteine residue within a photosensitive protein domain, which causes a physical change to the protein structure upon irradiation. This research was undertaken to examine light-stimulated covalent bond formation in phototropic proteins using two approaches. Firstly, two analogues of riboflavin (5-deazariboflavin and 1-deazariboflavin) were chemically synthesised, converted to the appropriate cofactor form (flavin mononucleotide; FMN), and incorporated into the photosensitive domain. The results of this were startling; while 1-deazaFMN inactivated the photosensitive domain to all wavelengths of light, 5-deazaFMN allowed control of the domain’s behaviour using two separate wavelengths of light, creating a biophotonic nanoswitch. The second approach was based upon mutagenesis of the amino acid responsible for bond formation, introducing several alternative residues in place of the reactive cysteine. All mutants were found to be inactive to irradiation (including those incorporating either of the deazaFMN analogues), providing further evidence to support the current “radical pair” mechanism of photoadduct formation. During the synthesis of the flavin analogues, several reactions were found to be inefficient, and a large number of alternative reactions were studied. Additionally, a new route to several flavin analogues was devised and tested, and while unsuccessful, provides a foundation upon which to base a future examination of their synthesis. Finally, the synthesis of a novel riboflavin analogue (5-deaza-8-demethyl-riboflavin) was completed, allowing comparison with the synthesis of 5-deazariboflavin. iii Acknowledgements Firstly, I wish to thank my supervisor, Professor Gerald Richter, for his introduction to flavin chemistry. His knowledge in this field and his confidence in my abilities was fundamental in my decision to attempt the research presented in this thesis. I would like to thank Dr. James Redman and Professor Rudolf Allemann for allowing me space to work within their laboratories, and for their thought-provoking questioning throughout my research. I would like to thank Professor Nick Tomkinson (University of Strathclyde), and Professor Mark Bagley (University of Sussex) for mentoring me during their readerships in Cardiff, as well as the technical and administrative staff (past and present) in the School of Chemistry for their support. In particular I would like to thank Dr. Robert Jenkins and Mr. Robin Hicks for their assistance with all aspects of NMR Spectroscopy and Mass Spectrometry. I wish to thank Dr. Robert Mart, and a fellow PhD student whom I worked alongside, Dr. Steven Hill, for their assistance in the development of ideas and their numerous suggestions. Their support led to a vast improvement in my knowledge of chemical synthesis, and greatly improved the scope of this work. I also wish to extend thanks to all members of the Chemical Biology group in the School of Chemistry for their immeasurable help with the biological elements of this work. I began this project with no prior practical experience of this field, and have benefitted greatly by their patient instruction in the techniques and methods used for the molecular biology performed during my research. Furthermore, I would like to thank my friends (Seni Chanapai, William Dawson, Sarah Adams, Daniel Grundy and Dilruba Meah) for their assistance and reassurance, and my partner Sally Pemberton, for her continued encouragement. Finally, I must give thanks to my parents and friends for their love, encouragement and support throughout the course of my education, which is truly appreciated. Their contributions have been fundamental in my development both as a researcher and as an individual, and without which it would have been impossible to complete this project. iv List of Abbreviations In addition to abbreviations in common occurrence throughout current literature, the following abbreviations are in use throughout this thesis. These are divided for convenience into abbreviations used for chemicals, and for techniques and methods. Chemical Abbreviations 18-C-6 18-crown-6 4-DMAP 4-dimethylaminopyridine, also known as N,N- dimethylaminopyridine Ac acetyl; functional group AcCl acetyl chloride Ac2O acetic anhydride AcOH acetic acid ADP adenosine-5’-diphosphate AMP adenosine-5’-monophosphate APS ammonium persulphate Arg arginine (R); amino acid Ar aryl; functional group Asp aspartic acid (D); amino acid ATP adenosine-5’-triphosphate Bn benzyl; functional group