Dicotyledonous Flowering Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Serviceberry in the Garden Kristan Crouch, Student, Tiffany Maughan, Research Associate, and Brent Black, Extension Fruit Specialist
January 2014 (updated January 2016) Horticulture/Fruit/2014-01pr Serviceberry in the Garden Kristan Crouch, Student, Tiffany Maughan, Research Associate, and Brent Black, Extension Fruit Specialist Summary Serviceberry (Amelanchier spp,), also known as juneberry, saskatoon or shadbush, is considered a large shrub that can be grown as a small tree. It is native to North America, and is adapted to many areas of Utah. White flowers appear in early spring, with yellow to red foliage in the fall. The fruit is a berry-like pome, and resemble small blueberries. When ripe, they are dark red, purple or almost black in color. They are primarily harvested for juice, jellies, jams and pies, but can also be eaten fresh. Serviceberries are cold hardy to zone 3, adapt to a range of soil types and may have desirable ornamental qualities. Recommended Varieties Amelanchier alnifolia var pumila is a naturally occurring dwarf variety that is native to the western United States. It will often stay quite small, only about 3 feet high and wide, and produces small the shoots should be pruned back to about 2 inches. round berries. There are several cultivars that have Serviceberries seeds will not grow true to parentage, been selected for fruit production and will do well and hardwood and softwood cuttings have only in the home garden (Table 1). Serviceberry limited success. availability at local nurseries can be limited, but many online companies carry serviceberry plants. How to Grow Care should be taken to only order from reputable nursery companies. Another option is to propagate Soil: Serviceberry is tolerant of a variety of soil serviceberries on your own. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
New Nomenclature Combinations in the Green Alder Species Complex
A peer-reviewed open-access journal PhytoKeys 56:New 1–6 nomenclature(2015) combinations in the green alder species complex (Betulaceae) 1 doi: 10.3897/phytokeys.56.5225 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research New nomenclature combinations in the green alder species complex (Betulaceae) Joyce Chery1 1 Department of Integrative Biology, University of California, Berkeley, California 94720 Corresponding author: Joyce Chery ([email protected]) Academic editor: Hugo De Boer | Received 1 May 2015 | Accepted 10 June 2015 | Published 14 August 2015 Citation: Chery J (2015) New nomenclature combinations in the green alder species complex (Betulaceae). PhytoKeys 56: 1–6. doi: 10.3897/phytokeys.56.5225 Abstract The name Alnus viridis (Chaix) DC., based on Betula viridis Chaix (1785), has traditionally been attributed to green alders although it is based on a later basionym. Alnus alnobetula (Ehrh.) K. Koch based on Betula alnobetula Ehrh. (1783) is the correct name for green alders. In light of the increasing use and recognition of the name Alnus alnobetula (Ehrh.) K. Koch in the literature. I herein propose new nomenclatural combinations to account for the Japanese and Chinese subspecies respectively: Alnus alnobetula subsp. maximowiczii (Callier ex C.K. Schneid.) J. Chery and Alnus alnobetula subsp. mandschurica (Callier ex C.K. Schneid.) J. Chery. Recent phylogenetic analyses place these two taxa in the green alder species complex, suggesting that they should be treated as infraspecific taxa under the polymorphic Alnus alnobetula. Keywords Green alders, Alnus viridis, Alnus alnobetula, Betulaceae Introduction Characteristic to the genus, Alnus alnobetula (Ehrh.) K. Koch is an anemophilous shrub with carpellate catkins that develop into woody strobili. -
Proceedings of the Indiana Academy of Science 261 (1995) Volume 104 (3-4) P
