<<

Bildnachweis

Im Bildnachweis verwendete Abkürzungen: With permission from the Geological Society of Ame- rica l – links; m – Mitte; o – oben; r – rechts; u – unten 4.65; 6.52; 6.183; 8.7 Bilder ohne Nachweisangaben stammen vom Autor. Die Autoren der Bildquellen werden in den Bildunterschriften With permission from the Society for Sedimentary genannt; die bibliographischen Angaben sind in der Literaturlis- (SEPM) te aufgeführt. Viele Autoren/Autorinnen und Verlage/Institutio- 6.2ul; 6.14; 6.16 nen haben ihre Einwilligung zur Reproduktion von Abbildungen gegeben. Dafür sei hier herzlich gedankt. Für die nachfolgend With permission from the American Association for aufgeführten Abbildungen haben ihre Zustimmung gegeben: the Advancement of Science (AAAS) Box Eisbohrkerne Dr; 2.8l; 2.8r; 2.13u; 2.29; 2.38l; Box Die With permission from Elsevier Hockey-Stick-Diskussion B; 4.65l; 4.53; 4.88mr; Box Tuning 2.64; 3.5; 4.6; 4.9; 4.16l; 4.22ol; 4.23; 4.40o; 4.40u; 4.50; E; 5.21l; 5.49; 5.57; 5.58u; 5.61; 5.64l; 5.64r; 5.68; 5.86; 4.70ul; 4.70ur; 4.86; 4.88ul; Box Tuning A; 4.95; 4.96; 4.97; 5.99; 5.100l; 5.100r; 5.118; 5.119; 5.123; 5.125; 5.141; 5.158r; 4.98; 5.12; 5.14r; 5.23ol; 5.24l; 5.24r; 5.25; 5.54r; 5.55; 5.56; 5.167l; 5.167r; 5.177m; 5.177u; 5.180; 6.43r; 6.86; 6.99l; 6.99r; 5.65; 5.67; 5.70; 5.71o; 5.71ul; 5.71um; 5.72; 5.73; 5.77l; 5.79o; 6.144; 6.145; 6.148; 6.149; 6.160; 6.162; 7.18; 7.19u; 7.38; 5.80; 5.82; 5.88; 5.94; 5.94ul; 5.95; 5.108l; 5.111l; 5.116; 5.117; 7.40ur; 8.19; 9.9; 9.16; 9.17; 10.8 5.126; 5.128u; 5.147o; 5.147u; 5.149ul; 5.150; 5.151; 5.152; 5.153; 5.154r; 5.155; 5.156; 5.157; 5.158l; 5.160; 5.161; 5.162; With permission from the Proceedings of the National 5.165; 5.176l; 5.176r; 5.178; 5.179; 6.3; 6.9; 6.10r; 6.25; 6.25 Academy of Sciences (PNAS) inset; 6.26; 6.27; 6.28; 6.30; 6.32; 6.35l; 6.35r; 6.36; 6.38; 6.39; 2.10r; 2.34; 7.17; 7.20 6.43l; 6.46o; 6.47; 6.48; 6.50l; 6.50r; 6.53; 6.54l; 6.54r; 6.55l; 6.55r; 6.58r; 6.59; 6.66; 6.68; 6.69; 6.70o; 6.72; 6.75l; 6.76o; 6.76u; 6.84ol; 6.84m; 6.87l; 6.90or; 6.90ur; 6.91; 6.96l; 6.97; With permission from the American Meteorological 6.108; 6.109; 6.110l; 6.115; 6.116; 6.123; 6.128; 6.137; 6.138; Society (AMS) 6.140; 6.147; 6.153; 6.154l; 6.154r; 6.155; 6.157l; 6.157r; 3.4; 6.197o 6.158; 6.173; 6.177l; 6.177r; 6.178l; 6.178r; 6.182; 6.189l; 6.189r; 7.8; 7.10; 7.11; 7.13; 7.15; 7.16; 7.24; 7.25; 7.26l; 7.26r; With permission from Springer 7.27; 7.28; 7.29; 7.31; 7.32; 7.33r; 7.35; 7.39; 7.40ur; 7.43o; 2.2; 2.59; 4.7; 4.49;BoxDie Hockey-Stick-Diskussion Al; 7.43u; 7.44l; 7.45l; 8.3; 8.5m; 8.5u; 8.7; 8.8; 8.10ol; 8.10or; 4.66r; 4.73o; 5.7r; 5.98; 5.168l; 5.168r; 5.169l; 5.171l; 6.4l; 8.10ul; 8.10ur; 8.11; 8.12; 8.13; 8.18; 8.22r; 8.25ol; 8.25ul; 6.4r; 6.5o; 6.5u; 6.40; 6.83; 6.85; 6.94; 6.102l; 6.102r; 6.111; 9.20; 9.12; 10.5 6.112; 6.161; 6.168l; 6.168r; 6.170o; 6.170u; 6.171; 6.172; 6.175; 9.11 With permission from Wiley 2.35u; 2.42; 2.60; 2.70; 4.8; 4.12; 4.64; 4.69; 4.89; 4.90; 4.91; With permission from Nature/Springer 4.92;BoxTuning C; 5.8o: 5.8u; 5.13; 5.69o; 5.69u; 5.92l; 5.92r; 2.3; 2.4;BoxSauerstoffisotopen-Analyse A, F, G, H; 2.7l; 2.7r; 5.122ol; 5.122ul; 5.122r; 6.18; 6.44; 6.84u; 6.90r; 6.92; 6.102l; Box Jüngere Dryaszeit Ar, B; 2.13o; 2.14o; 2.14u; 2.20; 2.21; 6.102r; 6.104; 6.179; 7.12; 7.14; 7.21o; 7.21u; 7.22o; 7.23; 2.26; 2.27; 2.31; 2.32or; 2.39; 2.40o; 2.45ul; 2.45um; 2.45ur; 7.33l; 8.15ul; 8.15ur 2.50; 2.54; 2.56; 2.61u; 2.63; 2.68; 2.69; 4.25; 4.36; 4.56l; 4.56r; Box Die Hockey-Stick-Diskussion Ar; 4.75ol; 4.75or; 4.77ol; With permission from SAGE journals 4.77um; 4.79;BoxTuning B; 4.93r; 4.102l; 4.104l; 4.105;Box 2.65; 2.71; 4.22or; 8.14; 9.19; 9.20; 10.3 Modelle/Modellierungen Al; 5.3; 5.15; 5.19; 5.22; 5.83; 5.89; 5.101; 5.166; 5.172; 5.175; 6.11; 6.12; 6.40; 6.65; 6.82r; 6.93l; 6.93r; 6.143; 6.164o; 6.164u; 6.174; 6.176; 6.187; 6.188; 7.36; With permission from Taylor & Francis Group 7.37; 7.46; 7.48; 8.15o; 8.16; 8.17u; 8.23; 8.24; 8.26; 8.27; 4.27; 5.66o 9.1ol; 9.4l; 9.5; 9.6l; 9.6r; 9.7; 9.15; 10.6; 10.7o; 10.7u; 10.14

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019 655 K. Heine, Das Quartär in den Tropen, https://doi.org/10.1007/978-3-662-57384-6 656 Bildnachweis

With permission from PAGES and the authors Niller, Hans-Peter; Bonn 2.40u; 2.41; 2.48; 2.58; 2.66; 4.2; 4.3; 4.10; 4.32l; 4.33; 4.35; 4.37ml 4.52; 4.54; 4.55; 4.58; 4.59; 4.62; 4.63o; 4.67; 4.72; 4.73u; 4.74; 4.80; 4.81; 4.82;BoxSclerochronologie B; 4.101; 5.9ol; 5.10; Schmidt, Mareike; FU 5.26; 5.81l; 5.81r; 5.96; 5.107; 5.108r; 5.144; 5.170l; 5.177ol; 6.114r 6.89; 6.186; 9.18; 10.10

In Bildunterschriften nicht erwähnte Autoren: Soubrier, Julien; University of Adelaide 9.8

Mcnaughton, Sean; NationalGeographicCreative No. Spratt, Rachel M. und Lisiecki, Lorraine E. 2016. RR3-240045-1. Image 1210171 of the Past EGU: CC Attribution 3.0 License 10.13l 2.5o; 2.5u Literatur

Abele G (1984) Derrumbe de montaña y morrenas en los Adams JM et al (1990) Increases in terrestrial carbon stor- Chilenos. Revista De Geografía Norte Grande 11:17–30 age from the to the present. Nature 348:711–714 Abell PI, Plug I (2000) The / transition in South Africa: evidence for the event. Glob Adler DS et al (2014) Early Levallois technology and the Lower Planet Change 26:173–179 to Middle transition in the Southern Caucasus. Science 345:1609–1613 Abbott MB et al (2000) Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Adolphi F et al (2014) Persistent link between solar activity . Quat Sci Rev 19:1801–1820 and Greenland climate during the last Glacial maximum. Nat Geosci 7:662–666 Abbott MB et al (2003) Holocene paleohydrology and glacial history of the central Andes using multiproxy Aeppli H (1973) Barroböden und Tepetate. Untersuchungen zur studies. Palaeogeogr Palaeoclimatol Palaeoecol 194:123–138 Bodenbildung in vulkanischen Aschen unter wechselfeuch- tem gemäßigtem Klima im zentralen Hochland von Mexiko. Abram NJ et al (2003) Coral reef death during the 1997 In- Dissertation Fachbereich Umweltsicherung. Justus-Liebig- dian dipole linked to Indonesian wildfires. Science Universität Gießen 301:952–955 Agassiz A (1876) Hydrographic sketch of . Proc Abram NJ et al (2016) Early onset of industrial-era warming Am Academy Arts Sci 11:280–292 across the and continents. Nature 536:411–418 (Sup- pl) Aggarwal PK et al (2016) Proportions of convective and stra- tiform precipitation revealed in water isotope ratios. Nat Absy ML et al (1991) Mise en évidence de quatre phases Geosci 9:624–629 d’ouverture de la forêt dense dans le sud-est de l’Amazonie au cours des 60 000 dernières années. Première comparaison Ahlfeld F (1932) Die Cordillera Quimsa Cruz. Zeitschrift des avec d’autres regions tropicales. Comptes Rendues Académie deutsch-österreichischen Alpenvereins (döav) 63:79–94 Des Sci Paris 313:673–678 Ahnert F (1996) Einführung in die Geomorphologie, 2. Aufl. Acosta J (1851) Zitiert nach Hermann A. Schumacher (1884), Ulmer, Stuttgart Südamerikanische Studien. Drei Lebens- und Culturbilder. Aimers J (2011) The story of the artefacts. Nature 479:44 Mútis. Cáldas. Codazzi. 1760–1860. 132 S, Fußnote 142 Ainsworth C (2008) Logbooks record weather’s history. Science Acosta Navarro JC et al (2016) Amplification of Arctic warming 322:1629 by past air pollution reductions in . Nat Geosci 9:277– 281 Alamaro M (2014) Water politics must adapt to a warming world. Nature 514:7 Acuña-Soto et al (2004) When half of the population died: the epidemic of hemorrhagic fevers of 1576 in . FEMS Albert RM, Madella M (2009) Perspectives on phytolith re- Microbiol Lett 240:1–5 search: 6th international meeting on phytolith research. Quat Int 193:1–2 Acuña-Soto GH (2008) Climate and society in colonial Mexico. A study in vulnerability. Wiley-Blackwell, Malden Alexander D et al (2014) Formation of the Waiho Loop terminal , New Zealand. J Quat Sci 29:361–369 Acuña-Soto R et al (2000) Large epidemics of hemorrhagic fe- vers in Mexico 1545–1815. Am J Trop Med Fre 62:733–739 Allan R (1996) El Niño Southern Oscillation and Climatic Var- iability. CSIRO, Melbourne, Vic., Australia Acuña-Soto R et al (2002) and Megadeath in 16th Allen G (2016) Rebalancing the global methane budget. Nature Century Mexico. Emerg Infect Dis 8:360–362 538:46–48 Acuña-Soto R et al (2005) , epidemic disease, and the Allen KA (2015) When carbon escaped from the . Nature fall of classic period cultures in Mesoamerica (AD 750–950). 518:176–177 Hemorrhagic fevers as a cause of massive population loss. Med Hypotheses 65:405–409 Allen M (2010) Embracing an uncertain future. Nature 466:31