Boc tert-butyloxycarbonyl; functional / protecting group Boc anhydride di-tert-butyl dicarbonate CAM cerium ammonium molybdate CAN cerium ammonium nitrate Cys cysteine (C); amino acid CTP cytidine-5’-triphosphate DCM dichloromethane dioxane 1,4-dioxane DABCO diazabicyclo[2.2.2]octane dATP deoxyadenosine triphosphate, see dNTP v dCTP deoxycytidine triphosphate, see dNTP dGTP deoxyguanosine triphosphate, see dNTP DIPEA N,N-diisopropylethylamine DMAP N,N-dimethylaminopyridine DMF N,N-dimethylformamide DMPU 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone DMSO dimethylsulphoxide DNA deoxyribonucleic acid DNPH 2,4-dinitrophenylhydrazine dNTP deoxynucleotide triphosphate (ATP, GTP, CTP, TTP) DTT dithiothreitol dTTP deoxythymidine triphosphate, see dNTPs EtBr* ethidium Bromide (not bromoethane; by convention) EDTA ethylenediaminetetraacetic acid Et2O diethyl ether EtOAc ethyl acetate EtOH ethanol FAD flavin adenine dinucleotide FMN flavin mononucleotide GTP guanosine-5’-triphosphate GuHCl guanidinium hydrochloride GuSCN guanidinium thiocyanate HATU 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5- b]pyridinium 3-oxid hexafluorophosphate HCl hydrochloric acid HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid IPTG isopropyl-1-thio-β-D-galactopyranoside KOH potassium hydroxide LB (growth media) Leuria-Bertani media for bacterial growth Me methyl; functional group MeOH methanol
Recommended publications
  • A General and Direct Reductive Amination of Aldehydes and Ketones with Electron-Deficient Anilines
    SYNTHESIS0039-78811437-210X © Georg Thieme Verlag Stuttgart · New York 2016, 48, 1301–1317 1301 feature Syn thesis J. Pletz et al. Feature A General and Direct Reductive Amination of Aldehydes and Ketones with Electron-Deficient Anilines Jakob Pletz EWG hydride reductant EWG H NH 1 N R1 Bernhard Berg 2 O R activating agent + Rolf Breinbauer* 2 R2 R Institute of Organic Chemistry, Graz University of Technology, 29 examples up to 99% yield Stremayrgasse 9, 8010 Graz, Austria 3 methods: [email protected] A) BH3•THF, AcOH, CH2Cl2, 0–20 °C 12 anilines In memoriam Philipp Köck B) BH3•THF, TMSCl, DMF, 0 °C 14 ketones C) NaBH4, TMSCl, DMF, 0 °C 3 aldehydes Received: 01.12.2015 Our first goal was the design and synthesis of analogues Accepted after revision: 20.01.2016 of intermediates in the transformation catalyzed by the Published online: 01.03.2016 1 DOI: 10.1055/s-0035-1561384; Art ID: ss-2015-t0688-fa protein PhzA/B. According to Wulf’s proposal, this enzyme was expected to catalyze the imine formation between the putative aminoketone B, resulting from the transformation Abstract In our ongoing efforts in preparing tool compounds for in- of PhzF with dihydrohydroxyanthranilic acid (DHHA; A), vestigating and controlling the biosynthesis of phenazines, we recog- with itself, thereby establishing the tricyclic skeleton C, nized the limitations of existing protocols for C–N bond formation of from which after a series of oxidation reactions phenazine- electron-deficient anilines when using reductive amination. After ex- carboxylic acid E will
    [Show full text]
  • Recommended Methods for the Identification and Analysis Of
    Vienna International Centre, P.O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES Laboratory and Scientific Section United Nations Office on Drugs and Crime Vienna RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES UNITED NATIONS New York, 2006 Note Mention of company names and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. ST/NAR/34 UNITED NATIONS PUBLICATION Sales No. E.06.XI.1 ISBN 92-1-148208-9 Acknowledgements UNODC’s Laboratory and Scientific Section wishes to express its thanks to the experts who participated in the Consultative Meeting on “The Review of Methods for the Identification and Analysis of Amphetamine-type Stimulants (ATS) and Their Ring-substituted Analogues in Seized Material” for their contribution to the contents of this manual. Ms. Rosa Alis Rodríguez, Laboratorio de Drogas y Sanidad de Baleares, Palma de Mallorca, Spain Dr. Hans Bergkvist, SKL—National Laboratory of Forensic Science, Linköping, Sweden Ms. Warank Boonchuay, Division of Narcotics Analysis, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand Dr. Rainer Dahlenburg, Bundeskriminalamt/KT34, Wiesbaden, Germany Mr. Adrian V. Kemmenoe, The Forensic Science Service, Birmingham Laboratory, Birmingham, United Kingdom Dr. Tohru Kishi, National Research Institute of Police Science, Chiba, Japan Dr.
