Effects of Accountability, Knowledge and Ethics on the Quality of Auditor's Work in KAP Jakarta Selatan

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Accountability, Knowledge and Ethics on the Quality of Auditor's Work in KAP Jakarta Selatan Effects of Accountability, Knowledge and Ethics On the Quality of Auditor's Work in KAP Jakarta Selatan. Khairul Saleh L Tobing [email protected] Universitas Nasional, Jalan Sawo Manila, Pejaten, Pasar Minggu, Jakarta Selatan Abstract This study aims to determine: 1) Effect of Auditor Accountability on Quality of KAP Audit Work Results in South Jakarta; 2) The Effect of Auditor Knowledge on the Quality of South Jakarta KAP Audit Audit Results; 3) Effect of Auditor Ethics on the Quality of South Jakarta KAP Audit Work Results. This study intends to explain the causal relationship between the variables through testing the formulated hypothesis. The population in this study is the auditor who works at the Public Accountant Office in South Jakarta. The population used in this study was 122 auditors who worked at 11 Public Accounting Firms (KAP) in South Jakarta. The sampling technique uses nonprobbility sampling with purposive sampling. To measure the number of samples used the slovin formula with a significant level of 5%. The data collection technique was carried out using the questionnaire method, the researcher distributed questionnaires to 127 respondents and only 125 returned questionnaires and used 122 questionnaires according to the measurement results of the Slovin formula. The questionnaire was tested for validity and reliability before the research data was collected, the test results showed that all instruments were valid and reliable. Prior to the analysis, the analysis prerequisite tests are conducted including the normality test, linearity test, multicollinearity test, and heteroscedasticity test. Analysis of the data used to test the hypothesis is by using multiple regression analysis techniques, t test and F test. The results of the study show that: 1) There is a positive and significant influence of Accountability, Knowledge and Ethics on the Quality of Auditor's Work Results in KAP South Jakarta. Keywords: Accountability, Knowledge, Auditor Ethics, and Audit Quality. I. INTRODUCTION Auditor services for financial statements are the best known services and these services are services that are often used by external parties who want to assess the company and make decisions on the company. The auditor is able to provide guarantees that the financial statements are relevant and reliable. In general auditing is a systematic process of evaluating evidence objectively about statements about a company's economic activities and events, with the aim of determining the level of appropriateness between statements and established criteria. From the audit results the auditor draws and conveys the conclusions of the financial statements to interested parties. The company's external parties lay the basis of its decision on the work of the auditor, and the Auditor draws conclusions based on the audit work that has been done. This can be interpreted that whether or not the quality of the work of auditors will influence the decisions to be taken by external parties. Logically the quality of the work of the Auditor can be influenced by accountability, that is a social psychological impulse owned by an Auditor in completing his obligations which will be accountable to his environment. Many social psychology studies have proven that there is a relationship and the effect of one's accountability on the quality of his work, because the accountability of an auditor can improve the auditor's cognitive process in making decisions. The interaction of accountability with knowledge also determines the quality of the work of the auditors, and the Audit must also be carried out by someone who has sufficient technical expertise and knowledge in the audit field. This knowledge directly affects the ability of auditors, and this knowledge is obtained from formal education or courses, seminars and workshops related to Accounting. From some of the discussion above, the author would like to examine matters relating to the quality of the work of auditors who are influenced by the auditor's accountability, knowledge and ethics, using auditor respondents who work at KAP in the South Jakarta area who are willing to be respondents in this study. Researchers want to prove whether the results of this study will be the same or different from previous researchers, if the research is carried out in different locations and work environments (different KAP). Different mindsets and perspectives or the way auditors perform their duties will bring different understanding in the quality of their audit work. Based on this the authors are motivated to conduct this study with the title "The Effect of Auditor Accountability, Knowledge and Ethics on the Quality of Auditor's Empirical Study Results in KAP South Jakarta" B. Problem Formulation Does the Auditor's accountability, Knowledge and Ethics have an influence on the quality of the auditor's work C. Purpose and Use of