657 658 Literatur

Allen MR et al (2013) Test of a decadal climate forecast. Nat Anchukaitis KJ et al (2012) Tree rings and volcanic cooling. Nat Geosci 6:243–244 Geosci 5:836–838 Allen PA (2007) Sediment en route to oblivion. Nature 450:490– Andersen BG, Borns HW Jr (1994) The World. Scandi- 491 navian University Press, Oslo Allen PA, Etienne JL (2008) Sedimentary challenge to Snowball Andersen KK et al (2006) The Greenland ice core chronology Earth. Nat Geosci 1:817–825 2005, 15–42 ka. Part 1: constructing the time scale. Quat Sci Rev 25:3246–3257 Allen RJ et al (2012) Recent Northern Hemisphere tropical ex- pansion primarily driven by black carbon and tropospheric Anderson DM, Webb RS (1994) Ice-age tropics revisited. Na- ozone. Nature 485:350–354 ture 367:23–24 Allen RJ et al (2014) Influence of anthropogenic aerosols and Anderson DM et al (2002) Increase in the Asian Southwest the Pacific Decadal Oscillation on tropical belt width. Nat Monsoon during the past four centuries. Science 297:596– Geosci 7:270–274 599 Allen RP (2014) Dichotomy of drought and deluge. Nat Geosci Anderson RF et al (2009) Wind-driven in the 7:700–701 Southern Ocean and the deglacial rise in atmospheric CO2. Alley RB, Ágústsdóttir AM (2005) The 8k event: cause and con- Science 323:1443–1448 sequences of a major Holocene . Quat Andreae MO, Ramanathan V (2013) Climate’s dark forcings. Sci Rev 24:1123–1149 Science 340:280–281 Alley RB, MacAyeal DR (1994) Ice-rafted debris associated Andreotti B et al (2009) Giant aeolian dune size determined by with binge/purge oscillations of the Laurentide . Pa- the average depth of the atmospheric boundary layer. Nature leoceanography 9:503–511 457:1120–1123 Alley RB et al (1995) Comparison of deep ice cores. Nature Andriessen PAM et al (1993) Absolute chronology of the 373:393–394 - sediment sequence of the area of Bogotá, Alley RB et al (1997) Holocene climatic instability; a promi- . Quat Sci Rev 12:483–501 nent, widespread event 8,200 yr ago. Geology 25:483–486 Anhuf D et al (2006) Paleo-environmental change in Amazonian Allison N, Finch AA (2007) High temporal resolution Mg/- and African rainforest during the LGM. Palaeogeogr Palaeo- Ca and Ba/Ca records in modern Porites lobata corals. climatol Palaeoecol 239:510–527 Geochemistry Geophys Geosystems. https://doi.org/10.1029/ Anisinov OA, Nelson FE (1996) Permafrost distribution in the 2006GC001477 Northern Hemisphere under scenarios of climatic change. Almásy LE (1939) Unbekannte Sahara. Mit Flugzeug und Auto Glob Planet Change 14:59–72 in der Libyschen Wüste. Brockhaus, Leipzig. Anisinov OA, Reneva S (2006) Permafrost and changing cli- Altenbach A, Struck U (2006) Some remarks on Namibia’s shelf mate: the Russian perspective. Ambio 35:169–175 environments, and a possible teleconnection to the Hinter- Anisinov OA et al (1997) Global warming and active-layer land. In: Leser H (Hrsg) The changing culture and nature of thickness: results from transient general circulation models. Namibia: case studies. Basler Afrika Bibliographien, Basel, Glob Planet Change 15:61–77 Windhoek, S 109–124 ANSTO (2007) Quaternary science and capabilities at ANSTO. Alter RE et al (2015) Rainfall consistently enhanced around the Australian Government ANSTO (Australian Nuclear Science Gezira Scheme in East Africa due to irrigation. Nat Geosci and Technology Organisation), Sydney 8:763–767 Anthony KMW et al (2014) A shift of thermokarst from Alvarez-Solas J et al (2010) Links between ocean temperature carbon sources to sinks during the Holocene epoch. Nature and iceberg discharge during Heinrich events. Nat Geosci 511:452–456 3:122–126 Antonelli A (2015) Multiple origins of mountain life. Nature Alverson K et al (Hrsg) (2001) Environmental Variability and 524:300–301 Climate Change. IGBP Science 3:1–31 Appenzeller T (2012) Human migrations: eastern odyssey. Na- Amaral GC et al (2013) Palynological evidence for gradual ture 485:24–26 vegetation and climate changes during the termination at 13ı N from a Mega-Lake Chad sedi- Arbuckle BS (2014) Pace and progress in the emergence of ani- mentary sequence. Clim Past 9:223–241 mal husbandry in Neolithic Southwest Asia. Bioarchaeology of the Near East 8:53–81 Ammann C et al (2001) Late Quaternary response to humidity changes in the arid Andes of Chili. Palaeogeogr, Pa- Argollo BJ (1980) Los Pie de Montes de la Cordillera Real entre laeoclimatol, Palaeoecol 172:313–326 los Valles de la Paz y de Tuni, Estudio Geológico, Evolución Literatur 659

Plio-Cuaternaria. Ph. D. Thesis, Universidad Mayor de San Avery DM (1981) Holocene micromammalian faunas from the Andrews, La Paz Northern Cape Province, South Africa. S Afr J Sci 77:265– 273 Argollo BJ, Mourguiart P (1995) Palaeohidrología de los últi- mos 25.000 aos en los Andes bolivianos. Bull De L’institut Avery DM (1993) Last and Holocene altithermal en- Franais D’Études Andines 24:551–562 vironments in South Africa and Namibia: micromammalian Argollo BJ, Mourguiart P (2000) Late quaternary climate histo- evidence. Palaeogeogr Palaeoclimatol Palaeoecol 101:221– ry of the Bolivian . Quat Int 72:37–51 228 Armbrust EV, Palum SR (2015) Uncovering hidden worlds of Avery DM (2000) Micromammals. In: Partridge TC, Maud RR ocean biodiversity. Science 348:865–867 (Hrsg) The cenozoic geology of southern Africa. Oxford monographs on geology and geophysics, Bd. 40. Oxford Uni- Armour KC et al (2016) Southern Ocean warming delayed by versity Press, Oxford, S 305–338 circumpolar upwelling and equatorward transport. Nat Geo- sci 9:549–554 Avery DM (2003) Early and Middle Pleistocene environments and hominid biogeography: micromammalian evidence from Armstrong A (2014) Twilight budget in balance. Nat Geosci Kabwe, Mumbwa Caves and Twin Rivers in central Zambia. 7:255 Palaeogeogr Palaeoclimatol Palaeoecol 189:55–69 Arneth A et al (2009) Clean the air, heat the planet? Science Avery DM (2007) Micromammals as palaeoenvironmental indi- 326:672–673 cators of the southern African Quaternary. Trans Royal Soc Aronson RB et al (2000) Coral bleach-out in Belize. Nature South Africa 62:17–23 405:36 Ayliffe LK et al (1998) 500 ka precipitation record from south- Arrigo KR (2007) Carbon cycle. Marine manipulations. Nature eastern Australia: evidence for interglacial relative aridity. 450:491–492 Geology 26:147–150 Arz HW et al (1998) Correlated millennial-scale changes in Bachelet D, Turner D (Hrsg) (2015) Global vegetation dyna- surface and terrigenous sediment yield inferred mics: concepts and applications in the MC1 model. Wiley, from the last-glacial marine deposits off Northeastern Brazil. Hoboken Quat Res 50:157–166 Backwell LR et al (2014) Multiproxy record of late Quaternary Arz HW et al (2006) A pronounced dry event recorded around climate change and Middle Stone Age human occupation at 4.2 ka in brine from the northern Red Sea. Quat Wonderkrater, South Africa. Quat Sci Rev 99:42–59 Res 66:432–441 Bader J (2014) The origin of regional Arctic warming. Nature Ashley GM (2015) Orbital rhythms, monsoons, and playa lake 509:167–168 response, Olduvai Basin, equatorial East Africa (ca. 1.85– 1.74 Ma). Geology 35:1091–1094 Bagnold RA (1941) Physics of blown sand and desert dunes. Methuen, London Ashworth AC, Hoganson JW (1984) Testing the late quater- nary climatic record of southern with evidence from Bailleul B et al (2015) Energetic coupling between plastids fossil Coleoptera. In: Vogel JC (Hrsg) Late cainozoic palaeo- and mitochondria drives CO2 assimilation in diatoms. Nature of the Southern Hemisphere. Balkema, Rotterdam- 524:366–369 , S 85–102 Baillie MGL (1994) Dendrochronology raises questions about Ashworth AC et al (1991) Late quaternary climatic history of the the nature of the AD 536 dust-veil event. Holocene 4:212– Chilean channels based on fossil pollen and beetle analyses, 217 with an analysis of the modern vegetation and pollen rain. Baker MB, Peter T (2008) Small-scale cloud processes and cli- J Quat Sci 6:279–291 mate. Nature 451:299–300 Åström JA et al (2014) Termini of calving as self- Baker PA et al (2001a) Tropical climate changes at millenni- organized critical system. Nat Geosci 7:874–878 al and orbital timescales on the Bolivian Altiplano. Nature Atkinson JD et al (2013) The importance of feldspar for ice 409:698–701 nucleation by mineral dust in mixed-phase clouds. Nature Baker PA et al (2001b) The history of South American tropical 498:355–358 precipitation for the past 25,000 years. Science 291:640–643 Aubert M et al (2014) Pleistocene cave art from Sulawesi, Indo- Baker PA et al (2015) Trans-Amazon Drilling Project (TADP): nesia. Nature 514:223–227 origins and evolution of the forests, climate, and hydro- Auerswald K (2005) Auf Spurensuche in der Natur. Akademie logy of the South American tropics. Sci Drill 20:41– Aktuell 03/2005:58–59 49 (www.sci-dril.net/20/41/2015/ https://doi.org/10.5194/sd- 20-41-2015) Austin WEN et al (2004) The age and chronostratigraphi- cal significance of North Atlantic Ash Zone II. J Quat Sci Baker VR (1987) Paleoflood hydrology and extraordinary flood 19:137–146 events. J Hydrol 96:79–99 660 Literatur