    [Show full text]
  • Comparative Total Syntheses of Strychnine
    Comparative Total Syntheses of Strychnine N C D MacMillan Group Meeting N H O H A H B E Nathan Jui H N N H H F G July 22, 2009 O O O References: Pre-Volhardt: Bonjoch Chem. Rev. 2000, 3455. Woodward Tetrahedron, 1963, 247. Volhardt J. Am. Chem. Soc. 2001, 9324. Magnus J. Am. Chem. Soc. 1993, 8116. Martin J. Am. Chem. Soc. 2001, 8003. Overman J. Am. Chem. Soc. 1995, 5776. Bodwell Angew. Chem. Int. Ed. 2002, 3261. Kuehne J. Org. Chem. 1993, 7490. Mori J. Am. Chem. Soc. 2003, 9801. Kuehne J. Org. Chem. 1998, 9427. Shibasaki Tetrahedron 2004, 9569. Rawal J. Org. Chem. 1994, 2685. Fukuyama J. Am. Chem. Soc. 2004, 10246. Bosch, Bonjoch Chem. Eur. J. 2000, 655. Padwa Org. Lett. 2007, 279. History and Structure of (!)-Strychnine ! Isolated in pure form in 1818 (Pelletier and Caventou) ! Structural Determination in 1947 (Robinson and Leuchs) ! 24 skeletal atoms (C21H22N2O2) ! Isolated in pure form in 1818 (Pelletier and Caventou) N ! Over !25 07 -pruinbglisc,a 6ti-osntesr epoecrteaninteinrgs to structure ! Structural Determination in 1947 (Robinson and Leuchs) ! Notor!io u Ss ptoirxoicne (nletethr a(lC d-o7s) e ~10-50 mg / adult) N H H ! Over 250 publications pertaining to structure O O ! Comm!o nClyD uEs eridn gr osdyesntet mpoison ! Notorious poison (lethal dose ~10-50 mg / adult) ! Hydroxyethylidine Strychnos nux vomica ! $20.20 / 10 g (Aldrich), ~1.5 wt% (seeds), ~1% (blossoms) "For it's molecular size it is the most complex substance known." -Robert Robinson History and Structure of (!)-Strychnine ! 24 skeletal atoms (C21H22N2O2) N ! 7-rings, 6-stereocenters ! Spirocenter (C-7) N H H O O ! CDE ring system ! Hydroxyethylidine "For it's molecular size it is the most complex substance known." -Robert Robinson "If we can't make strychnine, we'll take strychnine" -R.
    [Show full text]
  • Simple Ruthenium-Catalyzed Reductive Amination Enables the Synthesis of a Broad Range of Primary Amines
    ARTICLE DOI: 10.1038/s41467-018-06416-6 OPEN Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines Thirusangumurugan Senthamarai1, Kathiravan Murugesan1, Jacob Schneidewind 1, Narayana V. Kalevaru1, Wolfgang Baumann1, Helfried Neumann1, Paul C.J. Kamer1, Matthias Beller 1 & Rajenahally V. Jagadeesh 1 1234567890():,; The production of primary benzylic and aliphatic amines, which represent essential feed- stocks and key intermediates for valuable chemicals, life science molecules and materials, is of central importance. Here, we report the synthesis of this class of amines starting from carbonyl compounds and ammonia by Ru-catalyzed reductive amination using H2. Key to success for this synthesis is the use of a simple RuCl2(PPh3)3 catalyst that empowers the synthesis of >90 various linear and branched benzylic, heterocyclic, and aliphatic amines under industrially viable and scalable conditions. Applying this catalyst, −NH2 moiety has been introduced in functionalized and structurally diverse compounds, steroid derivatives and pharmaceuticals. Noteworthy, the synthetic utility of this Ru-catalyzed amination protocol has been demonstrated by upscaling the reactions up to 10 gram-scale syntheses. Further- more, in situ NMR studies were performed for the identification of active catalytic species. Based on these studies a mechanism for Ru-catalyzed reductive amination is proposed. 1 Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany. Correspondence and requests for materials should be addressed to M.B. (email: [email protected]) or to R.V.J. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:4123 | DOI: 10.1038/s41467-018-06416-6 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06416-6 fi 25 he development of ef cient catalytic reactions for the Cl]2-BINAS catalysts were also applied .
