Explosive Speciation and Adaptive Radiation of East African Cichlid Fishes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transactions of the Royal Society of South Africa The
This article was downloaded by: On: 12 May 2010 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Transactions of the Royal Society of South Africa Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t917447442 The geomorphic provinces of South Africa, Lesotho and Swaziland: A physiographic subdivision for earth and environmental scientists T. C. Partridge a; E. S. J. Dollar b; J. Moolman c;L. H. Dollar b a Climatology Research Group, University of the Witwatersrand, WITS, South Africa b CSIR, Natural Resources and Environment, Stellenbosch, South Africa c Directorate: Resource Quality Services, Department of Water Affairs and Forestry, Pretoria, South Africa Online publication date: 23 March 2010 To cite this Article Partridge, T. C. , Dollar, E. S. J. , Moolman, J. andDollar, L. H.(2010) 'The geomorphic provinces of South Africa, Lesotho and Swaziland: A physiographic subdivision for earth and environmental scientists', Transactions of the Royal Society of South Africa, 65: 1, 1 — 47 To link to this Article: DOI: 10.1080/00359191003652033 URL: http://dx.doi.org/10.1080/00359191003652033 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. -
Evolutionary History of Lake Tanganyika's Predatory Deepwater
Hindawi Publishing Corporation International Journal of Evolutionary Biology Volume 2012, Article ID 716209, 10 pages doi:10.1155/2012/716209 Research Article Evolutionary History of Lake Tanganyika’s Predatory Deepwater Cichlids Paul C. Kirchberger, Kristina M. Sefc, Christian Sturmbauer, and Stephan Koblmuller¨ Department of Zoology, Karl-Franzens-University Graz, Universitatsplatz¨ 2, 8010 Graz, Austria Correspondence should be addressed to Stephan Koblmuller,¨ [email protected] Received 22 December 2011; Accepted 5 March 2012 Academic Editor: R. Craig Albertson Copyright © 2012 Paul C. Kirchberger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Hybridization among littoral cichlid species in Lake Tanganyika was inferred in several molecular phylogenetic studies. The phenomenon is generally attributed to the lake level-induced shoreline and habitat changes. These allow for allopatric divergence of geographically fragmented populations alternating with locally restricted secondary contact and introgression between incompletely isolated taxa. In contrast, the deepwater habitat is characterized by weak geographic structure and a high potential for gene flow, which may explain the lower species richness of deepwater than littoral lineages. For the same reason, divergent deepwater lineages should have evolved strong intrinsic reproductive isolation already in the incipient stages of diversification, and, consequently, hybridization among established lineages should have been less frequent than in littoral lineages. We test this hypothesis in the endemic Lake Tanganyika deepwater cichlid tribe Bathybatini by comparing phylogenetic trees of Hemibates and Bathybates species obtained with nuclear multilocus AFLP data with a phylogeny based on mitochondrial sequences. -
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Evidence for Adaptation, Reinforcement Or Sexual Selection
Japan. J. Ichthyol. 