Baker VR, Pickup G (1985) Radiocarbon dating of flood events, Bardgett RD, van der Putten WH (2014) Belowground biodiver- Katherine Gorge, NT, Australia. Geology 13:344–347 sity and ecosystem functioning. Nature 515:505–511 Balch JK (2014) Drought and fire change sink to source. Nature Barker P, Gasse F (2003) New evidence for a reduced water ba- 506:41–42 lance in East Africa during the last glacial maximum: impli- cation for model-data comparison. Quat Sci Rev 22:823–837 Balco G (2011) Contributions and unrealized potential con- tributions of cosmogenic-nuclide exposure dating to glacier Barker S et al (2009) Interhemispheric Atlantic seesaw response chronology, 1990–2010. Quat Sci Rev 30:3–27 during the last . Nature 457:1097–1103 Barker S et al (2011) 800,000 years of abrupt climate variability. Balco G et al (2002) Cosmogenic-nuclide ages for Science 334:347–351 coastal , Martha’s Vineyard and , Massa- chusetts, USA. Quat Sci Rev 21:2127–2135 Barker S et al (2015) Icebergs not the trigger for North Atlantic cold events. Nature 520:333–336 Balco G et al (2008) A complete and easily accessible means of calculating surface exposure ages or rates from 10Be Barnett TP et al (2005) Potential impacts of a warming cli- and 26Al measurements. Quat Geochronol 3:174–195 mate on water availability in snow-dominated regions. Nature 438:303–309 Baldocchi D, Gu L (2003) Multiple ecosystem interactions lead Barnosky AD et al (2004) Assessing the causes of late Pleisto- to overall reduced growth in atmospheric CO2. Glob Chang Newsl 5:23–24 cene extinctions on the continents. Science 306:70–75 Barrows TT, Juggins S (2005) Sea-surface temperatures around Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci the Australian margin and during the last glacial Rev 21:1935–2017 maximum. Quat Sci Rev 24:1017–1047 Balter M (2008) DNA from fossil feces breaks Clovis barrier. Barrows TT et al (2007) Absence of cooling in New Zealand Science 320:370 and the adjacent ocean during the YoungerDryas chronozone. Balter M (2009) Early start of human Art? Ochre May revise Science 318:86–89 timeline. Science 323:569 Barrows TT et al (2011) glaciation of the Mt Giluwe , Papua New Guinea. Quat Sci Rev 30:2676– Balter M (2012) New light on revolutions that weren’t. Science 2689 336:530–531 Barry RG (2006) The status of research on glaciers and global Bamber J (2012) Shrinking glaciers under scrutiny. Nature glacier recession: a review. Prog Phys Geogr 30:285–306 482:482–483 Barry RG (2012) Recent advances in mountain climate research. Banholzer S, Donner S (2014) The influence of different El Theor Appl Climatol 110:549–553 Niño types on global average temperature. Geophys Res Lett 41:2093–2099 Barry R, Gan TY (2011) The global Cryosphere, past, present and future. Cambridge University Press, Cambridge Bao H et al (2000) Anomalous 17O compositions in massive Barth H (1857/58) Reisen und Entdeckungen in Nord- und sulphate deposits on the Earth. Nature 406:176–178 Central-Afrika: in den Jahren 1849 bis 1855: Tagebuch seiner Barbante C, Fischer H (2009) Mechanisms of quaternary cli- im Auftrag der Britischen Regierung unternommenen Reise. mate change: stability of warm phases in the past and in In fünf Bänden. Perthes, Gotha (Bd. 1 (1857) 638 S., Bd. 2 the future. European Science Foundation – Austrian Science (1857) 762 S., Bd. 3 (1857) 612 S., Bd. 4 (1858) 688 S., Bd. 5 Fund Conference with the University of Innsbruck, Ober- (1858) 804 S) gurgl, 6–11 June 2009. PAGES News 17(3):129–130 Barth H (1859) Reisen und Entdeckungen in Nord- und Central- Bard E (2013) Out of the African humid period. Science Afrika in den Jahren 1849 bis 1855 Bd. I. Perthes, Gotha 342:808–809 (Band II (1860)) Barthlott W et al (2016) Superhydrophobic hierarchically struc- Bard E, Rickaby REM (2009) Migration of the subtropical front tured surfaces in biology: evolution, structural principles and as a modulator of glacial climate. Nature 460:380–383 biomimetic applications. Phil Trans R Soc A 374:20160191. Bard E et al (1996) Deglacial sea-level records from Tahiti https://doi.org/10.1098/rsta.2016.0191 corals and the timing of global meltwater discharge. Nature Bartholomaus TC et al (2008) Response of glacier basal motion 382:241–244 to transient water storage. Nat Geosci 1:33–37 Bard E et al (1997) Interhemispheric synchrony of the last deg- Bastin J-F et al (2017) The extent of forest in dryland biomes. laciation inferred from alkenone palaeothermometry. Nature Science 356:635–638 385:707–709 Bastos A et al (2013) The global NPP dependence on ENSO: Bard E et al (2000) Hydrological impact of Heinrich events in La Niña and the extraordinary year of 2011. J Geophys Res the subtropical Northeast Atlantic. Science 289:1321–1324 118:1247–1255 Literatur 661

Bateman MD et al (2003) Extending the aridity record of the Behling H, Lichte M (1997) Evidence of dry and cold clima- Southwest Kalahari: current problems and future perspecti- tic conditions at glacial times in tropical southeastern Brazil. ves. Quat Int 111:37–49 Quat Res 48:348–358 Bathiany S et al (2016) Simple tipping or complex transition? Behling H et al (1998) Evidence of a forest free landscape under Lessons from a green Sahara. PAGES Mag 24(1):20–21 dry and cold climatic conditions during the last glacial maxi- mum in the Botucatu region (Sao Paulo State), Southeastern Battarbee RW (2000) Palaeolimnological approaches to climate Brazil. Quat S Am Antarct Peninsula 11:99–110 change, with special regard to the biological record. Quat Sci Rev 19:107–124 Behling H et al (2000) Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core Batterbee R, Binney H (Hrsg) (2008) Natural climate variability GeoB 3104-1. Quat Sci Rev 19:981–994 and global warming. Wiley-Blackwell, Hoboken Behrensmeyer AK (2006) Climate change and human evolution. Battipaglia G et al (2015) Long tree-ring chronologies provide Science 311:476–478 evidence of recent tree growth decrease in a central African tropical forest. PLoS ONE 10(3):e120962 Behringer W (2007) Kulturgeschichte des Klimas. Von der Eis- zeit bis zur globalen Erwärmung. Beck, München Baumgartner TR et al (2004) GLOBEC investigations and Interdecadal to multi-centennial variability in marine fish po- Behrmann W (1937) Der Malaiische Archipel. Potsdam, Aka- pulations. PAGES News 12(1):19–23 demische Verlagsgesellschaft. In: Frey U et al (Hrsg) Vorder- und Südasien in Natur, Kultur und Wirtschaft. Athenaion, Baumhauer R (1986) Zur jungquartären Seenentwicklung im Potsdam, S 453–533 Bereich der Stufe von Bilma (NE-Niger). Würzburger Geo- graphische Arbeiten 65. Geographisches Institut, Würzburg Belda M et al (2016) Global warming-induced changes in cli- mate zones based on CMIP5 projections. Climate Research Bauska TK et al (2015) Links between atmospheric carbon 71:17–31 dioxide, the land carbon reservoir and climate over the past millennium. Nat Geosci 8:383–387 Bell RE et al (2011) Widespread persistent thickening of the East Antarctic ice sheet by freezing from the base. Science Bayon G et al (2012) Intensifying weathering and land use in 331:1592–1595 iron age Central Africa. Science 335:1219–1222 Bellouin N (2014) The colour of smoke. Nat Geosci 7:619–620 Beal LM et al (2011) On the role of the Agulhas system in ocean circulation and climate. Nature 472:429–436 Bellprat O, Doblas-Reyes F (2016) Attribution of extreme weather and climate events overestimated by unreliable cli- Beaufort L et al (2011) Sensitivity of coccolithophores to car- mate simulations. Geophys Res Lett. https://doi.org/10.1002/ bonate chemistry and ocean acidification. Nature 476:80–83 2015GL067189 Beck JW et al (1997) Abrupt changes in early Holocene tropical Bellwood P (2004) First farmers: the origins of agriculture. derived from coral records. Nature Blackwell, Oxford 385:705–707 Benito G et al (2011) Hydrological response of dryland ephem- Beer J (2005) Solar variability and climate change. Glob Chang eral river to southern African climatic variability during the Newsl 63:18–20 last millennium. Quat Res 75:471–482 Beer J (2012) Solar forcing – a new PAGES working group. Benn DI, Lehmkuhl F (2000) Mass balance and equilibrium-line PAGES News 20(2):91 altitudes of glaciers in high-mountain environments. Quat Int Beerten K et al (2006) On the use of Ti centres for estimating 65/66:15–29 burial ages of Pleistocene sedimentary quartz: multiple grain Benn DI, Owen LA (1998) The role of the Indian summer mon- data from Australia. Quat Geochronol 1:151–158 soon and the mid-latitude westerlies in Himalayan glacia- Beget JE (1983) Radiocarbon-dated evidence of worldwide ear- tion: review and speculative discussion. J Geol Soc London ly Holocene climate change. Geology 11:389–393 155:353–363 Behling H (1993) Untersuchungen zur spätpleistozänen und Benn DI, Owen LA (2002) Himalayan glacial sedimentary envi- holozänen Vegetations- und Klimageschichte der tropischen ronments: a framework for reconstructing and dating former Küstenwälder und der Araukarienwälder in Santa Catarina glacial extents in high mountain regions. Quaternary Interna- (Südbrasilien). Diss Bot 206:1–149 tional 97/98:3–26 Bennartz R et al (2013) July 2012 Greenland melt extent enhan- Behling H (1997) Late Quaternary vegetational and climatic ced by low-level liquid clouds. Nature 496:83–86 changes in Brazil. Rev Palaeobot Palynol 97:109–121 Benning LG et al (2014) Biological impact on Greenland’s al- Behling H, Hooghiemstra H (1998) Late Quaternary palaeoe- bedo. Nat Geosci 7:691 cology and palaeoclimatology from pollen records of the savannas of the Llanos Orientales in Colombia. Palaeogeo- Benvenuti M et al (2002) The Ziway–Shala lake basin (main gr Palaeoclimatol Palaeoecol 139:251–267 Ethiopian rift, Ethiopia): a revision of basin evolution with 662 Literatur

special reference to the Late Quaternary. J Afr Earth Sci Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleu- 35:247–269 ropa und angrenzende Gebiete. Pfeil, München Berendsen HJA (2008) De Vorming Van Het Land, Inleiding in Beugler-Bell H, Buch MW (1997) Soils and soil erosion in the de Geologie en de Geomorfologie, 5. Aufl. Uitgeverij Van Etosha National Park, northern Namibia. Madoqua 20:91– Gorcum, Assen 104 Berger A (1978) Long-term variations of daily insolation and Beuning KRM et al (1997) A revised 30,000-year paleoclima- Quaternary climate changes. J Atmospheric Sci 35:2362– tic and paleohydrologic history of Lake Albert, East Africa. 2367 Palaeogeogr Palaeoclimatol Palaeoecol 136:259–279 Berger A, Loutre MF (1991) Insolation values for the climate of Bhattacharya T et al (2015) Cultural implications of late Holo- the last 10 million years. Quat Sci Rev 10:297–317 cene climate change in the Cuenca Oriental, Mexico. Proc Berger LR et al (2017) Homo naledi and Pleistocene homi- Natl Acad Sci 112:1693–1698 nin evolution in subequatorial Africa. eLife 2017;6:e24234 https://doi.org/10.7554/eLife.24234 Bianchi F et al (2016) New particle formation in the free troposphere: a question of chemistry and timing. Science Berger WH (1982) Increase of carbon dioxide in the atmosphere 352:1109–1112 during deglaciation: the coral reef hypothesis. Naturwissen- schaften 69:87–88 Bierman P, Caffee M (2001) Slow rates of rock surface erosion and sediment production across the Namib Desert and escarp- Berger WH (1990) The Younger Dryas cold spell – a quest for ment, southern Africa. Am J Sci 301:326–358 causes. Glob Planet Change 3:219–237 Biggs R et al (2016) The domestification of fire as a social- Berger WH (1999) The 100-kyr ice-age cycle: internal oscillati- ecological regime shift. PAGES Mag 24(1):22–23 on or inclinational forcing? Int J Earth Sci 88:305-316 Bik MJJ (1972) Pleistocene glacial and periglacial on Berger WH, Wefer G (2010) Erforschung der Eiszeit. In: Wefer Mt. Giluwe and Mt. Hagen, western and southern highlands G, Schmieder F (Hrsg) Expedition Erde. Wissenswertes und districts, Territory of Papua and New Guinea. Z Geomorphol Spannendes aus den Geowissenschaften. Marum, Bremen, S 16:1–15 316–325 Berger WH et al (1978) Stable isotopes in carbonates: Billups K (2004) Low-down on a rhythmic high. Nature boxcore ERDC-92, West Equatorial Pacific. Oceanol Acta 427:686–687 1:203–216 Billups K (2015) Timing is everything during . Na- Berman B (2011) The sun’s heartbeat: and other stories from ture 522:163–164 the life of the star that powers our planet. Back Bay Books, Biondi F (2001) A 400-year tree-ring chronology from the trop- Little, Brown ical treeline of . Ambio 30:162–166 Berner RA, Kothavala Z (2001) Geocarb III: a revised model of Biondi F (2002) Treeline dendroclimatology in the North Ame- atmospheric CO2 over Phanerozoic time. Am J Sci 301:182– 204 rican tropics. PAGES News 10(1):9–10 Bertrand S et al (2008) ESF EuroCLIMATE spring school: Biondi F, Fessenden J (1999) Radiocarbon analysis of Pinus la- late quaternary timescales and chronology. Piran, 20–26 gunae tree rings: implications for tropical dendrochronology. April 2008. PAGES News 16(3):36–37 Radiocarbon 41:241–249 Besler H (1980) Die Dünen-Namib: Entstehung und Dynamik Bird MI et al (2013) Humans, megafauna and environmental eines Ergs. Stuttgarter Geographische Studien 96. Geographi- change in tropical Australia. J Quat Sci 28:439–452 sches Institut, Stuttgart Birkeland PW et al (1989) Radiocarbon dates on deglacia- Besler H (1991) Der Namib Erg: Älteste Wüste oder älteste Dü- tion, cordillera central, northern Peruvian Andes. Quat Res nen? Geomethodica 16:93–122 32:111–113 Besler H (1992) Geomorphologie der ariden Gebiete. WBG, Birks HJB (1998) Numerical tools in palaeolimnology – Darmstadt progress, potentialities, and problems. J Palaeolimnology Besler H et al (1994) Geomorphogenese und Paläoklima Nami- 20:307–332 bias. Eine Problemskizze. Die Erde 125:139–165 Birks HJB et al (2012) Tracking environmental change using Betancourt JL et al (1990) Packrat middens. The last 40,000 lake sediments: data handling and numerical technique. years of biotic change. The University of Arizona Press, Tuc- Developments in Paleoenvironmental Research 5. Springer, son Berlin Heidelberg Betancourt JL et al (2000) A 22,000-year record of monsoonal Blard PH et al (2006) Cosmogenic He-3 production rates re- precipitation from northern Chile’s Atacama desert. Science visited from evidence of grain-size dependent release of 289:1542–1546 matrix-sited helium. Earth Planet Sci Lett 247:222–234 Literatur 663