    [Show full text]
  • Enantioselective Organocatalytic Reductive Amination R
    Published on Web 12/14/2005 Enantioselective Organocatalytic Reductive Amination R. Ian Storer, Diane E. Carrera, Yike Ni, and David W. C. MacMillan* DiVision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 Received October 23, 2005; E-mail: [email protected] The reductive amination reaction remains one of the most ketone and amine coupling partners to a chiral hydrogen-bonding powerful and widely utilized transformations available to practi- catalyst8 would result in the intermediate formation of an iminium tioners of chemical synthesis in the modern era.1 A versatile species that in the presence of a suitable Hantzsch ester would coupling reaction that enables the chemoselective union of diverse undergo enantioselective hydride reduction, thereby allowing asym- ketone and amine containing fragments, reductive amination can metric reductive amination in an in vitro setting.9 This proposal also provide rapid and general access to stereogenic C-N bonds, was further substantiated by the significant advances in hydrogen- a mainstay synthon found in natural isolates and medicinal agents. bonding catalysis, arising from the pioneering studies of Jacobsen,10 While a variety of protocols have been described for the asymmetric Corey,11 Takemoto,12 Rawal,13 Johnston,14 Akiyama,15 and Terada.16 reduction of ketimines (a strategy that requires access to preformed, bench stable imines),2 it is surprising that few laboratory methods are known for enantioselective reductive amination.1b,3 Moreover, the use of this ubiquitous reaction for the union of complex fragments remains unprecedented in the realm of asymmetric catalysis, a remarkable fact given the widespread application of both racemic and diastereoselective variants.
    [Show full text]
  • Convenient Reductive Amination of Aldehydes by Nabh4/Cation Exchange Resin
    J. Mex. Chem. Soc. 2014, 58(1), 22-26 Article22 J. Mex. Chem. Soc. 2014, 58(1) Davood© Setamdideh2014, Sociedad and FarhadQuímica Sepehraddin de México ISSN 1870-249X Convenient Reductive Amination of Aldehydes by NaBH4/Cation Exchange Resin Davood Setamdideh* and Farhad Sepehraddin Department of Chemistry, College of Sciences, Mahabad Branch, Islamic Azad University, Mahabad, Iran. [email protected]; [email protected] Received June 10th, 2013; Accepted September 18th, 2013 Abstract. Different secondary amines have been synthesized by re- Resumen. Se sintetizaron diversas aminas secundarias por aminación ductive amination a variety of aldehydes and anilines with NaBH4/ reductiva de una variedad de aldehidos y anilinas empleando como DOWEX(R)50WX8 as reducing system in THF at room temperature sistema reductor NaBH4/DOWEX(R)50WX8 en THF a temperatura in high to excellent yields of products (85-93%). ambiente con rendimientos de altos a excelentes. Key words: NaBH4, DOWEX(R)50WX8, Reductive amination, Car- Palabras clave: NaBH4, DOWEX(R)50WX8, aminación reductiva, bonyl compounds. aminas secundarias. Introduction Results and Discussion Amines are important in drugs and in active pharmaceuti- Recently, we have reported that the DOWEX(R)50WX4 (low cal intermediates. Amines can be achieved by reduction of price cation exchange resin, strong acid) can be used as recy- nitro, cyano, azide, carboxamide derivatives or alkylation of clable catalyst for the regioselective synthesis of Oximes by amines (using alkyl halides or sulfonates). On the other hand, NH2OH.HCl/DOWEX(R)50WX4 system [31], reduction of a direct reductive amination (DRA) is other approach which of- variety of carbonyl compounds such as aldehydes, ketones, α- fers significant advantages.
    [Show full text]
  • Formal Synthesis of (+/-) Morphine Via an Oxy-Cope/Claisen/Ene Reaction Cascade
    Formal Synthesis of (+/-) Morphine via an Oxy-Cope/Claisen/Ene Reaction Cascade by Joel Marcotte Submitted to the Faculty of Graduate and Postdoctoral Studies In partial fulfillment of the requirements for the degree of Master of Science The University of Ottawa August, 2012 © Joel Marcotte, Ottawa, Canada, 2012 ABSTRACT For years now, opium alkaloids and morphinans have been attractive synthetic targets for numerous organic chemists due to their important biological activity and interesting molecular architecture. Morphine is one of the most potent analgesic drugs used to alleviate severe pain. Our research group maintains a longstanding interest in tandem pericyclic reactions such as the oxy-Cope/Claisen/ene reaction cascade and their application to the total synthesis of complex natural products. Herein we report the ventures towards the formal synthesis of (+/-)-morphine based on the novel tandem oxy- Cope/Claisen/ene reaction developed in our laboratory. These three highly stereoselective pericyclic reactions occurring in a domino fashion generate the morphinan core structure 2 via precursor 1 after only 7 steps. The formal synthesis culminated in the production of 3 after a total of 18 linear steps, with an overall yield of 1.0%, successfully intersecting two previous syntheses of the alkaloids, namely the ones of Taber (2002) and Magnus (2009). ii À ma famille, sans qui rien de cela n’aurait été possible iii ACKNOWLEDGEMENTS I would like to start by thanking my supervisor Dr. Louis Barriault, who has been my mentor in chemistry for the past three years. I am grateful for his guidance, patience and encouragements, especially when facing the many challenges that awaited me on this project.