Research This study aims to determine the effect of accountability on the quality of the work of auditors, determine the effect of knowledge on the quality of the work of auditors, and to determine the effect of ethics has on the quality of the work of auditors. Research is expected to increase knowledge for researchers in the field of accounting, especially in the field of auditing and about the effect of accountability, knowledge and ethics on the quality of the work of auditors. In addition, this research is expected to also be able to trigger better research on auditor quality in the future Effect of Accountability on the Quality of Auditor's Work Audit quality is influenced by a sense of accountability (accountability) owned by the auditor in completing audit work. Accountability is a social psychological impulse that a person has to fulfill obligations and convey responsibility for answering and explaining the performance and actions of an organization to those who have the right or authority to request information or responsibility. Accountability can improve the quality of work results if it is supported by knowledge and ability in solving problems encountered. There are three indicators that can be used to measure individual accountability. First, how much is their motivation to complete the work. Second, how confident are they that their work will be examined by superiors. Third, how much effort (power of thought) is given to complete a job. 2. Effect of Knowledge on the Quality of Auditor's Work The amount of effort expended by the auditor in completing a job varies according to the level of knowledge possessed. And the level of knowledge of a person can improve the quality of his work. Knowledge can affect the relationship of accountability with the quality of the work of the auditor if the complexity of the work to be faced is of medium / medium level. 2017 Public Accountant Professional Standards (SPAP) on general standards, explains that in conducting an audit, auditors must have sufficient expertise and knowledge structure . Based on this explanation it can be concluded that audit knowledge in carrying out a work will influence the auditor in selecting errors and detecting risks that arise during the auditing process. The results obtained will be able to influence the decisions taken. 3. Effect of Ethics on the Quality of Auditor's Work Ethics is a science of good and bad judgments about the rights and obligations of morality. Professionals in professional ethics imply a pride, commitment to quality, dedication to the interests of clients and a sincere desire to help problems so that the profession can become a trust for the community. In research conducted by Futri and Juliarsa (2014) shows that professional ethics have a positive effect on audit quality. By upholding professional ethics, it is expected that fraud will not occur among the auditors, so that they can provide audit opinions in accordance with the financial statements presented. Furthermore the research of Kurnia et al. (2014) supported by Rahayu and Suryono (2016) research shows that auditor ethics has a positive effect on audit quality, which means that the higher the ethics owned by the auditor, the more audit quality will be produced Analysis Framework The analytical framework explains the influence and relationship between several variables studied. Figure 2.1 Analysis Framework Chart Accountability (X1) H2 Kualitas Hasil Kerja (Y) Knowledge H1 (X2) H3 Ethics (X3) Hypothesis : Based on the analysis framework, the hypotheses in the study are: H1: Accountability has an influence on the quality of the auditor's work. H2: Knowledge has an influence on the quality of the auditor's work. H3: Ethics has an influence on the quality of the auditor's work. II. RESEARCH METHODS The object of this research is the accountability, knowledge, ethics of auditors and their influence on the quality of the work of auditors implemented at the Public Accounting Firm (KAP) located in the South Jakarta area. Sources of data used are data taken directly from the informants namely the auditors of the Public Accounting Firm (KAP) in South Jakarta. The type of data used is primary data. The population consists of 176 auditors in 11 public accounting firms located in the region: The sampling technique uses a nonprobability sampling technique that is a sampling technique that does not provide the same opportunity or opportunity for each element (member) of the population to be selected as a sample member. Nonprobbility sampling used is Purposive Sampling, a data source sampling technique with certain considerations. In determining the sample size, this study uses the Slovin formula in order to know how many samples will be taken. The formula used is as follows: 1 + () Information: n = Sample Size N = Population Size 1 = Constant e = Expected precision level does not deviate. The Slovin formula is used with a significant level of 5% of the number of samples used and can be calculated as follows: 176 = 122 1 + 176 (0.05 ) From these calculations, it can be seen that the sample that will be used in this study is 122 auditors.