Blard PH et al (2007) Persistence of full glacial conditions in the Bonnefille R et al (1990) Temperature and rainfall estimates for central Pacific until 15,000 years ago. Nature 449:591–594 the past 40,000 years in equatorial Africa. Nature 346:347– 349 Blard PH et al (2011) Lake highstands on the Altiplano (Trop- ical Andes) contemporaneous with Heinrich 1 and the Youn- Bonneville S et al (2009) Plant-driven fungal weathering: early ger Dryas: new insights from 14C, U-Th dating and •18Oof stages of mineral alteration at the nanometer scale. Geology carbonates. Quat Sci Rev 30:3973–3989 37:615–618 Bleil U, von Dobeneck T (2008) Das Magnetfeld der Erde. Bony S et al (2015) Clouds, circulation and climate sensitivity. GMIT 34:6–17 Nat Geosci 8:261–268 Blume H-P et al (2010) Scheffer/Schachtschabel. Lehrbuch der Boom A (2004) A geochemical study of lacustrine sediments: Bodenkunde, 16. Aufl. Spektrum Akademischer Verlag, Hei- towards palaeo-climatic reconstructions of high Andean bio- delberg mes in Colombia. Ph. D. Thesis. Institute for Biodiversity and Ecosystem Dynamics (IBED), FNWI, Radboud University, Blümel W-D (2001) Karge Böden, harte Krusten. In: Hüser K Nijmegen et al (Hrsg) Namibia. Eine Landschaftskunde in Bildern, Bd. Booth B, Bellouin N (2015) Black carbon and atmospheric feed- 208. Hess, Göttingen, Windhuk, S 185–193 backs. Nature 519:167–168 Blümel W-D et al (1998) Dunes in southeastern Namibia: evi- Borges AV et al (2015) Globally significant greenhouse-gas dence for Holocene environmental changes in the southwes- emissions from African inland waters. Nat Geosci 8:637–642 tern Kalahari based on thermoluminescence data. Palaeogeo- gr Palaeoclimatol Palaeoecol 138:139–151 Bork P et al (2015) Tara oceans studies plankton at planetary scale. Science 348:873 Blunier T, Brook EJ (2001) Timing of millennial-scale climate change in and Greenland during the last glacial Bornemann A et al (2008) Isotopic evidence for glaciation dur- period. Science 291:109–112 ing the cretaceous supergreenhouse. Science 319:189–192 Blüthgen J (1980) Allgemeine Klimageographie. De Gruyter, Bory AJM (2014) A 10,000 km dust highway between the Ta- Berlin klamakan Desert and Greenland. PAGES Mag 22(2):72–73 Botha GA et al (1990) Cyclicity of erosion, colluvial sedimenta- Boening C et al (2012) The 2011 La Niña: so strong, the oceans tion and palaeosol formation in Quaternary hillslope deposits fell. Geophys Res Lett 39:L19602 from northern Natal, South Africa. Palaeoecol Africa 21:195– Bogotá RG et al (2011) Rapid climate change from north 210 Andean Lake Fúquene pollen records driven by obliquity: im- Boucher É et al (2011) A millennial multi-proxy reconstructi- plications for a basin-wide biostratigraphic zonation for the on of summer PDSI for Southern South America. Clim Past last 284 ka. Quat Sci Rev 30:3321–3337 7:957–974 Böhm E et al (2015) Strong and deep Atlantic meridional Bouimetarhan I et al (2013) Low- to high-productivity pattern overturning circulation during the last glacial cycle. Nature within Heinrich 1: Inferences from dinoflagellate cyst 517:73–76 records off Senegal. Glob Planet Change 106:64–76 Boivin N, Fuller DQ (2009) Shell middens, ships and seeds: Ex- Bouimetarhan I et al (2014) African climate-vegetation interac- ploring coastal subsidence, maritime trade, and the dispersal tion since the last . PAGES Mag 22(1):54 of domesticates in and around the ancient Arabian Peninsula. Journal of World Prehistory 22:113–180 Bounoua L et al (2010) Quantifying the negative feedback of vegetation to greenhouse warming: a modeling approach. Bolton CT, Stoll HM (2013) Late Miocene threshold response Geophys Res Lett. https://doi.org/10.1029/2010GL045338 of marine algae to carbon dioxide limitation. Nature 500:558– Bourgeois J, Weiss R (2009) “Chevrons” are not mega- 562 deposits—a sedimentologic assessment. Geology 37:403– Bond GC, Lotti R (1995) Iceberg discharges into the North 406 Atlantic on millenial time scales during the last glaciation. Bousquet P et al (2006) Contribution of anthropogenic and Science 267:1005–1010 natural sources to atmospheric methane variability. Nature Bond G et al (1997) A pervasive millennial-scale cycle in North 443:439–443 Atlantic Holocene and glacial climates. Science 297:1257– Bowen GJ (2007) When the world turned cold. Nature 445:607– 1266 608 Bond G et al (2001) Persistent solar influence on North Atlantic Bowen G (2015) The diversified economics of soil water. Nature climate during the Holocene. Science 294:2130–2136 525:43–44 Boninsegna JA (2002) Progress in South American dendrochro- Bowen M (2005) Thin ice: unlocking the secrets of climate in nology. PAGES News 10(1):11–13 the world’s highest mountains. Holt, New 664 Literatur

Bowler JM et al (1998) Hydrologic changes in monsoonal cli- Bramanti B, Hänsch S (2014) Was uns alte DNA zur Ver- mates of the last glacial cycle: stratigraphy and luminescence änderung vergangener Ökosysteme mitteilen kann. Geogr dating of Lake Woods, N.T., Australia. Palaeoclimates 3:179- Rundsch 66(7/8):46–49 207 Branco W (1883) Über eine fossile Säugetierfauna von Punin Bowler JM et al (2001) Variations of the northwest Australian in . Paläontologische Abhandlungen I(2). Institut für summer monsoon over the last 300,000 years: the paleohy- Paläontologie, Berlin drological record of the Gregory (Mulan) Lakes System. Quat Brain CK, Brain V (1977) Microfaunal remains from Mirabib: Int 83–85:63–80 some evidence of palaeoecological changes in the Namib. Bowler JM et al (2012) Wind v water: Glacial maximum records Madoqua 10(4):285–293 from the Willandra Lakes. In: Haberle S und David B (Hrsg) Brauer A, Negendank JFW (2002) The value of annually lam- Peopled Landscapes: Archaeological and Biogeographic Ap- inated lake sediments in palaeoenvironment reconstruction. proaches to Landscapes. The Australian National University, Quat Int 88:1–3 Canberra. S 271-296 Braun DR (2010) Australopithecine butchers. Nature 466:810 Box GEP, Draper NR (1987) Empirical model-building and res- ponse surfaces. Wiley, Chichester Braun H et al (2005) Possible solar origin of the 1,470-year gla- cial climate cycle demonstrated in a coupled model. Nature Boy J, Wilcke W (2008) Tropical Andean forest derives calci- 438:208–211 um and magnesium from Saharan dust. Global Biogeochem Cycles. https://doi.org/10.1029/2007GB002960 Bray JR (1979) Neogene explosive volcanicity, temperature and glaciation. Nature 282:603–605 Boyce DG et al (2010) Global phytoplankton decline over the past century. Nature 466:591–596 Bremer H (1967) Zur Morphologie Zentralaustraliens. Heidel- berger Geographische Arbeiten 17. Geographisches Institut, Boyd PW et al (2000) A mesoscale phytoplankton bloom in the Heidelberg polar Southern Ocean stimulated by iron fertilization. Nature 407:695–672 Bremer H (1999) Die Tropen. Geographische Synthese einer fremden Welt im Umbruch. Borntraeger, Berlin, Stuttgart Braconnot P et al (2013) Editorial: El Niño-Southern Oscillation – observations and modeling. PAGES News 21(2):48–49 Brendryen J et al (2011) Non-synchronous deposition of North Atlantic Ash Zone II in Greenland ice cores, and North At- Bradbury JP (1989) Late Quaternary lacustrine paleoenviron- lantic and Norwegian Sea sediments: an example of complex ments in the Cuenca de Mexico. Quat Sci Rev 8:75–100 glacial-stage transport. J Quat Sci 26:739–745 Bradbury JP (1997) Sources of glacial moisture in Mesoameri- Brenner M et al (2001) Abrupt climate change and pre- ca. Quat Int 43–44:97–110 columbian cultural collapse. In: Markgraf V (Hrsg) Interhe- Bradbury JP (2000) Limnologic history of Lago de Pátzcuaro, mispheric climate linkages. Academic Press, San Diego, S Michoacán, Mexico, for the past 48000 years: impacts of 87–103 climate and man. Palaeogeogr Palaeoclimatol Palaeoecol Brienen R, Zuidema P (2005) Relating tree growth to rainfall 163:69–95 in Bolivian rain forests: a test for six species using tree ring Bradford MA (2014) Good dirt with good friends. Nature analysis. Oecologia 146:1–12 505:486–487 Brienen RJW et al (2015) Long-term decline of the Amazon Bradley RS (2014) Paleoclimatology. Reconstructing climates carbon sink. Nature 519:344–348 of the quaternary, 3. Aufl. Elsevier, Amsterdam Brierley C et al (2015) Pliocene warmth and gradients. Nat Geo- Bradley RS et al (1995) Changes of solar Irradiance and tempe- sci 8:419–420 rature over the last four centuries. PAGES, a core project of Briffa KR (2000) Annual climate variability in the Holocene: the IGBP 3(3) interpreting the message of ancient trees. Quat Sci Rev Bradley RS et al (2003) The Climate of the Last Millennium. 19:87–105 In Alverson KD et al., Paleoclimate, Global Change and the Briffa KR et al (1998) Influence of volcanic eruptions on North- Future. Springer, Berlin (Kap. 6). S~106-149 ern Hemisphere summer temperature over the past 600 years. Nature 393:450–455 Bradley RS et al (2016) The medieval quiet period. Holocene. https://doi.org/10.1177/0959683615622552 Briffa KR, Osborn TJ (2000) Seeing the wood from the trees. Science 284:926–927 Brádzil R et al (2005) Historical climatology in Europe – the state of the art. Clim Change 70:363–430 Briner JP (2016) Ice streams waned as ice sheets shrank. Nature 530:287–288 Braithwaite CJR et al (2000) Origins and development of Holo- cene coral reefs: a revisited model based on reef boreholes in Brink JS (2016) Faunal evidence for mid- and late Quaternary the Seychelles, Indian Ocean. Int J Earth Sci 89:431–445 environmental change in southern Africa. In: Knight J, Grab Literatur 665