4 0 ( 1): 15- 21, 1993 4 0 ( 1): 15- 21, 1993 Sexual Selection and Genetic Relationships of a Sibling Species Complex of Bower Building Cichlids in Lake Malawi, Africa Kenneth R. McKaye,1 James H. Howard,2 Jay R. Stauffer, Jr.,3 Raymond P. Morgan II1 and Fortune Shonhiwa4 1 Appalachian Environmental Laboratory, Center for Estuarine and Environmental Studies, University of Maryland, Frostburg, MD 21532, USA 2 Department of Biology, Frostburg State University, Frostburg, MD 21532, USA 3 School of Forest Resources, Pennsylvania State University, University Park, PA 16802, USA 4 Department of National Parks and Wildlife Management, Harare, Zimbabwe (Received December 16, 1992; in revised form January 10, 1993; accepted February 18, 1993) Abstract Protein electromorphs of five taxa of the sand dwelling genus Tramitichromis from Lake Malawi were examined by starch-gel electrophoresis. Twenty-four enzyme loci were examined. No diagnostic alleles were discovered which distinguished the different taxa; however, nine loci were polymorphic in at least one taxa with unbiased mean heterozygosities ranging from 6.9 to 12.6%. The bower form of these five taxa, which earlier have been referred to as sibling species was also analyzed. Results from this study provide evidence that bower form in these cichlid taxa is correlated with genetic distance measurements. The data suggest that the taxa are isolated ‘sibling’ species, which recently diverged, or that they are ‘incipient’ species with minimal gene flow between bower building morphs. The congruence of the allozyme data suggests a genetic basis for bower form. Variation in bower form is hypothesized to arise from nonadaptive differences in female choice, which leads to reproductively isolated species as predicted by Fisher’s model of runaway sexual selection. -
Cichlid Diversity, Speciation and Systematics: Examples from the Great African Lakes
Cichlid diversity, speciation and systematics: examples from the Great African Lakes Jos Snoeks, Africa Museum, Ichthyology- Cichlid Research Unit, Leuvensesteenweg 13, B-3080 Ter vuren,.Belgium. Tel: (32) 2 769 56 28, Fax: (32) 2 769 56 42(e-mail: [email protected]) ABSTRACT The cichlid faunas of the large East African lakes pro vide many fascina ting research tapies. They are unique because of the large number of species involved and the ir exceptional degree ofendemicity. In addition, certain taxa exhibit a substantial degree of intra~lacustrine endemism. These features al one make the Great African Lakes the largest centers of biodiversity in the vertebrate world. The numbers of cichlid species in these lakes are considered from different angles. A review is given of the data available on the tempo of their speciation, and sorne of the biological implications of its explosive character are discussed. The confusion in the definition of many genera is illustrated and the current methodology of phylogenetic research briefly commented upon. Theresults of the systematic research within the SADC/GEFLake Malawi/NyasaBiodiversity Conservation Project are discussed. It is argued that systematic research on the East African lake cichlids is entering an era of lesser chaos but increasing complexity. INTRODUCTION The main value of the cichlids of the Great African Grea ter awareness of the scientific and economi Lakes is their economie importance as a readily cal value of these fishes has led to the establishment accessible source of protein for the riparian people. In of varioüs recent research projects such as the three addition, these fishes are important to the specialized GEF (Global Environmental Facility) projects on the aquarium trade as one of the more exci ting fish groups larger lakes (Victoria, Tanganyika, Malawi/Nyasa). -
Chapter 2 Transboundary Environmental Issues
The Eyeof Mauritania Also known as the Richat Structure, this prominent geographic feature through time, has been eroded by wind and windblown sand. At 50 in Mauritania’s Sahara Desert was fi rst thought to be the result of a km wide, the Richat Structure can be seen from space by astronauts meteorite impact because of its circular, crater-like pattern. However, because it stands out so dramatically in the otherwise barren expanse Mauritania’s “Eye” is actually a dome of layered sedimentary rock that, of desert. Source: NASA Source: 37 ey/Flickr.com A man singing by himself on the Jemaa Fna Square, Morocco Charles Roff 38 Chapter2 Transboundary Environmental Issues " " Algiers Tunis