Recommended publications
  • Linear Regression in SPSS
    Linear Regression in SPSS Data: mangunkill.sav Goals: • Examine relation between number of handguns registered (nhandgun) and number of man killed (mankill) • Model checking • Predict number of man killed using number of handguns registered I. View the Data with a Scatter Plot To create a scatter plot, click through Graphs\Scatter\Simple\Define. A Scatterplot dialog box will appear. Click Simple option and then click Define button. The Simple Scatterplot dialog box will appear. Click mankill to the Y-axis box and click nhandgun to the x-axis box. Then hit OK. To see fit line, double click on the scatter plot, click on Chart\Options, then check the Total box in the box labeled Fit Line in the upper right corner. 60 60 50 50 40 40 30 30 20 20 10 10 Killed of People Number Number of People Killed 400 500 600 700 800 400 500 600 700 800 Number of Handguns Registered Number of Handguns Registered 1 Click the target button on the left end of the tool bar, the mouse pointer will change shape. Move the target pointer to the data point and click the left mouse button, the case number of the data point will appear on the chart. This will help you to identify the data point in your data sheet. II. Regression Analysis To perform the regression, click on Analyze\Regression\Linear. Place nhandgun in the Dependent box and place mankill in the Independent box. To obtain the 95% confidence interval for the slope, click on the Statistics button at the bottom and then put a check in the box for Confidence Intervals.
    [Show full text]
  • A Robust Rescaled Moment Test for Normality in Regression
    Journal of Mathematics and Statistics 5 (1): 54-62, 2009 ISSN 1549-3644 © 2009 Science Publications A Robust Rescaled Moment Test for Normality in Regression 1Md.Sohel Rana, 1Habshah Midi and 2A.H.M. Rahmatullah Imon 1Laboratory of Applied and Computational Statistics, Institute for Mathematical Research, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA Abstract: Problem statement: Most of the statistical procedures heavily depend on normality assumption of observations. In regression, we assumed that the random disturbances were normally distributed. Since the disturbances were unobserved, normality tests were done on regression residuals. But it is now evident that normality tests on residuals suffer from superimposed normality and often possess very poor power. Approach: This study showed that normality tests suffer huge set back in the presence of outliers. We proposed a new robust omnibus test based on rescaled moments and coefficients of skewness and kurtosis of residuals that we call robust rescaled moment test. Results: Numerical examples and Monte Carlo simulations showed that this proposed test performs better than the existing tests for normality in the presence of outliers. Conclusion/Recommendation: We recommend using our proposed omnibus test instead of the existing tests for checking the normality of the regression residuals. Key words: Regression residuals, outlier, rescaled moments, skewness, kurtosis, jarque-bera test, robust rescaled moment test INTRODUCTION out that the powers of t and F tests are extremely sensitive to the hypothesized error distribution and may In regression analysis, it is a common practice over deteriorate very rapidly as the error distribution the years to use the Ordinary Least Squares (OLS) becomes long-tailed.
    [Show full text]
  • Testing Normality: a GMM Approach Christian Bontempsa and Nour
    Testing Normality: A GMM Approach Christian Bontempsa and Nour Meddahib∗ a LEEA-CENA, 7 avenue Edouard Belin, 31055 Toulouse Cedex, France. b D´epartement de sciences ´economiques, CIRANO, CIREQ, Universit´ede Montr´eal, C.P. 6128, succursale Centre-ville, Montr´eal (Qu´ebec), H3C 3J7, Canada. First version: March 2001 This version: June 2003 Abstract In this paper, we consider testing marginal normal distributional assumptions. More precisely, we propose tests based on moment conditions implied by normality. These moment conditions are known as the Stein (1972) equations. They coincide with the first class of moment conditions derived by Hansen and Scheinkman (1995) when the random variable of interest is a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite polynomials is zero. The GMM approach we adopt is well suited for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend on unknown parameters that have to be estimated. In particular, we characterize the moment conditions that are robust against parameter uncertainty and show that Hermite polynomials are special examples. This is the main contribution of the paper. The second reason for using GMM is that our tests are also valid for time series. In this case, we adopt a Heteroskedastic-Autocorrelation-Consistent approach to estimate the weighting matrix when the dependence of the data is unspecified. We also make a theoretical comparison of our tests with Jarque and Bera (1980) and OPG regression tests of Davidson and MacKinnon (1993). Finite sample properties of our tests are derived through a comprehensive Monte Carlo study.