SW (Hrsg) Quaternary environmental change in southern Af- Brook EJ et al (2006) The future of ice coring: internatio- rica: physical and human dimensions. Cambridge University nal partnerships in ice core sciences (IPICS). PAGES News Press, Cambridge 14(1):6–10 Bristow CS et al (2000) The sedimentary structure of linear sand Brook G et al (1996) Wet and dry periods in the southern dunes. Nature 406:56–59 African summer rainfall zone during the last 330 kyr from speleothem, tufa and sand dune age data. Palaeoecol Africa Bristow CS et al (2005) Combining ground penetrating radar 24:147–158 surveys and optical dating to determine dune migration in Na- mibia. J Geol Soc Lond 162:315–321 Brook GA et al (1998) Comparison of quaternary environmental change in eastern and southern Africa using cave speleo- Bristow CS et al (2007) Age and dynamics of linear dunes in the them, tufa and rock shelter sediment data. In: Alsharan A et Namib Desert. Geology 3:555–558 al (Hrsg) Quaternary deserts and climate change. Balkema, Brocklehurst SH (2008) A glacial driver of tectonics. Nat Geosci Rotterdam, S 239–250 1:732–733 Brook GA et al (1999) Evidence of wetter and drier condi- Brocklehurst SH (2013) How glaciers grow. Nature 493:173– tions in Namibia from tufas and submerged cave speleothems. 174 Cimbebasia 15:29–39 Broecker WS (2006) Abrupt climate change revisited. Glob Pla- Brook GA et al (2006) Characteristics and OSL minimum ages net Change 54:211–215 of relict fluvial deposits near Sossus Vlei, Tsauchab River, Namibia, and a regional climate record for the last 30 ka. Broecker WS, Kunzig R (2008) Fixing climate. What past cli- J Quat Sci 21:347–362 mate changes reveal about the current threat – and how to counter it. Hill & Wang, . Brooks K et al (2005) Late-Quaternary lowstands of lake Bosumtwi, Ghana: evidence from high-resolution seismic- Brogiato HP (Hrsg) (2003) Die Anden. Geographische Erfor- reflection and sediment-core data. Palaeogeogr Palaeoclima- schung und künstlerische Darstellung. 100 Jahre Andenexpe- tol Palaeoecol 216:235–249 dition von Hans Meyer und Rudolf Reschreiter 1903 – 2003. Brooks SJ et al (2007) The identification and use of palaearctic Wissenschaftliche Alpenvereinshefte 37 (242 S. + 32 Farbta- chironomidae larvae in palaeoecology. QRA Technical Guide feln) No. 10, Quaternary Research Association Bromley GRM et al (2009) Relative timing of last glacial ma- Bowler JM, Wasson RJ (1984) Glacial age environments of ximum and late-glacial events in the central tropical Andes. inland Australia. In: Vogel JC (Hrsg) Late cainozoic palaeo- Quat Sci Rev 28:2514–2526 climates of the southern hemisphere. Balkema, Rotterdam, S Bromley GRM et al (2011a) Glacier fluctuations in the southern 183–208 Peruvian Andes during the late-glacial period, constrained Brown ET et al (2003) Quantitative evaluation of soil processes with cosmogenic 3He. J Quat Sci 26:37–43 using in situ-produced cosmogenic nuclides. Comptes Ren- Bromley GRM et al (2011b) Late Pleistocene snowline fluctua- dus – Geosci 335:1161–1171 ı tions at Nevado (15 S), southern Peruvian Andes. Brown ET et al (2007) Abrupt change in tropical African cli- J Quat Sci 26:305–317 mate linked to the bipolar seesaw over the past 55,000 years. Bronger A et al (1987) Pleistocene climatic changes and lands- Geophysical Research Letters 34:L20702 cape evolution in the Kashmir basin, India: paleopedologic Brown J (2004) The thermal state of permafrost: an IPA contri- and chronostratigraphic studies. Quat Res 27:167–181 bution to the international polar year and year of planet earth. Brönnimann S (2007) and climate linked in nineteenth Frozen Ground 28:3–5 century. Nature 448:992 Brown JR (2014) El Niño’s variable history. Nature 515:494– Brönnimann S, Krämer D (2016) Tambora and the “year with- 495 out a summer” of 1816. A perspective on earth and human Brown KS (1987) Conclusions, synthesis, and alternative hypo- systems science. Geographica Bernensia G90 theses. In: Whitmore TC, Prance GT (Hrsg) Biogeography Brönnimann S et al (2013) Transient state estimation in paleocli- and Quaternary history in tropical Amazonia. Clarendon matology using data assimilation. PAGES News 21(2):74–75 Press, Oxford, S 175–196 Brönnimann S et al (2015) Southward shift of the northern trop- Brown KS et al (2012) An early and enduring advanced tech- ical belt from 1945 to 1980. Nat Geosci 8:969–974 nology originating 71,000 years ago in South Africa. Nature 491:590–593 Brook EJ (2005) Atmosphere science: tiny bubbles tell all. Science 336:1285–1287 Brown TA, Barnes IM (2015) The current and future appli- cations of ancient DNA in Quaternary science. J Quat Sci Brook EJ (2012) Ice age carbon puzzle. Science 310:682–683 30:144–153 666 Literatur

Brown PT et al (2018) Assumptions for emergent contraints. Burgermeister J (2007) Missing carbon mystery: case resolved? Nature 563:E1–E2 Nat Reports Clim Chang. https://doi.org/10.1038/climate. 2007.35 Brunet M et al (2002) A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418:145–151 Burke M et al (2015) Global non-linear effect of temperature on economic production. Nature 527:235–239 Brunk K, Gronenborn D (2004) , , and migrati- ons. The effects of late holocene lake level oscillations and Burkhardt U, Kärcher B (2011) Global radiative forcing from climate fluctuations on the settlement and political history in contrail cirrus. Nat Clim Chang 1:54–58 the Chad basin. In: Krings M, Platte E (Hrsg) Living with the Burmeister H (1875) Die fossilen Pferde der Pampasformation lake. Studien zur Sozialkunde 121. Köppe, Köln, S 101–132 (nebst Übersicht der gesamten Säugetierfauna dieser Forma- Brunner K (2005) Kartographie als Klimaarchiv. Eiszeitalt Ge- tion). Eine im Auftrag der Provinzial-Regierung von Buenos genwart 55:1–24 Aires für die internationale Ausstellung zu Philadelphia ver- fasste Monographie. Museo Público, Buenos Aires: VIII + 88 Bryan K (1948) Los suelos complejos y fósiles de la altiplanicie S, 8 Tafn. de México, en relación a los cambios climáticos. Boletin De La Sociedad Geológica Méjicana XIII:1–20 Burn MJ, Palmer SE (2014) Solar forcing of drought events during the last millennium. J Quat Sci 29:827–836 Buch MW (1997) Etosha Pan – the third largest lake in the world? Madoqua 20(1):49–64 Burney DA et al (1994) A Holocene pollen record for the Ka- lahari Desert of from a U-series dated speleothem. Buch MW, Heine K (1988) Klima- oder Prozeßgeomorphologie. Holocene 4:225–232 Geogr Rundsch 40:16–26 Burns SJ et al (1998) Speleothem-based paleoclimate record Buch MW, Rose D (1996) Mineralogy and geochemistry of the from northern Oman. Geology 26:499–502 sediments of the Etosha pan region in northern Namibia: a reconstruction of the depositional environment. J Afr Earth Burns SJ et al (2001) Speleothem evidence from Oman for con- Sci 22:355–378 tinental pluvial events during interglacial periods. Geology 29:623–626 Buch MW, Trippner C (1997) Overview of the geological and geomorphological evolution of the Etosha region, northern Burrough SL, Thomas DSG (2008) Late Quaternary lake le- Namibia. Madoqua 20(1):63–74 vel fluctuations in the Mababe Depression: middle Kalahari palaeolakes and the role of inflows. Quat Res Buch MW, Zöller L (1992) Pedostratigraphy and thermolumi- 69:388–403 nescence chronology of the western margin-(lunette-) dunes of the Etosha Pan/northern Namibia. Würzburger Geographi- Burrough SL, Thomas DSG (2009) Geomorphological contri- sche Arbeiten 84, S 361–384 butions to palaeolimnology on the African continent. Geo- morphology 103:285–298 Buch MW et al (1992) A TL-calibrated pedostratigraphy of the western lunette dunes of the Etosha Pan/northern Namibia: Burrough SL, Thomas DSG (2013) Central southern Africa at a reconstruction of the depositional implications for the last the time of the African Humid Period: a new analysis of Holo- 140 ka. Palaeoecol Africa 23:129–147 cene palaeoenvironmental and palaeoclimate data. Quat Sci Rev 80:29–46 Buckley BM et al (2005) Global surface temperature signals in pine ring-width chronologies from southern monsoon Asia. Burrough SL et al (2007) Multiple Quaternary highstands at Geophys Res Lett 32(20):L20704. https://doi.org/10.1029/ , Kalahari, northern Botswana. Palaeogeogr Pa- 2005GL023745 laeoclimatol Palaeoecol 253:280–299 Buckley BM et al (2006) Progress in the study of Asian Burrough SL et al (2009a) Mega-Lake in the Kalahari: a late Monsoon climate dynamics using dendrochronology. PAGES Pleistocene record of the palaeolake Makgadikgadi system. News 14(2):10–11 Quat Sci Rev 28:1392–1411 Burrough SL et al (2009b) Late Quaternary hydrological dyna- Buckley BM et al (2007) Decadal scale droughts over northwes- tern Thailand over the past 448 years: links to the tropical mics in the middle Kalahari: forcing and feedbacks. Earth Sci Pacific and Indian Ocean sectors. Clim Dyn 29:63–71 Rev 96:313–326 Burrough SL et al (2012a) From to process: morpholo- Buckley BM et al (2014) Monsoon extremes and society over gy and formation of lake-bed barchan dunes, Makgadikgadi, the past millennium on mainland Southeast Asia. Quat Sci Botswana. Geomorphology 161–162:1–14 Rev 95:1–19 Burrough SL et al (2012b) Can phytoliths provide an insight into Büdel J (1951) Die Klimazonen des Eiszeitalters. Eiszeitalt Ge- past vegetation of the Middle Kalahari palaeolakes during the genwart 1:16–26 late Quaternary? J Arid Environ 82:156–164 Büdel J (1977) Klima-Geomorphologie. Borntraeger, Berlin Bush MB, Metcalfe SE (2012) Latin America and the Caribbe- Bullard JE (2006) Arid geomorphology. Prog Phys Geogr an. In: Metcalfe SE, Nash DJ (Hrsg) Quaternary environmen- 30:542–552 tal change in the tropics. Wiley, Chichester, S 263–311 Literatur 667