TUNISIA " Rabat " Tripoli MOROCCO " Cairo ALGERIA LIBYAN ARAB JAMAHIRIYA EGYPT WESTERN SAHARA MAURITANIA " Nouakchott CAPE VERDE MALI NIGER CHAD Khartoum " ERITREA " " Dakar Asmara Praia " SENEGAL Banjul Niamey SUDAN GAMBIA " " Bamako " Ouagadougou " Ndjamena " " Bissau DJIBOUTI BURKINA FASO " Djibouti GUINEA Conakry NIGERIA GUINEA-BISSAU " ETHIOPIA " " Freetown " Abuja Addis Ababa COTE D’IVORE BENIN LIBERIA TOGO GHANA " " CENTRAL AFRICAN REPUBLIC SIERRA LEONE " Yamoussoukro " IA Accra Porto Novo L Monrovia " Lome A CAMEROON OM Bangui" S Malabo Yaounde " " EQUATORIAL GUINEA Mogadishu " UGANDA SAO TOME Kampala AND PRINCIPE " " Libreville " KENYA Sao Tome Nairobi GABON " Kigali CONGO " DEMOCRATIC REPUBLIC RWANDA OF THE CONGO " Bujumbura Brazzaville BURUNDI "" Kinshasa UNITED REPUBLIC OF TANZANIA " Dodoma SEYCHELLES " Luanda Moroni " COMOROS Across Country Borders ANGOLA Lilongwe " MALAWI ZAMBIA Politically, the African continent is divided into 53 countries " Lusaka UE BIQ and one “non-self-governing territory.” Ecologically, Harare M " A Z O M Antananarivo" Port Louis Africa is home to eight major biomes— large and distinct ZIMBABWE " biotic communities— whose characteristic assemblages MAURITIUS Windhoek " BOTSWANA MADAGASCAR of fl ora and fauna are in many cases transboundary in NAMIBIA Gaborone " Maputo nature, in that they cross political borders. -
Mitochondrial ND2 Phylogeny of Tilapiines and the Evolution of Parental Care Systems in the African Cichlid Fishes
What, if Anything, is a Tilapia?ÐMitochondrial ND2 Phylogeny of Tilapiines and the Evolution of Parental Care Systems in the African Cichlid Fishes Vera Klett and Axel Meyer Department of Biology, University of Konstanz, Germany We estimated a novel phylogeny of tilapiine cichlid ®sh (an assemblage endemic to Africa and the Near East) within the African cichlid ®shes on the basis of complete mitochondrial NADH dehydrogenase subunit 2 (ND2) gene sequences. The ND2 (1,047 bp) gene was sequenced in 39 tilapiine cichlids (38 species and 1 subspecies) and in an additional 14 nontilapiine cichlid species in order to evaluate the traditional morphologically based hypothesis of the respective monophyly of the tilapiine and haplochromine cichlid ®sh assemblages. The analyses included many additional cichlid lineages, not only the so-called tilapiines, but also lineages from Lake Tanganyika, east Africa, the Neotropics and an out-group from Madagascar with a wide range of parental care and mating systems. Our results suggest, in contrast to the historical morphology-based hypotheses from Regan (1920, 1922), Trewavas (1983), and Stiassny (1991), that the tilapiines do not form a monophyletic group because there is strong evidence that the genus Tilapia is not monophyletic but divided into at least ®ve distinct groups. In contrast to this ®nding, an allozyme analysis of Pouyaud and AgneÁse (1995), largely based on the same samples as used here, found a clustering of the Tilapia species into only two groups. This discrepancy is likely caused by the difference in resolution power of the two marker systems used. Our data suggest that only type species Tilapia sparrmanii Smith (1840) should retain the genus name Tilapia. -
So You Have Always Wanted To… Walk in the Footsteps of Elephants and Bushmen
So you have always wanted to… Walk in the footsteps of Elephants and Bushmen Selinda Explorers Camp, Selinda Reserve Day 3-5 Day 1-3 Duba Explorers Camp, Okavango Delta MOREMI GAME RESERVE BOTSWANA Maun Day 5-7 Jack’s Camp, Makgadikgadi Pans National Park SUGGESTED ITINERARY OVERVIEW ACCOMModation Destination NIGHTS BASIS ROOM TYPE Duba Explorers Camp Okavango Delta, Botswana 2 FB Tent Selinda Explorers Camp Selinda Reserve, Botswana 2 FB Tent Makgadikgadi Pans National Park, Jack’s Camp 2 FB Room Botswana DAYS 1 - 3 Duba Explorers, The Okavango Delta THE OKAVANGO DELTA Lying in the middle of the largest