259 MANUSCRIPT REVIEWERS VOLUME 104, NUMBERS 1-2 AND 3-4 James L. Ahlrichs Purdue University West Lafayette, IN Stanley L. Burden Taylor University Upland, IN Ernest E. Campaigne Indiana University Bloomington, IN William R. Clark Ball State University Muncie, IN Robert F. Dale Purdue University West Lafayette, IN James R. Gammon DePauw University Greencastle, IN Marcia L. Gillette Indiana University Kokomo Kokomo, IN Walter A. Hasenmueller Indiana Geological Survey Bloomington, IN Charles Heiser, Jr. Indiana University Bloomington, IN A.J.C.L. Hogarth Ross Laboratories Columbus, OH Michael A. Homoya Indiana Department of Indianapolis, IN Natural Resources Marion T. Jackson Indiana State University Terre Haute, IN Geoff Kramer Indiana University Kokomo Kokomo, IN Gene Kritsky College of Mount St. Joseph Cincinnati, OH N. Gary Lane Indiana University Bloomington, IN Paul C. MacMillan Hanover College Hanover, IN Wilton N. Melhorn Purdue University West Lafayette, IN John A. Ricketts DePauw University Greencastle, IN Paul E. Rothrock Taylor University Upland, IN Malcolm L. Sargent University of Illinois Urbana, IL Thomas P. Simon U.S. Environmental Chicago, IL Protection Agency William L. Stoller Indiana University Kokomo Kokomo, IN Rex M. Strange Southern Illinois University Carbondale, IL Robert Waltz Indiana Department of Indianapolis, IN Natural Resources J. Dan Webster Hanover College Hanover, IN Harmon P. Weeks, Jr. Purdue University West Lafayette, IN John 0. Whitaker, Jr. Indiana State University Terre Haute, IN Larry R. Yoder Goshen -
Acer Binzayedii (Sapindaceae), a New Maple Species from Mexico
Acer binzayedii (Sapindaceae), a new maple species from Mexico Yalma L. Vargas-Rodriguez, Lowell E. Urbatsch, Vesna Karaman-Castro & Blanca L. Figueroa-Rangel Brittonia ISSN 0007-196X Brittonia DOI 10.1007/s12228-017-9465-5 1 23 Your article is protected by copyright and all rights are held exclusively by The New York Botanical Garden. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Acer binzayedii (Sapindaceae), a new maple species from Mexico 1,2 1 1 YALMA L. VARGAS-RODRIGUEZ ,LOWELL E. URBATSCH ,VESNA KARAMAN-CASTRO , 3 AND BLANCA L. FIGUEROA-RANGEL 1 Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA; e-mail: [email protected] 2 National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de México, 03940 D.F., México 3 Department of Ecology and Natural Resources, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Av. Independencia Nacional 151, 48900, Autlán de Navarro, Jalisco, México Abstract. -
Physicochemical, Nutritional and Health-Related Component Characterization of the Underutilized Mexican Serviceberry Fruit [Malacomeles Denticulata (Kunth) G
Original article Physicochemical, nutritional and health-related component characterization of the underutilized Mexican serviceberry fruit [Malacomeles denticulata (Kunth) G. N. Jones] María C. CAZARES-FRANCO1, Carlos RAMÍREZ-CHIMAL2, María G. HERRERA-HERNÁNDEZ3, Carlos A. NÚÑEZ-COLÍN4, 5 3 Miguel A. HERNÁNDEZ-MARTÍNEZ , Salvador H. GUZMÁN-MALDONADO * 1 Div. Cienc. Salud Ing., Physicochemical, nutritional and health-related component characterization Campus Celaya-Salvatierra, of the underutilized Mexican serviceberry fruit [Malacomeles denticulata Univ. Guanajuato, (Kunth) G. N. Jones]. Av. Juan Paplo II s/n, Abstract – Introduction. The nutritional and functional qualities of wild and cultivated Celaya, Gto, México Mexican serviceberry have not yet been reported. This species could have similar potential for com- 2 Univ. Politéc. Guanajuato. mercialization to that of Saskatoon berry (Amelanchier alnifolia Nutt.). Materials and methods. Wild Ave. Univ. Norte s/n. and cultivated fruits at two maturity stages were assessed for CIE Lab color, fruit size, titratable acidity Juan Alonso, Cortazar, and total soluble solids. Also, chemical composition and mineral contents were determined. In addi- tion, vitamin C and simple phenols were assessed. Total soluble phenols, condensed tannins and Guanajuato, México, CP 38483 anthocyanins as well as Trolox antioxidant activity and oxygen radical antioxidant activity were deter- 3 Unidad Biotecnol., Campo mined. Results. Fruit size, titratable acidity, total soluble solids, iron and simple phenols were higher Exp. Bajío (INIFAP), km. 6.5 in fruits of cultivated plants than in those of wild plants. Total fiber, calcium, vitamin C, total soluble Carretera Celaya, San Miguel phenols and condensed tannins were higher in wild fruits. Wild and cultivated serviceberry showed higher Trolox antioxidant activity compared with oxygen radical antioxidant activity. -