    [Show full text]
  • Advances in the Asymmetric Total Synthesis of Natural Products Using Chiral Secondary Amine Catalyzed Reactions of Α,Β-Unsaturated Aldehydes
    molecules Review Advances in the Asymmetric Total Synthesis of Natural Products Using Chiral Secondary Amine Catalyzed Reactions of α,β-Unsaturated Aldehydes Zhonglei Wang 1,2 1 School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; [email protected] 2 School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China Academic Editor: Ari Koskinen Received: 12 August 2019; Accepted: 19 September 2019; Published: 19 September 2019 Abstract: Chirality is one of the most important attributes for its presence in a vast majority of bioactive natural products and pharmaceuticals. Asymmetric organocatalysis methods have emerged as a powerful methodology for the construction of highly enantioenriched structural skeletons of the target molecules. Due to their extensive application of organocatalysis in the total synthesis of bioactive molecules and some of them have been used in the industrial synthesis of drugs have attracted increasing interests from chemists. Among the chiral organocatalysts, chiral secondary amines (MacMillan’s catalyst and Jorgensen’s catalyst) have been especially considered attractive strategies because of their impressive efficiency. Herein, we outline advances in the asymmetric total synthesis of natural products and relevant drugs by using the strategy of chiral secondary amine catalyzed reactions of α,β-unsaturated aldehydes in the last eighteen years. Keywords: bioactive natural products; pharmaceuticals; asymmetric total synthesis; chiral secondary amines; α,β-unsaturated aldehydes 1. Introduction In 2000, the MacMillan group [1] first described the fundamental concept of LUMO-lowering iminium-ion activation. In 2005, the Jørgensen group [2,3] reported diarylprolinol silyl ether catalysts, which have also been used in iminium-ion catalysis.
    [Show full text]
  • Aldrichimica Acta 52.3 2019; Special Issue: DNA-Encoded Libraries
    VOLUME 52, NO. 3 | 2019 SPECIAL ISSUE: DNA-ENCODED LIBRARIES (DELs) ALDRICHIMICA ACTA DNA-Encoded Libraries—Finding the Needle in the Haystack DNA-Encoded Fragment Libraries: Dynamic Assembly, Single-Molecule Detection, and High-Throughput Hit Validation DNA-Encoded Library Chemistry: Amplification of Chemical Reaction Diversity for the Exploration of Chemical Space The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada. DEAR READER: We, at MilliporeSigma, value the spirit of discovery. Since 2006, the Bader Award in Synthetic Organic Chemistry has recognized outstanding research from graduate students all over the world. This year, four eminently deserving young scientists were selected to receive the award and were invited to present their winning research at the 2019 Bader Student Chemistry Symposium in Milwaukee, WI, on September 12, 2019. Michael Crocker, of Vanderbilt University, gave a presentation on “The Halo-Amino-Nitro Alkane Functional Group: A Platform for Reaction Discovery”. He explained, “From an organic chemistry perspective, the next advancement I expect to fundamentally impact the way we put molecules together is C–H activation. Just as cross-coupling revolutionized synthetic planning, C–H activation will give access to more complex and difficult chemical space with implications in the particularly exciting areas of sustainable energy materials and personalized medicine.” Lucas Hernandez, of the University of Illinois at Urbana-Champaign, stated, “With the advent of machine learning in chemistry, the discovery of novel reactions will become more rapid over the next 100 years.” His research on the “Synthesis of Isocarbostyril Alkaloids from Benzene” demonstrated how new compounds can be synthetically discovered and tested, providing molecular solutions to pressing challenges in oncology.