Bush MB et al (1990) Late Pleistocene temperature depressi- Callaway E (2015) South America settled in one go. Nature on and vegetation change in Ecuadorian Amazonia. Quat Res 520:598–599 34:330–345 Callaway E (2016a) Ancient DNA pinpoints dawn of Neandert- Bush MB et al (2000) Two histories of environmental change hals. Nature 531:286 and human disturbance in eastern lowland Amazonia. Holo- cene 10:543–553 Callaway E (2016b) Did humans drive ‘hobbit’ species to extinction? Nat News. https://doi.org/10.1038/nature.2016. Bush MB et al (2002) Orbital forcing signal in sediments of two 19651 Amazonian lakes. J Paleolimnol 27:341–352 Canti MG (2007) Deposition and taphonomy of earthworm gra- Bush MB et al (2004a) 48,000 years of climate and forest nules in relation to their interpretative potential in Quaternary change in a biodiversity hot spot. Science 303:827–829 stratigraphy. J Quat Sci 22:111–118 Bush MB et al (2004b) Amazonian paleoecological histories: Cappa C (2016) Unexpected player in particle formation. Nature one Hill, three watersheds. Palaeogeogr Palaeoclimatol Pa- 533:478–479 laeoecol 214:359–393 Carcaillet J et al (2013) Timing of the last deglaciation in the Bush MB et al (2016) A 6900-year history of landscape mo- Sierra of the Mérida Andes, Venezuela. Quat Res dification by humans in lowland Amazonia. Quat Sci Rev 80:482–494 141:52–64 Cárdenas ML et al (2011) The response of vegetation on the Butzer CW, Butzer EK (1997) The ‘natural’ vegetation of the andean flank in western Amazonia to pleistocene climate Mexican Bajío: Archival documentation of the 16th-cemtury change. Science 331:1055–1058 savanna environment. Quatern Int 43/44:161–172 Cárdenas ML et al (2014) Forests of the tropical eastern Andean Butzer CW (1991) Spanish colonization of the New World. Erd- flank during the middle pleistocene. Palaeogeogr Palaeocli- kunde 45:205–219 matol Palaeoecol 393:76–89 Butzer KW (1958) Quaternary stratigraphy and climate in the Carneiro MV et al (2013) Midair collisions enhance salta- Near East. Bonner Geographische Abhandlungen 24:103– tion. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett. 128 111.058001 Butzer KW (1976) Geomorphology from the earth. Harper & Row, New York Carr AS et al (2014) Leaf wax n-alkane distributions in arid zone South African flora: environmental controls, chemotaxonomy Butzer KW et al (1972) Radiocarbon dating of East African lake and palaeoecological implications. Org Geochem 67:72–84 levels. Science 175:1069–1076 Carr AS et al (2016) An optical luminescence chronology for Butman DE et al (2015) Increased mobilization of aged carbon late Pleistocene aeolian activity in the Colombian and Vene- to rivers by human disturbance. Nat Geosci 8:112–116 zuelan Llanos. Quat Res 85:299–312 Caballero M et al (1999) Environmental characteristics of Lake Carrión JS et al (2007) Pleistocene landscapes in central Iberia Tecocomulco, northern basin of Mexico, for the last 50,000 inferred from pollen analysis of hyena coprolites. J Quat Sci years. J Paleolimnol 22:399–411 22:191–202 Cahoon D et al (1992) Seasonal distribution of African savanna Carslaw K (2009) Cosmic rays, clouds and climate. Nature fires. Nature 359:812–815 460:332–333 Cahyarini SY et al (2009) Improving SST reconstructions from Carslaw KS et al (2002) Cosmic rays, clouds, and climate. coral Sr/Ca records: multiple corals from Tahiti (French Po- Science 298:1732–1737 lynesia). Int J Earth Sci 98:31–40 Casanova J (1986) Les Stromatolites Continenteaux: Paléoe- Cai YJ et al (2012) The Holocene Indian monsoon variabil- cologie, Paléohydrologie, Paléoclimatologie. Application ity over the southern Tibetan Plateau and its teleconnections. au Rift Gregorie. Thèse Doct. État-Sci. Université Aix- Earth Planet Sci Lett 335/336:135–144 Marseille. Aix-Marseille Cai Y et al (2015) Variability of stalagmite-inferred Indian Casanova J, Hillaire-Marcel C (1987) Chronologie et paléohy- monsoon precipitation over the past 252,000 y. Proc Natl drologie des hauts niveaux Quaternaires du Bassin Natron- Academy Sci 112:2954–2959 Magadi (Tanzanie-Kenya) d’après la composition isotopique Caldenius C (1932) Las Glaciaciones Cuaternarios en Patagonia (18O, 13C, 14C, U/Th) des stromatolites littoraux. Sci Géolo- y Tierra del Fuego. Min Agric Y Gan De La Nac Dir Gen giques Bull 40:121–134 Minas Y Geol 95:1–148 Castañeda IS et al (2007) Wet/arid phases in the Southeast Callaway E (2012) Studies slow the human DNA clock. Nature African tropics since the last glacial maximum. Geology 489:343–344 35:823–826 668 Literatur

Castellano E et al (2006) Paleoreconstruction of volcanic histo- Chase BM et al (2010) Evidence for progressive Holocene ari- ry inferred from glacio-chemical ice core analyses. PAGES dification in southern Africa recorded in Namibian hyrax News 13(3):3–5 middens: Implications for African Monsoon dynamics and the “African Humid Period”. Quat Res 74:36–45 Castro-Govea R, Siebe C (2007) Late Pleistocene-Holocene stratigraphy and radiocarbon dating of La Malinche volcano, Chase BM et al (2011) Late glacial interhemispheric climate dy- Central Mexico. J Volcanol Geotherm Res 162:20–42 namics revealed in South African hyrax middens. Geology Catto N, Catto G (2004) Climate change, communities, and 39:19–22 civilizations: driving force, supporting player, or background Chase BM et al (2012) Rock hyrax middens: a palaeoenviron- noise? Quat Int 123–125:7–10 mental archive for southern African drylands. Quat Sci Rev Chabangborn A et al (2014) Asian monsoon climate during the 56:107–125 last glacial maximum: palaeo-data-model comparison. Bore- Chase BM et al (2013) Holocene climate change in southern- as 43:220–242 most South Africa: rock hyrax middens record shifts in the Chakraborty S et al (2012) Pacific coral oxygen isotope and the southern westerlies. Quat Sci Rev 82:199–205 tropospheric temperature gradient over the Asian monsoon Chase BM et al (2015a) Evolving southwest African response to region: a tool to reconstruct past Indian summer monsoon abrupt deglacial North Atlantic climate change events. Quat rainfall. J Quat Sci 27:269–278 Sci Rev 121:132–136 Chang P et al (2006) The cause of the fragile relationship be- Chase BM et al (2015b) Influence of tropical easterlies in the tween the Pacific El Niño and the Atlantic El Niño. Nature southwestern Cape of Africa during the Holocene. Quat Sci 443:324–328 Rev 107:138–148 Chappellaz J et al (1993) Synchronous changes in atmospheric Chatters J et al (2014) Late pleistocene human skeleton and CH4 and Greenland climate between 40 and 8 kyr B.P. Nature mtDNA link paleoamericans and modern native Americans. 366:443–445 Science 344:750–754 Charbonneau P (2013) The planetary hypothesis revived. Nature Chauhan OS et al (2010) Reconstruction of the variability of the 493:613–614 southwest monsoon during the past 3 ka, from the continental Charbonneau P (2016) Dynamo theory questioned. Nature margin of the southeastern Arabian Sea. J Quat Sci 25:798– 535:500–501 807 Charles C (1997) Cool tropical punch of the ice ages. Nature Check Hayden E (2015) Journal buoys code-review push. Na- 385:681–682 ture 520:276–277 Chase BM (2009) Evaluating the use of dune sediments as a Cheetham MD et al (2010) Resolving the Holocene alluvial proxy for palaeo-aridity: a southern African case study. Earth record in southeastern Australia using luminescence and ra- Sci Rev 93:31–45 diocarbon techniques. J Quat Sci 25:1160–1168 Chase BM, Brewer S (2008) Last glacial maximum dune activ- Chen W et al (2014) Organic-geochemical proxies of sea sur- ity in the of southern Africa: observations and face temperature in surface sediments of the tropical eastern simulations. Quat Sci Rev 28:301–307 Indian Ocean. Deep Sea Res Part I: Oceanogr Res Pap 88:17– Chase BM, Meadows ME (2007) Late Quaternary dynamics of 29 southern Africa’s winter rainfall zone. Earth Sci Rev 84:103– Chen Y-C et al (2014) Satellite-based estimate of global aerosol- 138 cloud radiative forcing by marine warm clouds. Nat Geosci Chase BM, Thomas DSG (2006) Late Quaternary dune accumu- 7:643–646 lation along the western margin of South Africa: distinguis- Cheng H et al (2008) Timing of the 8.2-kyr event in a stalagmite hing forcing mechanisms through the analysis of migratory from Northern Oman. PAGES News 16(3):29–30 dune forms. Earth Planet Sci Lett 251:318–333 Cheng H et al (2009) Ice Age terminations. Science 326:248– Chase BM, Thomas DSG (2007) Multiphase late Quaternary 252 aeolian sediment accumulation in western South Africa: tim- ing and relationship to palaeoclimatic changes inferred from Cheng H et al (2013) Climate change patterns in Amazonia and the marine record. Quat Int 166:29–41 biodiversity. Nat Commun 4:1411. https://doi.org/10.1038/ ncomms2415 Chase BM et al (2007) Late Quaternary dune development along the western margin of South Africa and its relationship to pa- Cheng H et al (2016) The Asian monsoon over the past 640,000 leoclimatic changes inferred from the marine record. PAGES years and ice age terminations. Nature 534:640–646 News 15(2):26–27 Chevalier M, Chase BM (2015) Southeast African records Chase BM et al (2009) A record of rapid Holocene climate reveal a coherent shift from high- to lowlatitude forcing change preserved in hyrax middens from southwestern Af- mechanisms along the east African margin across last gla- rica. Geology 37:703–706 cial/interglacial transition. Quat Sci Rev 125:117–130 Literatur 669

Chevalier M, Chase BM (2016) Determining the drivers of long- Clapperton CM et al (1997b) A Younger Dryas icecap in the term aridity variability: a southern African case study. J Quat Ecuadorian Andes. Quat Res 47:13–28 Sci 31:43–151 Clarisse L et al (2009) Global ammonia distribution derived Chevalier M et al (2014) CREST (Climate REconstruction from infrared satellite observations. Nat Geosci 2:479–483 SofTware): a probability density function (PDF)- based quan- titative climate reconstruction method. Clim Past 10:2081– Clark DA et al (2003) Tropical rain forest tree growth and atmo- 2098 spheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc Natl Acad Sci 100:5852– Chiessi CM et al (2008) South Atlantic interocean exchange as 5857 the trigger for the Bølling warm event. Geology 36:919–922 Clark PU et al (2002) The role of the Chiessi CM et al (2009) Possible impact of the Atlantic multi- in abrupt climate change. Nature 415:863–869 decadal oscillation on the South American summer monsoon. Geophys Res Lett. https://doi.org/10.1029/2009GL039914 Clark PU et al (2009) The last glacial maximum. Science 325:710–714 Chisholm SW (2000) Stirring times in the Southern Ocean. Na- ture 407:685–687 Clark PU et al (2012) Global climate evolution during the last deglaciation. In: Proceedings of the National Academy Chu PC et al (2012) Speleothem evidence for temporal–spatial of Sciences, S E1134–E1142 https://doi.org/10.1073/pnas. variation in the east asian summer monsoon since the medie- 1116619109 val warm period. J Quat Sci 27:901–910 Claussen M et al (1999) Simulation of an abrupt change in Chung C, Ramanathan V (2006) Weakening of N. Indian SST Saharan vegetation in the Mid-Holocene. Geophys Res Lett gradients and the monsoon rainfall in India and the Sahel. 26:2037–2040 J Clim 19:2036–2045 Claussen M et al (2003) Climate change in northern Africa: the Clapperton CM (1979) Glaciation in Bolivia before 3.27 Myr. past is not the future. Clim Chang 57:99–118 Nature 277:375–377 Clemens SC, Prell WL (2007) The timing of orbital-scale Indian Clapperton CM (1983) The glaciations of the Andes. Quat Sci monsoon changes. Quat Sci Rev 26:275–278 Rev 2:83–155 Clemens SC, Tiedemann R (1997) Eccentricity forcing of Clapperton CM (1985) Significance of a late-glacial readvan- Pliocene-Early Pleistocene climate revealed in a marine ce in the Ecuadorian Andes. Quat S Am Antarct Peninsula oxygen-isotope record. Nature 385:801–804 3:149–158 Clift PD et al (2008) Correlation of Himalayan exhumation rates Clapperton CM (1987a) Glacial geomorphology, quaternary and Asian monsoon intensity. Nat Geosci 1(12):875–880 glacial sequence and palaeoclimatic inferences in the Ecua- dorian Andes. In: Gardiner V (Hrsg) International Geomor- Project Members CLIMAP (1976) The surface of the Ice-Age phology 1986 Part II. Wiley, Chichester, S 843–870 Earth. Science 191:1131–1137 Clapperton CM (1987b) Maximal extent of late Cloos H (1936) Gespräch mit der Erde. Welt- und Lebensfahrt glaciation in the Ecuadorian Andes. Quat S Am Antarct Pen- eines Geologen. Piper, München insula 5:165–179 Cobb KM et al (2013) Highly variable el Niño–southern oscil- Clapperton CM (1990) Glacial and volcanic geomorphology lation throughout the Holocene. Science 339:67–70 of the Chimborazo-Carihuairazo Massif, Ecuadorian Andes. Trans Royal Soc Edingburgh: Earth Sci 81:91–116 Cockburn HAP, Summerfield MA (2004) Geomorphological ap- plications of cosmogenic isotope analysis. Prog Phys Geogr Clapperton CM (1993a) Quaternary geology and geomorpholo- 28:1–42 gy of South America. Elsevier, Amsterdam Coetzee JA (1967) Pollen analytical studies in East and Clapperton CM (1993b) Nature of environmental changes in Southern Africa. Palaeoecol Africa 3:1–146 South America at the last glacial maximum. Palaeogeogr Pa- laeoclimatol Palaeoecol 101:189–208 Cohen AS (2003) Paleolimnology – the history and evolution of lake systems. Oxford University Press, Oxford Clapperton CM, McEwan C (1985) Late Quaternary moraines in the Chimborazo area, Ecuador. Arct Alp Res 17:135–142 Cohen TJ et al (2011) Continental aridification and the vanis- hing of Australia’s megalakes. Geology 39:167–170 Clapperton CM, Seltzer G (2001) Glaciation during marine iso- tope stage 2 in the American Cordillera. In: Markgraf V Cohen TJ et al (2012) A pluvial episode identified in arid Aus- (Hrsg) Interhemispheric climate linkages. Academic Press, tralia during the Medieval Climatic Anomaly. Quat Sci Rev San Diego, S 173–181 56:167–171 Clapperton CM et al (1997a) Late Quaternary Glacier advances Cohen TJ et al (2015) Hydrological transformation coincided and palaeolake highstands in the Bolivian Altiplano. Quat Int with megafaunal extinction in central Australia. Geology 38/39:49–59 43:195–198 670 Literatur