National List of Vascular Plant Species That Occur in Wetlands 1996
National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt. -
Invisible Connections: Introduction to Parasitic Plants Dr
Invisible Connections: Introduction to Parasitic Plants Dr. Vanessa Beauchamp Towson University What is a parasite? • An organism that lives in or on an organism of another species (its host) and benefits by deriving nutrients at the other's expense. Symbiosis https://www.superpharmacy.com.au/blog/parasites-protozoa-worms-ectoparasites Food acquisition in plants: Autotrophy Heterotrophs (“different feeding”) • True parasites: obtain carbon compounds from host plants through haustoria. • Myco-heterotrophs: obtain carbon compounds from host plants via Image Credit: Flickr User wackybadger, via CC mycorrhizal fungal connection. • Carnivorous plants (not parasitic): obtain nutrients (phosphorus, https://commons.wikimedia.org/wiki/File:Pin nitrogen) from trapped insects. k_indian_pipes.jpg http://www.welivealot.com/venus-flytrap- facts-for-kids/ Parasite vs. Epiphyte https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ By © Hans Hillewaert /, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6289695 True Parasitic Plants • Gains all or part of its nutrition from another plant (the host). • Does not contribute to the benefit of the host and, in some cases, causing extreme damage to the host. • Specialized peg-like root (haustorium) to penetrate host plants. https://www.britannica.com/plant/parasitic-plant https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ Diversity of parasitic plants Eudicots • Parasitism has evolved independently at least 12 times within the plant kingdom. • Approximately 4,500 parasitic species in Monocots 28 families. • Found in eudicots and basal angiosperms • 1% of the dicot angiosperm species • No monocot angiosperm species Basal angiosperms Annu. Rev. Plant Biol. 2016.67:643-667 True Parasitic Plants https://www.alamy.com/parasitic-dodder-plant-cuscuta-showing-penetration-parasitic-haustor The defining structural feature of a parasitic plant is the haustorium. -
An Ethnobotany of Mount Rushmore National Memorial
University of Massachusetts Amherst ScholarWorks@UMass Amherst Landscape Architecture & Regional Planning Masters Projects Landscape Architecture & Regional Planning Summer 2019 An Ethnobotany of Mount Rushmore National Memorial Meredith Savage University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/larp_ms_projects Part of the Landscape Architecture Commons Savage, Meredith, "An Ethnobotany of Mount Rushmore National Memorial" (2019). Landscape Architecture & Regional Planning Masters Projects. 92. Retrieved from https://scholarworks.umass.edu/larp_ms_projects/92 This Article is brought to you for free and open access by the Landscape Architecture & Regional Planning at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Landscape Architecture & Regional Planning Masters Projects by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. AN ETHNOBOTANY OF MOUNT RUSHMORE NATIONAL MEMORIAL Department of Landscape Architecture and Regional Planning University of Massachusetts Amherst Master of Regional Planning Project Meredith S. Savage July 2019 © Copyright by Meredith S. Savage 2019 All Rights Reserved AN ETHNOBOTANY OF MOUNT RUSHMORE NATIONAL MEMORIAL Department of Landscape Architecture and Regional Planning University of Massachusetts Amherst Master of Regional Planning Project Meredith S. Savage July 2019 Approved as to style and content by: __________________________________________ Dr. Elizabeth Brabec, -
INDEX for 2011 HERBALPEDIA Abelmoschus Moschatus—Ambrette Seed Abies Alba—Fir, Silver Abies Balsamea—Fir, Balsam Abies