    [Show full text]
  • Highly Selective and Robust Single-Atom Catalyst Ru1
    ARTICLE https://doi.org/10.1038/s41467-021-23429-w OPEN Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones ✉ Haifeng Qi1,2,4, Ji Yang1,4, Fei Liu1,4, LeiLei Zhang 1 , Jingyi Yang1,2, Xiaoyan Liu 1, Lin Li1, Yang Su1, ✉ ✉ Yuefeng Liu1, Rui Hao1, Aiqin Wang 1,3 & Tao Zhang 1,3 1234567890():,; Single-atom catalysts (SACs) have emerged as a frontier in heterogeneous catalysis due to the well-defined active site structure and the maximized metal atom utilization. Nevertheless, the robustness of SACs remains a critical concern for practical applications. Herein, we report a highly active, selective and robust Ru SAC which was synthesized by pyrolysis of ruthenium acetylacetonate and N/C precursors at 900 °C in N2 followed by treatment at 800 °C in NH3. The resultant Ru1-N3 structure exhibits moderate capability for hydrogen activation even in excess NH3, which enables the effective modulation between transimination and hydrogenation activity in the reductive amination of aldehydes/ketones towards primary amines. As a consequence, it shows superior amine productivity, unrivalled resistance against CO and sulfur, and unexpectedly high stability under harsh hydrotreating conditions com- pared to most SACs and nanocatalysts. This SAC strategy will open an avenue towards the rational design of highly selective and robust catalysts for other demanding transformations. 1 CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. 2 University of Chinese Academy of Sciences, Beijing, China. 3 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of ✉ Sciences, Dalian, China.
    [Show full text]
  • Reductive Amination of (Alpha) - Amino Acids: Solution - Phase Synthesis Rohini D'souza
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 7-1-2001 Reductive amination of (alpha) - amino acids: Solution - Phase synthesis Rohini D'Souza Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation D'Souza, Rohini, "Reductive amination of (alpha) - amino acids: Solution - Phase synthesis" (2001). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. REDUCTIVE AMINATION OF ex - AMINO ACIDS: SOLUfION - PHASE SYNTHESIS Rohini D'Souza July 2001 A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Chemistry Approved: Kay Tumer Thesis Advisor Terence Morrill Department Head Department of Chemistry Rochester Institute of Technology Rochester, NY 14623-5603 COPYRIGHT RELEASE FORM Reductive Amination of a. - Amino Acids: Solution-Phase Synthesis I, Rohini D'Souza, hereby grant permission to Wallace Memorial Library of the Rochester Institute of Technology, to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit. Date: 07 ·;(5, 2-001 Signature: _ vii TABLE OF CONTENTS LIST OF TABLES Hi LIST OF FIGURES iv LIST OF SCHEMES v LIST OF APPENDICES vi COPYRIGHT RELEASE FORM vii DEDICATION viii ACKNOWLEDGEMENTS
    [Show full text]
  • Direct Reductive Amination of Carbonyl Compounds Using Sodium Borohydride-Silica Chloride
    Turk J Chem 34 (2010) , 307 – 312. c TUB¨ ITAK˙ doi:10.3906/kim-0903-46 Direct reductive amination of carbonyl compounds using sodium borohydride-silica chloride Heshmatollah ALINEZHAD∗, Mahmood TAJBAKHSH, Neda HAMIDI Faculty of Chemistry, Mazandaran University, Babolsar-IRAN e-mail: [email protected] Received 18.03.2009 A simple and convenient procedure for reductive amination of aldehydes and ketones using sodium borohydride in the presence of silica chloride as an active, inexpensive, recoverable, and recyclable catalyst is described. The reactions were carried out with equimolar amounts of amine and carbonyl compound using silica chloride-sodium borohydride in THF at room temperature. Key Words: Reductive amination, silica chloride, sodium borohydride, aldehyde, ketone. Introduction Reductive amination of carbonyl compounds is a very important methodology for chemists to target the synthesis 1 of secondary or tertiary amines; thus, there are many approaches to carry out this direct process. NaBH 3 CN is a representative reducing agent, 2 and various modified borohydride derivatives have been used that involve 3 4 5 i 6 7 NaBH(OAc) 3 , NaBH 4 -Mg(ClO4)2 , NaBH 4 –wet clay, Ti(O -Pr)4 -NaBH4 , NaBH 4 -ZnCl 2 , NaBH 4 - 8 9 10 11 NiCl 2 , silica gel–Zn(BH4)2 , [Zr(BH4)2 Cl 2 (dabco) 2 ], NaBH 4 in micellar media, N -methylpiperidine 12 13 14 zinc borohydride, NaBH 4 -H3 PW 12 O40 , NaBH 4 -silica phosphoric acid, and N -methylpyrrolidine zinc borohydride.15 However, most of these reagents may have one drawback or another. For example, catalytic hydrogenation is incompatible with compounds containing carbon–carbon multiple bonds, nitro groups, and cyano groups.
    [Show full text]