Cole K et al (2001) Holocene paleoenvironments of the southern Constanza R (2009) Could climate change capitalism? Nature Arabian Highlands reconstructed using fossil hyrax middens. 458:1107–1108 86. Annual Meeting of the Ecological Society of America, Conway M (1899) Exploration in the Bolivian Andes. Geogr J Scientific Program, S 86 14:14–34 Colijn AH (1937) Naar de eeuwige sneeuw van tropisch Ne- Conway M (1901) Climbing and explorations in the Bolivian derland. De bestijging van het Carstenszgebergte in Neder- Andes. Harper & Bros., London landsch Nieuw Guinee. Scheltens & Giltay, Amsterdam. Cook ER et al (2006) Millennia-long tree-ring records from Colinvaux PA (1979) The Ice-Age Amazon. Nature 278:399– Tasmania and New Zealand: a basis for modelling climate 400 variability and forcing, past, present and future. J Quat Sci Colinvaux PA (1987) Amazon diversity in light of the palaeoe- 21:89–99 cological record. Quat Sci Rev 6:93–114 Cooke HJ (1975) The paleoclimatic significance of caves and Colinvaux PA (1989) Ice-Age Amazon revisited. Nature adjacent landforms in western Ngamiland, Botswana. Geogr 340:188–189 J 141:430–444 Colinvaux PA et al (1996a) A long pollen record from low- Cooke HJ (1980) Landform evolution in the context of clima- land Amazonia: forest and cooling in glacial times. Science tic change and neotectonism in the middle Kalahari of north 274:85–88 central Botswana. Trans Inst Br Geogr New Ser 5:80–99 Colinvaux PA et al (1996b) Temperature depression in the low- Cooke HJ, Verhagen BT (1977) The dating of cave develop- land tropics in glacial times. Clim Change 32:19–33 ment: an example from Botswana. Proceedings of the Seventh International Speleological Congress, Sheffield Colinvaux PA et al (1997) Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon. Quat Res 48:69–78 Cook KH (2008) The mysteries of Sahel droughts. Nat Geosci 1:647–648 Colinvaux PA et al (1999) Amazon pollen manual and atlas. Cook KH, Vizy EK (2006) Delayed onset of the South American Harwood Academic Press, New York summer monsoon during the last glacial maximum. PAGES Colinvaux PA et al (2000) Amazonian and neotropical plant News 14(2):17–18 communities on glacial time-scales: the failure of the aridi- Coope GR (2002) Changes in the thermal climate in northwes- ty and refuge hypotheses. Quat Sci Rev 19:141–169 tern Europe during marine oxygen isotope stage 3, estimated Collins JA (2011) Glacial to Holocene Hydroclimate In Western from fossil insect assemblages. Quat Res 57:401–408 Africa: Insights from Organic and Major Element Geochem- Cooper A, Stringer CB (2013) Did the denisovans cross Wal- istry of Hemipelagic Sediments. PhD Thesis lace’s line? Science 342:321–323 Faculty of Geosciences at the University of Bremen. 108 S Copland L et al (2011) Expanded and recently increased glacier Collins JA et al (2011) Interhemispheric symmetry of the trop- surging in the Karakoram. Arct Antarct Alp Res 43:503–516 ical African rainbelt over the past 23,000 years. Nat Geosci 4:42–45 Cordeiro RC et al (2011) Biogeochemical indicators of environ- mental changes from 50 ka to 10 ka in a humid region of Collins JA et al (2013a) Estimating the hydrogen isotopic com- the Brazilian Amazon. Palaeogeogr Palaeoclimatol Palaeo- position of past precipitation using leaf-waxes from western ecol 299:426–436 Africa. Quat Sci Rev 65:88–101 Cordova C et al (2013) Comment on Burrough, S.E., Breman, Collins JA et al (2013b) Abrupt shifts of the Sahara-Sahel boun- E., and Dodd, C. Can Phytoliths provide an insight into past dary during Heinrich . Clim Past 9:1181–1191 vegetation of the Middle Kalahari Paleolakes during the Qua- Conolly JS et al (2011) Meta-analysis of zooarchaeological ternary? J Arid Environ 92:113–116 data from SW Asia and SE Europe provides insight into Cornwall IW (1968) Outline of a stratigraphical “bridge” be- the origins and spread of animal husbandry. J Archaeol Sci tween the Mexico and Puebla basins. Bull Inst Archaeol Univ 38:538–545 Lond 7:88–140 Conroy JL et al (2008) Holocene changes in eastern tropical Pa- Cornwall IW (1970) Outline of a stratigraphical “bridge” be- cific climate inferred from a Galápagos lake sediment record. tween the Mexico and Puebla basins. Bull Inst Archaeol Univ Quat Sci Rev 27:1166–1180 Lond 8/9:1–54 Conserva ME, Byrne R (2002) Late Holocene vegetation change Correa-Metrio A et al (2012) Rapid climate change and no- in the sierra madre oriental of central Mexico. Quat Res analog vegetation in lowland Central America during the last 58:122–129 86,000 years. Quat Sci Rev 38:63–75 Constantine JA et al (2014) Sediment supply as a driver of river Corrège T (2006) Sea surface temperature and salinity re- meandering and floodplain evolution in the Amazon Basin. construction from coral geochemical tracers. Palaeogeogr Nat Geosci 7:899–903 Palaeoclimatol Palaeoecol 232:408–428 Literatur 671

Corrège T et al (2004) Interdecadal variation in the extent of Curtis JH et al (1996) Climate variability on the Yucatan Penin- South Pacific tropical waters during the Younger Dryas event. sula (Mexico) during the past 3500 years, and implication for Nature 428:927–929 Maya cultural evolution. Quat Res 46:37–47 Costantini EAC et al (2009) Recent developments and new fron- Cziczi DJ et al (2009) Inadvertent climate modification due to tiers in paleopedology. Quat Int 209:1–5 anthropogene lead. Nat Geosci 2:333–336 Cox P, Jones C (2008) Illuminating the modern dance of climate Dahl-Jensen D (2006) NGRIP ice core reveals detailed climatic and CO2. Science 321:1642–1644 history 123 kyrs back in time. PAGES News 14(1):15–16 Cox PM et al (2018a) Assumptions for emergent contraints. Na- Dainelli G (1922) Studi sul glaciale. Spedizione Italiane de Fil- ture 553:319–322 ippi nell’Himalaia, Caracorum e Turchestan Cinese (1913– 1914). Seriae II (10 Bde.) 5.3. Zanichelli, Bologna Cox PM et al (2018b) Cox et al. reply. Nature 563:E10–E15 Dalton R (2010) Hobbit origins put back. Nature 464:335 Credner W, Behrmann W (Hrsg) (1937) Vorder- und Südasien in Natur, Kultur und Wirtschaft. Akademische Verlagsgesell- Dance A (2008) What lies beneath. Nature 455:724–725 schaft, Potsdam, S 453–533 Danovaro R et al (2008) Major viral impact on the functioning Creutzberg D et al (1990) Micromorphology of “Cangahua”: a of benthic deep-sea ecosystems. Nature 454:1084–1088 cemented subsurface horizon in soils from Ecuador. Dev Soil Sci 19:367–372 Dansgaard W et al (1993) Evidence for general instability of past climate from a 250 kyr ice-core record. Nature 364:218– Croll J (1885) Discussions on climate and cosmology. Adam & 220 Charles Black, Edinburgh D’Antoni HL (1993) Paleotemperatures of La Malinche: a paly- Crombie MK et al (1997) Age and isotopic constraints on nological hypothesis. Grana 32:354–358 Pleistocene pluvial episodes in the western desert, Egypt. Pa- laeogeogr Palaeoclimatol Palaeoecol 130:337–355 Darby DA et al (2012) 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift. Nat Geosci 5:897– Cronin TM et al (2003) Medieval warm period, 900 and 20th century temperature variability from . Glob Planet Change 36:17–29 D’Arcy Wood G (2014) Tambora: the eruption that changed the world. Princeton University Press, Princeton Cross SL et al (2000) A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for D’Arrigo R et al (2009) The impact of volcanic forcing on trop- tropical palaeohydrology. Holocene 10:21–32 ical temperatures during the past four centuries. Nat Geosci 2:51–56 Crosta X (2007) Late Quaternary Antarctic sea-ice history: evidence from deep-sea sediment records. PAGES News Darwin C (1842) On the distribution of the erratic boulders and 15(2):13–14 on the contemporaneous unstratified deposits of South Ame- rica. Trans Geol Soc Lond 6:415–431 (Vgl. Nature Geosci Crowley TJ, Hyde WT (2008) Transient nature of late Pleisto- 2:666–669. 2009) cene climate variability. Nature 456:226–230 Darwin C (1962) Reise eines Naturforschers um die Welt. Stein- Crowther TW et al (2016) Quantifying global soil carbon losses grüben, Stuttgart. in response to warming. Nature 540:104–108 Davidson EA (2015) Soil carbon in a beer can. Nat Geosci Crucifix M (2008) Climate’s astronomical sensors. Nature 8:748–749 456:47–48 Davies SM (2015) Cryptotephras: the revolution in correlation Cruz FW et al (2005) Insolation-driven changes in atmospheric and precision dating. J Quat Sci 30:114–130 circulation over the past 116,000 years in subtropical Brazil. Nature 434:63–66 Davies SM et al (2010) Widespread dispersal of Islandic tephra: how does the Eyjafjöll eruption of 2010 compare to past Ice- Cruz FW et al (2009) Orbitally driven east-west antiphasing of landic events? J Quat Sci 25:605–611 South American precipitation. Nat Geosci 2:210–214 Davis N (Hrsg) (2001) Permafrost: a guide to frozen ground in Cullen HM et al (2000) Climate change and the collapse of transition. University of Press, Fairbanks the Akkadian empire: evidence from the deep sea. Geology 28:379–382 Davis OK (Hrsg) (2006) Advances in the Interpretation of Pol- len and Spores in Coprolites, Faeces Facies Symposium. Curry A (2012) Coming to America. Nature 485:30–32 Palaeogeogr, Palaeoclimatol, Palaeoecol 237:1–118 Curry J (2014) Uncertain temperature trend. Nat Geosci 7:83– Deacon J, Lancaster N (1988) Late Quaternary palaeoenviron- 84 ments of southern Africa. Clarendon, Oxford 672 Literatur