    [Show full text]
  • Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests
    Journal ofStatistical Modeling and Analytics Vol.2 No.I, 21-33, 2011 Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests Nornadiah Mohd Razali1 Yap Bee Wah 1 1Faculty ofComputer and Mathematica/ Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia E-mail: nornadiah@tmsk. uitm. edu.my, yapbeewah@salam. uitm. edu.my ABSTRACT The importance of normal distribution is undeniable since it is an underlying assumption of many statistical procedures such as I-tests, linear regression analysis, discriminant analysis and Analysis of Variance (ANOVA). When the normality assumption is violated, interpretation and inferences may not be reliable or valid. The three common procedures in assessing whether a random sample of independent observations of size n come from a population with a normal distribution are: graphical methods (histograms, boxplots, Q-Q-plots), numerical methods (skewness and kurtosis indices) and formal normality tests. This paper* compares the power offour formal tests of normality: Shapiro-Wilk (SW) test, Kolmogorov-Smirnov (KS) test, Lillie/ors (LF) test and Anderson-Darling (AD) test. Power comparisons of these four tests were obtained via Monte Carlo simulation of sample data generated from alternative distributions that follow symmetric and asymmetric distributions. Ten thousand samples ofvarious sample size were generated from each of the given alternative symmetric and asymmetric distributions. The power of each test was then obtained by comparing the test of normality statistics with the respective critical values. Results show that Shapiro-Wilk test is the most powerful normality test, followed by Anderson-Darling test, Lillie/ors test and Kolmogorov-Smirnov test. However, the power ofall four tests is still low for small sample size.
    [Show full text]
  • A Quantitative Validation Method of Kriging Metamodel for Injection Mechanism Based on Bayesian Statistical Inference
    metals Article A Quantitative Validation Method of Kriging Metamodel for Injection Mechanism Based on Bayesian Statistical Inference Dongdong You 1,2,3,* , Xiaocheng Shen 1,3, Yanghui Zhu 1,3, Jianxin Deng 2,* and Fenglei Li 1,3 1 National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China; [email protected] (X.S.); [email protected] (Y.Z.); fl[email protected] (F.L.) 2 Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Guangxi University, Nanning 530003, China 3 Guangdong Key Laboratory for Advanced Metallic Materials processing, South China University of Technology, Guangzhou 510640, China * Correspondence: [email protected] (D.Y.); [email protected] (J.D.); Tel.: +86-20-8711-2933 (D.Y.); +86-137-0788-9023 (J.D.) Received: 2 April 2019; Accepted: 24 April 2019; Published: 27 April 2019 Abstract: A Bayesian framework-based approach is proposed for the quantitative validation and calibration of the kriging metamodel established by simulation and experimental training samples of the injection mechanism in squeeze casting. The temperature data uncertainty and non-normal distribution are considered in the approach. The normality of the sample data is tested by the Anderson–Darling method. The test results show that the original difference data require transformation for Bayesian testing due to the non-normal distribution. The Box–Cox method is employed for the non-normal transformation. The hypothesis test results of the calibrated kriging model are more reliable after data transformation. The reliability of the kriging metamodel is quantitatively assessed by the calculated Bayes factor and confidence.