INDEX FOR 2011 HERBALPEDIA Acer palmatum—Maple, Japanese Acer pensylvanicum- Moosewood Acer rubrum—Maple, Red Abelmoschus moschatus—Ambrette seed Acer saccharinum—Maple, Silver Abies alba—Fir, Silver Acer spicatum—Maple, Mountain Abies balsamea—Fir, Balsam Acer tataricum—Maple, Tatarian Abies cephalonica—Fir, Greek Achillea ageratum—Yarrow, Sweet Abies fraseri—Fir, Fraser Achillea coarctata—Yarrow, Yellow Abies magnifica—Fir, California Red Achillea millefolium--Yarrow Abies mariana – Spruce, Black Achillea erba-rotta moschata—Yarrow, Musk Abies religiosa—Fir, Sacred Achillea moschata—Yarrow, Musk Abies sachalinensis—Fir, Japanese Achillea ptarmica - Sneezewort Abies spectabilis—Fir, Himalayan Achyranthes aspera—Devil’s Horsewhip Abronia fragrans – Sand Verbena Achyranthes bidentata-- Huai Niu Xi Abronia latifolia –Sand Verbena, Yellow Achyrocline satureoides--Macela Abrus precatorius--Jequirity Acinos alpinus – Calamint, Mountain Abutilon indicum----Mallow, Indian Acinos arvensis – Basil Thyme Abutilon trisulcatum- Mallow, Anglestem Aconitum carmichaeli—Monkshood, Azure Indian Aconitum delphinifolium—Monkshood, Acacia aneura--Mulga Larkspur Leaf Acacia arabica—Acacia Bark Aconitum falconeri—Aconite, Indian Acacia armata –Kangaroo Thorn Aconitum heterophyllum—Indian Atees Acacia catechu—Black Catechu Aconitum napellus—Aconite Acacia caven –Roman Cassie Aconitum uncinatum - Monkshood Acacia cornigera--Cockspur Aconitum vulparia - Wolfsbane Acacia dealbata--Mimosa Acorus americanus--Calamus Acacia decurrens—Acacia Bark Acorus calamus--Calamus -
Species List For: Valley View Glades NA 418 Species
Species List for: Valley View Glades NA 418 Species Jefferson County Date Participants Location NA List NA Nomination and subsequent visits Jefferson County Glade Complex NA List from Gass, Wallace, Priddy, Chmielniak, T. Smith, Ladd & Glore, Bogler, MPF Hikes 9/24/80, 10/2/80, 7/10/85, 8/8/86, 6/2/87, 1986, and 5/92 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Jefferson County Glade Complex Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Aesculus glabra var. undetermined Ohio buckeye Sapindaceae 5 -1 Agalinis skinneriana (Gerardia) midwestern gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Allium canadense var. mobilense wild garlic Liliaceae 7 5 Allium canadense var. undetermined wild garlic Liliaceae 2 3 Allium cernuum wild onion Liliaceae 8 5 Allium stellatum wild onion Liliaceae 6 5 * Allium vineale field garlic Liliaceae 0 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia bidentata lanceleaf ragweed Asteraceae/Heliantheae 0 4 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Amorpha canescens lead plant Fabaceae/Faboideae 8 5 Amphicarpaea bracteata hog peanut Fabaceae/Faboideae 4 0 Andropogon gerardii var. -
Draft Plant Propagation Protocol
Plant Propagation Protocol for [Alnus viridis] ESRM 412 – Native Plant Production TAXONOMY Plant Family Scientific Name Alnus viridis Common Name Green alder Species Scientific Name Scientific Name Family: Betulaceae Genus: Alnus Mill. – alder Alnus viridis (Chaix) DC. – green alder Varieties Sub-species Alnus viridis subsp. crispa Alnus viridis subsp. fruticosa Alnus viridis subsp. sinuata Alnus viridis subsp. suaveolens Alnus viridis subsp. viridis Cultivar Shrub, tree. Common Synonym(s) Alnus alnobetula Betula alnobetula Common Name(s) Green alder Species Code ALVI5 GENERAL INFORMATION Geographical range It ranges from sohern alaska south to norther calfornia and into northern Idaho and Montana. (2) Ecological distribution Green alder is widely distributed throughout interior, central, and northern Alaska across the Yukon Territory and interior Canada to Labrador, Newfoundland, and Greenland. It extends south through New England and the Great Lakes States, and into the Pacific Northwest. Disjunct populations are documented in south-central Pennsylvania and west- central North Carolina (1) Climate and elevation range Grows from sea level up to 1200m (2) Local habitat and abundance Most common native habitats are high mountains swamps, and bottom lands along streams. Plant strategy type / successional A. viridis is a light-demanding, fast-growing shrub that stage grows well on poorer soils. In many areas, it is a highly characteristic colonist of avalanche chutes in mountains, where potentially competing larger trees are killed by regular avalanche damage. Plant characteristics It is a large shrub or small tree 3–12 m tall with smooth grey bark even in old age. The leaves are shiny green with light green undersurfaces, ovoid, 3–8 cm long and 2–6 cm broad.