expanse of sand on earth the Okavango Delta is one of Africa’s most amazing, sensitive and complex environments. Unique as the largest of the world’s few inland deltas, the placid waters and lush indigenous forests offer a safe haven for innumerable bird and wildlife species. The renowned Duba Explorers Camp sits in the heart of classic Okavango Delta habitat. A matrix of palm-dotted islands, flood plains and woodland, the 77,000 hectare private concession typifies the region’s unique landscape. Many consider Duba Plains to be the Okavango’s Maasai Mara because of the sheer volume of wildlife. Duba Plains prides itself on its extraordinary wildlife experiences with reliable sightings of lion, buffalo, red lechwe, blue wildebeest, greater kudu and tsessebe. Elephant and hippo trudge through the swamps and leopard, and some nocturnal species, can be sighted as well. Birds abound, and the area is a birdwatcher’s paradise. Okavango ‘specials’ include the rare wattled crane, Pel’s Fishing owl, white-backed night heron and marsh owl. -
Bildnachweis
Bildnachweis Im Bildnachweis verwendete Abkürzungen: With permission from the Geological Society of Ame- rica l – links; m – Mitte; o – oben; r – rechts; u – unten 4.65; 6.52; 6.183; 8.7 Bilder ohne Nachweisangaben stammen vom Autor. Die Autoren der Bildquellen werden in den Bildunterschriften With permission from the Society for Sedimentary genannt; die bibliographischen Angaben sind in der Literaturlis- Geology (SEPM) te aufgeführt. Viele Autoren/Autorinnen und Verlage/Institutio- 6.2ul; 6.14; 6.16 nen haben ihre Einwilligung zur Reproduktion von Abbildungen gegeben. Dafür sei hier herzlich gedankt. Für die nachfolgend With permission from the American Association for aufgeführten Abbildungen haben ihre Zustimmung gegeben: the Advancement of Science (AAAS) Box Eisbohrkerne Dr; 2.8l; 2.8r; 2.13u; 2.29; 2.38l; Box Die With permission from Elsevier Hockey-Stick-Diskussion B; 4.65l; 4.53; 4.88mr; Box Tuning 2.64; 3.5; 4.6; 4.9; 4.16l; 4.22ol; 4.23; 4.40o; 4.40u; 4.50; E; 5.21l; 5.49; 5.57; 5.58u; 5.61; 5.64l; 5.64r; 5.68; 5.86; 4.70ul; 4.70ur; 4.86; 4.88ul; Box Tuning A; 4.95; 4.96; 4.97; 5.99; 5.100l; 5.100r; 5.118; 5.119; 5.123; 5.125; 5.141; 5.158r; 4.98; 5.12; 5.14r; 5.23ol; 5.24l; 5.24r; 5.25; 5.54r; 5.55; 5.56; 5.167l; 5.167r; 5.177m; 5.177u; 5.180; 6.43r; 6.86; 6.99l; 6.99r; 5.65; 5.67; 5.70; 5.71o; 5.71ul; 5.71um; 5.72; 5.73; 5.77l; 5.79o; 6.144; 6.145; 6.148; 6.149; 6.160; 6.162; 7.18; 7.19u; 7.38; 5.80; 5.82; 5.88; 5.94; 5.94ul; 5.95; 5.108l; 5.111l; 5.116; 5.117; 7.40ur; 8.19; 9.9; 9.16; 9.17; 10.8 5.126; 5.128u; 5.147o; 5.147u; -
The Role of Flow Sensing by the Lateral Line System in Prey Detection in Two African Cichlid Fishes
University of Rhode Island DigitalCommons@URI Open Access Dissertations 9-2013 THE ROLE OF FLOW SENSING BY THE LATERAL LINE SYSTEM IN PREY DETECTION IN TWO AFRICAN CICHLID FISHES Margot Anita Bergstrom Schwalbe University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Schwalbe, Margot Anita Bergstrom, "THE ROLE OF FLOW SENSING BY THE LATERAL LINE SYSTEM IN PREY DETECTION IN TWO AFRICAN CICHLID FISHES" (2013). Open Access Dissertations. Paper 111. https://digitalcommons.uri.edu/oa_diss/111 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. THE ROLE OF FLOW SENSING BY THE LATERAL LINE SYSTEM IN PREY DETECTION IN TWO AFRICAN CICHLID FISHES BY MARGOT ANITA BERGSTROM SCHWALBE A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2013 DOCTOR OF PHILOSOPHY DISSERTATION OF MARGOT ANITA BERGSTROM SCHWALBE APPROVED: Dissertation Committee: Major Professor Dr. Jacqueline Webb Dr. Cheryl Wilga Dr. Graham Forrester Dr. Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2013 ABSTRACT The mechanosensory lateral line system is found in all fishes and mediates critical behaviors, including prey detection. Widened canals, one of the four patterns of cranial lateral line canals found among teleosts, tend to be found in benthic fishes and/or fishes that live in hydrodynamically quiet or light-limited environments, such as the deep sea. -