    [Show full text]
  • Swilk — Shapiro–Wilk and Shapiro–Francia Tests for Normality
    Title stata.com swilk — Shapiro–Wilk and Shapiro–Francia tests for normality Description Quick start Menu Syntax Options for swilk Options for sfrancia Remarks and examples Stored results Methods and formulas Acknowledgment References Also see Description swilk performs the Shapiro–Wilk W test for normality for each variable in the specified varlist. Likewise, sfrancia performs the Shapiro–Francia W 0 test for normality. See[ MV] mvtest normality for multivariate tests of normality. Quick start Shapiro–Wilk test of normality Shapiro–Wilk test for v1 swilk v1 Separate tests of normality for v1 and v2 swilk v1 v2 Generate new variable w containing W test coefficients swilk v1, generate(w) Specify that average ranks should not be used for tied values swilk v1 v2, noties Test that v3 is distributed lognormally generate lnv3 = ln(v3) swilk lnv3 Shapiro–Francia test of normality Shapiro–Francia test for v1 sfrancia v1 Separate tests of normality for v1 and v2 sfrancia v1 v2 As above, but use the Box–Cox transformation sfrancia v1 v2, boxcox Specify that average ranks should not be used for tied values sfrancia v1 v2, noties 1 2 swilk — Shapiro–Wilk and Shapiro–Francia tests for normality Menu swilk Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Wilk normality test sfrancia Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Francia normality test Syntax Shapiro–Wilk normality test swilk varlist if in , swilk options Shapiro–Francia normality test sfrancia varlist if in , sfrancia options swilk options Description Main generate(newvar) create newvar containing W test coefficients lnnormal test for three-parameter lognormality noties do not use average ranks for tied values sfrancia options Description Main boxcox use the Box–Cox transformation for W 0; the default is to use the log transformation noties do not use average ranks for tied values by and collect are allowed with swilk and sfrancia; see [U] 11.1.10 Prefix commands.
    [Show full text]
  • Univariate Analysis and Normality Test Using SAS, STATA, and SPSS
    © 2002-2006 The Trustees of Indiana University Univariate Analysis and Normality Test: 1 Univariate Analysis and Normality Test Using SAS, STATA, and SPSS Hun Myoung Park This document summarizes graphical and numerical methods for univariate analysis and normality test, and illustrates how to test normality using SAS 9.1, STATA 9.2 SE, and SPSS 14.0. 1. Introduction 2. Graphical Methods 3. Numerical Methods 4. Testing Normality Using SAS 5. Testing Normality Using STATA 6. Testing Normality Using SPSS 7. Conclusion 1. Introduction Descriptive statistics provide important information about variables. Mean, median, and mode measure the central tendency of a variable. Measures of dispersion include variance, standard deviation, range, and interquantile range (IQR). Researchers may draw a histogram, a stem-and-leaf plot, or a box plot to see how a variable is distributed. Statistical methods are based on various underlying assumptions. One common assumption is that a random variable is normally distributed. In many statistical analyses, normality is often conveniently assumed without any empirical evidence or test. But normality is critical in many statistical methods. When this assumption is violated, interpretation and inference may not be reliable or valid. Figure 1. Comparing the Standard Normal and a Bimodal Probability Distributions Standard Normal Distribution Bimodal Distribution .4 .4 .3 .3 .2 .2 .1 .1 0 0 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5 T-test and ANOVA (Analysis of Variance) compare group means, assuming variables follow normal probability distributions. Otherwise, these methods do not make much http://www.indiana.edu/~statmath © 2002-2006 The Trustees of Indiana University Univariate Analysis and Normality Test: 2 sense.
    [Show full text]
  • 2.4.3 Examining Skewness and Kurtosis for Normality Using SPSS We Will Analyze the Examples Earlier Using SPSS
    24 CHAPTER 2 TEsTing DATA foR noRmAliTy Finally, use the skewness and the standard error of the skewness to ind a z-score: Sk −0− 1.018 zS = = k SE 0. 501 Sk 2. 032 zSk = − Use the z-score to examine the sample’s approximation to a normal distribution. This value must fall between −1.96 and +1.96 to pass the normality assumption for α = 0.05. Since this z-score value does not fall within that range, the sample has failed our normality assumption for skewness. Therefore, either the sample must be modiied and rechecked or you must use a nonparametric statistical test. 2.4.3 Examining Skewness and Kurtosis for Normality Using SPSS We will analyze the examples earlier using SPSS. 2.4.3.1 Deine Your Variables First, click the “Variable View” tab at the bottom of your screen. Then, type the name of your variable(s) in the “Name” column. As shown in Figure 2.7, we have named our variable “Wk1_Qz.” FIGURE 2.7 2.4.3.2 Type in Your Values Click the “Data View” tab at the bottom of your screen and type your data under the variable names. As shown in Figure 2.8, we have typed the values for the “Wk1_Qz” sample. 2.4.3.3 Analyze Your Data As shown in Figure 2.9, use the pull-down menus to choose “Analyze,” “Descriptive Statistics,” and “Descriptives . .” Choose the variable(s) that you want to examine. Then, click the button in the middle to move the variable to the “Variable(s)” box, as shown in Figure 2.10.
    [Show full text]
  • Normality Tests (Simulation)
    PASS Sample Size Software NCSS.com Chapter 670 Normality Tests (Simulation) Introduction This procedure allows you to study the power and sample size of eight statistical tests of normality. Since there are no formulas that allow the calculation of power directly, simulation is used. This gives you the ability to compare the adequacy of each test under a wide variety of solutions. The reason there are so many different normality tests is that there are many different forms of normality. Thode (2002) presents that following recommendations concerning which tests to use for each situation. Note that the details of each test will be presented later. Normal vs. Long-Tailed Symmetric Alternative Distributions The Shapiro-Wilk and the kurtosis tests have been found to be best for normality testing against long-tailed symmetric alternatives. Normal vs. Short-Tailed Symmetric Alternative Distributions The Shapiro-Wilk and the range tests have been found to be best for normality testing against short-tailed symmetric alternatives. Normal vs. Asymmetric Alternative Distributions The Shapiro-Wilk and the skewness tests have been found to be best for normality testing against asymmetric alternatives. Technical Details Computer simulation allows one to estimate the power and significance level that is actually achieved by a test procedure in situations that are not mathematically tractable. Computer simulation was once limited to mainframe computers. Currently, due to increased computer speeds, simulation studies can be completed on desktop and laptop computers in a reasonable period of time. The steps to a simulation study are as follows. 1. Specify which the normality test is to be used.
    [Show full text]
  • The Classical Assumption Test to Driving Factors of Land Cover Change in the Development Region of Northern Part of West Java
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B6, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic THE CLASSICAL ASSUMPTION TEST TO DRIVING FACTORS OF LAND COVER CHANGE IN THE DEVELOPMENT REGION OF NORTHERN PART OF WEST JAVA Nur Ainiyah1*, Albertus Deliar2, Riantini Virtriana2 1Student in Geodesy and Geomatics, Remote Sensing and Geographic Information System Research Division, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Indonesia; [email protected] 2Lecturer in Geodesy and Geomatics, Remote Sensing and Geographic Information System Research Division, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Indonesia; [email protected] Youth Forum KEY WORDS: Land Cover Change, Driving Factors, Classical Assumption Test, Binary Logistic Regression ABSTRACT: Land cover changes continuously change by the time. Many kind of phenomena is a simple of important factors that affect the environment change, both locally and also globally. To determine the existence of the phenomenon of land cover change in a region, it is necessary to identify the driving factors that can cause land cover change. The relation between driving factors and response variables can be evaluated by using regression analysis techniques. In this case, land cover change is a dichotomous phenomenon (binary). The BLR’s model (Binary Logistic Regression) is the one of kind regression analysis which can be used to describe the nature of dichotomy. Before performing regression analysis, correlation analysis is carried it the first. Both correlation test and regression tests are part of a statistical test or known classical assumption test. From result of classical assumption test, then can be seen that the data used to perform analysis from driving factors of the land cover changes is proper with used by BLR’s method.