Gonad Development in Midas Cichlids and the Evolution of Sex Change in Fishes
EVOLUTION & DEVELOPMENT 13:4, 352–360 (2011) DOI: 10.1111/j.1525-142X.2011.00490.x Gonad development in Midas cichlids and the evolution of sex change in fishes Ronald G. OldfieldÃ,1 University of Michigan, Department of Ecology and Evolutionary Biology, Museum of Zoology, 1109 Geddes Ave., Ann Arbor, MI 48109, USA ÃAuthor for correspondence (email: [email protected]) 1Present address: Case Western Reserve University, Department of Biology, 10900 Euclid Ave., Cleveland, OH 44106. SUMMARY Some fishes mature and function as one sex aggressive behavior and sex in juveniles. I later demonstrated and later transform to the other sex in response to social that socially controlled sex determination does not typically interactions. Previous evidence suggested that a change in occur in the Midas cichlid and closely related species and developmental timing may be involved in the evolution of adult supported an alternative mechanism to explain large body sex change in fishes. The most recent support for this idea size in adult males. Finally, in the current study I analyze came from reports that sex in the Midas cichlid, Amphilophus gonad histology of fish from the same population used by the citrinellus, was determined by social conditions experienced at original authors and lay to rest the idea of socially controlled the juvenile stage. Differentiation as a male was reported to be sex determination in this species. Recent observations of dependent on large body size relative to group-mates, and socially controlled sex determination in juveniles of species thought to be mediated through aggressive interactions. Here that typically change sex at the adult stage are examples of I demonstrate that socially controlled sex determination does phenotypic plasticity, not genetic variation. -
Genome Sequences of Tropheus Moorii and Petrochromis Trewavasae, Two Eco‑Morphologically Divergent Cichlid Fshes Endemic to Lake Tanganyika C
www.nature.com/scientificreports OPEN Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco‑morphologically divergent cichlid fshes endemic to Lake Tanganyika C. Fischer1,2, S. Koblmüller1, C. Börger1, G. Michelitsch3, S. Trajanoski3, C. Schlötterer4, C. Guelly3, G. G. Thallinger2,5* & C. Sturmbauer1,5* With more than 1000 species, East African cichlid fshes represent the fastest and most species‑rich vertebrate radiation known, providing an ideal model to tackle molecular mechanisms underlying recurrent adaptive diversifcation. We add high‑quality genome reconstructions for two phylogenetic key species of a lineage that diverged about ~ 3–9 million years ago (mya), representing the earliest split of the so‑called modern haplochromines that seeded additional radiations such as those in Lake Malawi and Victoria. Along with the annotated genomes we analysed discriminating genomic features of the study species, each representing an extreme trophic morphology, one being an algae browser and the other an algae grazer. The genomes of Tropheus moorii (TM) and Petrochromis trewavasae (PT) comprise 911 and 918 Mbp with 40,300 and 39,600 predicted genes, respectively. Our DNA sequence data are based on 5 and 6 individuals of TM and PT, and the transcriptomic sequences of one individual per species and sex, respectively. Concerning variation, on average we observed 1 variant per 220 bp (interspecifc), and 1 variant per 2540 bp (PT vs PT)/1561 bp (TM vs TM) (intraspecifc). GO enrichment analysis of gene regions afected by variants revealed several candidates which may infuence phenotype modifcations related to facial and jaw morphology, such as genes belonging to the Hedgehog pathway (SHH, SMO, WNT9A) and the BMP and GLI families.