    [Show full text]
  • Multiple Linear Regression Using STATCAL (R), SPSS & Eviews
    Multiple Linear Regression Using STATCAL (R), SPSS & EViews Prana Ugiana Gio Rezzy Eko Caraka Robert Kurniawan Sunu Widianto Download STATCAL in www.statcal.com Citations APA Gio, P. U., Caraka, R. E., Kurniawan, R., & Widianto, S. (2019, January 24). Multiple Linear Regression in STATCAL (R), SPSS and EViews. Retrieved from osf.io/preprints/inarxiv/krx6y MLA Gio, Prana U., et al. “Multiple Linear Regression in STATCAL (R), SPSS and Eviews.” INA-Rxiv, 24 Jan. 2019. Web. Chicago Gio, Prana U., Rezzy E. Caraka, Robert Kurniawan, and Sunu Widianto. 2019. “Multiple Linear Regression in STATCAL (R), SPSS and Eviews.” INA-Rxiv. January 24. osf.io/preprints/inarxiv/krx6y. i CONTENT 1.1 Data 1.2 Input Numeric Data in STATCAL 1.3 Multiple Linear Regression with STATCAL 1.4 STATCAL's Result 1.4.1 STATCAL’s Result: Normality Assumption Test Using Residual Data 1.4.2 STATCAL’s Result: Test of Multicolinearity 1.4.3 STATCAL’s Result: Test of Homoscedasticity Assumption 1.4.4 STATCAL’s Result: Test of Non-Autocorrelation Assumption 1.4.5 STATCAL’s Result: Multiple Linear Regression 1.4.6 STATCAL’s Result: Residual Check 1.5 Comparison with SPSS 1.6 Comparison with EViews ii In this article, we will explain step by step how to perform multiple linear regression with STATCAL. Beside that, we will compare STATCAL’s result with other software such as SPSS and EViews. 1.1 Data Table 1.1.1 is presented data of 10 persons based on score of variable Performance (풀), Motivation (푿ퟏ) and Stress (푿ퟐ). Table 1.1.1 Person Performance (푌) Motivation (푋1) Stress (푋2) 1 87 89 32 2 75 73 14 3 79 79 15 4 94 81 17 5 78 86 32 6 65 67 12 7 78 74 22 8 77 77 23 9 65 68 35 10 35 62 53 Based on the data in Table 1.1.1, variable Performance (풀) is dependent variable, while Motivation (푿ퟏ) and Stress (푿ퟐ) are independent variables.
    [Show full text]
  • Normality Tests
    STATISTICS COLUMN Normality tests Shengping Yang PhD, Gilbert Berdine MD I have completed a clinical trial with one primary to the right is also presented in Figure 1 (right panel). outcome and various secondary outcomes. The goal Note that, if the sample size is small, e.g., less than 10, is to compare the randomly assigned two treatments then such an assessment might not be informative. to see if the outcomes differ. I am planning to perform a two-sample t-test for each of the outcomes, and one (b) THE NORMAL Q-Q PLOT of the assumptions for a t-test is that data are normally distributed. I am wondering what the appropriate A Q-Q plot is a scatterplot created by plotting two approaches are to check the normality assumption. sets of quantiles—one is the data quantile, and the other is the theoretical distribution quantile-against The normal distribution is the most important dis- one another. If the two sets of quantiles came from the tribution in statistical data analysis. Most statistical same distribution, then the points on the plot roughly tests are developed based on the assumption that the form a straight line. For example, a normal Q-Q plot outcome variable/model residual is normally distrib- represents the correlation between the data and nor- uted. There are both graphical and numerical meth- mal quantiles and measures how well the data are ods for evaluating data normality (we will focus on modeled by a normal distribution. Therefore, if the univariate normality in this article). data are sampled from a normal distribution, then the data quantile should be highly positively corre- 1.
    [Show full text]