De Angelis M et al (1987) Aerosol concentrations over the last Deplazes G et al (2013) Links between tropical rainfall and climatic cycle (160 kyr) from an Antarctic ice core. Nature North Atlantic climate during the . Nat Geo- 325:318–321 sci 6:213–217 De´ath G et al (2012) The 27–year decline of coral cover on De Ploey J (1969) Report on the quaternary of the western Con- the Great Barrier Reef and its causes. Proc Natl Acad Sci go. Palaeoecol Africa 4:65–68 109:17995–17999 Derbyshire E (Hrsg) (2001) Loess and Paleosols: Characteri- De Boer AM (2010) Sea change. Nat Geosci 3:668–669 stics, Stratigraphy, Chronology and Climate. A Contribution to IGCP 413. Quat Int 76/77:1–260 Deckert R, Dameris M (2008) From ocean to stratosphere. Desilets D (2006) Extended scaling factors for in situ cosmoge- Science 322:53–55 nic nuclides: new measurements at low latitude. Earth Planet De Deckker P et al (2012) Influence of the tropics and southern Sci Lett 246:265–276 westerlies on glacial interhemispheric asymmetry. Nat Geo- Detzner H (1920) Vier Jahre unter Kanibalen. Scherl, Berlin sci 5:266–269 De Vleeschouwer F et al (2014) Extracting paleodust informa- Deevey ES et al (1983) Paleolimnology of the Petén lake tion from peat geochemistry. PAGES Mag 22(2):88–89 district, Guatemala III: late pleistocene and Gamblian envi- ronments of the Maya area. Hydrobiologia 103:211–216 DeWolf Y (1988) Stratified slope deposits. In: MJ Clark (Hrsg), Advances in Periglacial Geomorphology. Wiley, New York, de Jager C et al (2010) Quantifying and specifying the solar N.Y. S. 91–110 influence on terrestrial surface temperature. J Atmospheric Diamond J (2005) Collapse: how societies choose to fail or suc- Solar-terrestrial Phys 72:926–937 ceed. Viking, Allen Lane. Delmonte B et al (2002) Glacial to Holocene implications of the Diamond J (2009) Maya, Khmer and Inca. Nature 461:479–480 new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core. Clim Dyn 18:647–660 Diaz HF, Markgraf V (Hrsg) (1992) El Niño. Historical and paleoclimatic aspects of the southern oscillation. Cambridge DeLong KL et al (2013) A reconstruction of sea surface tem- University Press, Cambridge perature variability in the southeastern from 1734–2008 CE using cross-dated Sr/Ca records from the Dickson AJ et al (2008) Centennial-scale evolution of coral Siderastrea siderea. 2013 American Geophysical Union Dansgaard–Oeschger events in the northeast Atlantic Ocean Fall Meeting, San Francisco, 9–13 December, S PP42A-02 between 39.5 and 56.5 ka B.P. Paleoceanography 23:PA3206 https://doi.org/10.1002/2013PA002524 Diener C (1896) Die Eiszeit im Himalaya. Mitteilungen K K Delworth TL et al (2016) The North Atlantic oscillation as a Geogr Ges Wien 1896:1–36 driver of rapid climate change in the northern hemisphere. Dieffenbach E (1843) Travel in New Zealand with contributions Nat Geosci 9:509–512 to the geography, geology, botany, and natural history of that country Bd. I, II. Murray, London. deMenocal PB (2001) Cultural responses to climate change dur- ing the late Holocene. Science 292:667–673 Diester-Haass L et al (1988) Late Quaternary history of con- tinental climate and the Benguela current off South West deMenocal PB (2004) African climate change and faunal evo- Africa. Palaeogeogr Palaeoclimatol Palaeoecol 65:81–91 lution during the Pliocene–Pleistocene. Earth Planet Sci Lett 220:3–24 Di Lorenzo E (2015) The future of coastal upwelling. Nature 518:310–311 deMenocal PB (2015) End of the African humid period. Nat Geosci 8:86–87 Ding Q et al (2014) Tropical forcing of the recent rapid Arc- tic warming in northeastern and Greenland. Nature deMenocal P et al (2000) Abrupt onset and termination of the 509:209–212 African humid period: rapid climate responses to gradual in- Dixit Y et al (2014) Abrupt weakening of the summer monsoon solation forcing. Quat Sci Rev 19:347–361 in northwest India ~4100 yr ago. Geology 42:339–342 Denniston RF et al (2000) Speleothem evidence for changes Doetterl S et al (2015) Soil carbon storage controlled by in- in Indian summer monsoon precipitation over the last ~2300 teractions between geochemistry and climate. Nat Geosci Years. Quat Res 53:196–202 8:780–783 Denton GH, Hendy CH (1994) Younger Dryas age advance of Donnelly JP (2005) Evidence of past intense tropical cyclones Franz Josef glacier in the southern alps of New Zealand. Na- from backbarrier salt pond sediments: a case study from Isla ture 264:1434–1436 de Culebrita, Puerto Rico, USA. J Coast Res 42:201–210 Denton GH, Hughes TJ (1983) Milankovitch theory of Ice Ages: Donnelly JP, Woodruff JD (2007) Intense hurricane activity over hypothesis of ice-sheet linkage between regional insolation the past 5,000 years controlled by El Niño and the West Afri- and global climate. Quat Res 20:125–144 can monsoon. Nature 447:465–468 Literatur 673

Donner J, Embadi NS (2000) The significance of yardangs and Dupont LM et al (2001) Mid-Pleistocene environmental change ventifacted rock outcrops in the reconstruction of changes in tropical Africa began as early as 1.05 Ma. Geology in the late Quaternary wind regime in the western desert of 29:195–198 Egypt. Quaternaire 11(3/4):179–185 Dupont LM et al (2004) Southwest African climate indepen- Dortch JM et al (2009) Nature and timing of large- in dent of Atlantic sea surface temperatures during the Younger northern India. Quat Sci Rev 28:1037–1056 Dryas. Quat Res 61:318–324 Dortch JM et al (2013) Timing and climatic drivers for glacia- Dupont LM et al (2008) Thirty thousand years of vegetation tion across semi-arid western Himalayan-Tibetan orogen. development and climate change in Angola (Ocean Drilling Quat Sci Rev 78:188–208 Program Site 1078). Clim Past 4:107–124 Dorn RI (2014) Ants as a powerful biotic agent of olivine and Dupont LM et al (2011) Glacial–interglacial vegetation dyna- plagioclase dissolution. Geology 42:771 mics in South Eastern Africa coupled to sea surface tem- perature variations in the Western Indian Ocean. Clim Past Dorn RI et al (1991) Glacial chronology of Mauna Kea, , 7:1209–1224 as constrained by surface-exposure dating. National Geogra- phic Research and Exploration 7:456–471 Dupont-Nivet G et al (2007) Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature Douglass DC et al (2006) Cosmogenic nuclide surface exposure 445:635–638 dating of boulders on last-glacial and lateglacial moraines, Lago Buenos Aires, : Interpretive strategies and pa- Durack PJ et al (2014) Quantifying Underestimates of Long- leoclimate implications. Quat Geochronol 1:43–58 term Upper-Ocean Warming. Nat Clim Chang. https://doi. Dozy JJ (1938) Eine Gletscherwelt in Niederländisch Neugui- org/10.1038/nclimate2389 nea. Zeitschrift Gletscherkd 26:45–51 Düsterhus A et al (2016) Palaeo-sea-level and palaeo-ice-sheet Drew F (1875) The Jummoo and Kashmir territories: a geo- databases: problems, strategies, and perspectives. Clim Past graphical account. Indus Publications, Karachi 12:911–921 Drysdale RN et al (2009) Evidence for obliquity forcing of gla- Dutton A et al (2015a) Sea-level rise due to polar ice-sheet mass cial Termination II. Science 325:1527–1531 loss during past warm periods. Science 349. https://doi.org/ 10.1126/science.aaa4019 Dubilier N et al (2015) Create a global microbiome effort. Na- ture 526:631–634 Dutton A et al (2015b) Tropical tales of polar ice: evidence of last interglacial polar ice sheet retreat recorded by fossil reefs Dull R et al (2010) The Columbian encounter and the little Ice of the granitic Seychelles Islands. Quat Sci Rev 107:182–196 Age: abrupt land use change, fire, and greenhouse forcing. Ann Assoc Am Geogr 4:755–771 Dykoski CA et al (2005) A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dong- Dunai T (2000) Scaling factors for production rates of in situ ge Cave, China. Earth Planet Sci Lett 233:71–86 produced cosmogenic nuclides: a critical re-evaluation. Earth Planet Sci Lett 176:157–169 Easterbrook D (2011) Evidence-based climate science. Data opposing CO2 emissions as the primary source of global Duplessy JC et al (1992) Changes in the surface salinity of warming. Elsevier, Amsterdam the North Atlantik Ocean during the last deglaciation. Nature 358:485–488 Eckardt FD, Kuring N (2005) SeaWiFS identifies dust sources in the Namib Desert. Int J Remote Sens 26:4159–4167 Dupont LM (2009) The Congo deep-sea fan as an archive of quaternary change in Africa and the eastern tropical South Eckardt FD et al (2001) The origin of dust on the West Coast of Atlantic (a review). In: External controls on deep-water depo- Southern Africa. Palaeoecol Africa 27:207–219 sitional systems. SEPM (Society for Sedimentary Geology) Eckardt FD et al (2015) Mapping the surface geomorphology of Special Publication No. 92 (CD version), S 79–87 the Makgadikgadi Rift Zone (MRZ). Quat Int. https://doi.org/ Dupont LM (2011) Orbital scale vegetation change in Africa. 10.1016/j.quaint.2015.09.002 Quat Sci Rev 30:3589–3602 JA (1976) The Maunder minimum. Science 192:1189– Dupont LM (2012) The human factor. Science 335:1180–1181 1202 Dupont LM, Hooghiemstra H (1989) The Saharan-Sahelian Edelman-Furstenberg Y et al (2009) Palaeoceanographic evo- boundary during the Brunhes chron. Acta Bot Neerlandica lution of the central Red Sea during the late Holocene. 38:405–415 Holocene 19(1):117–127 Dupont LM, Wyputta U (2003) Reconstructing pathways of Editorial Nature (2012) Extreme weather. Better models are aeolian pollen transport to the marine sediments along the needed before exceptional events can be reliably linked to coastline of SW Africa. Quat Sci Rev 22:157–174 global warming. Nature 489:335–336 674 Literatur

Edmunds WM et al (1999) Lakes, groundwater and palaeohy- Elenga H et al (1994) Pollen evidence of Late Quaternary drology in the Sahel of NE Nigeria: evidence from hydrogeo- vegetation and inferred climate changes in the Congo. Palaeo- chemistry. J Geol Soc 156:345–355 geogr Palaeoclimatol Palaeoecol 109:345–356 Edwards PN (2010) A vast machine: computer models, climate Elenga H et al (1996) Diagramme pollinique holocène du lac data, and the politics of global warming. MIT Press Kitina (Congo): mise en évidence de changements paléo- botaniques et paléoclimatiques dans le massif forestier du Eggermont H, Heiri O (2012) The chironomid-temperature Mayombe. CR Acad Sci Paris, ser. 2a, 232:403M10 relationship: expression in nature and palaeoenvironmental implications. Biol Rev 87:430–456 Elenga H et al (2004) Palaeoenvironments, palaeoclimates and landscape development in Atlantic equatorial Africa: a review Eggermont H et al (2010) Chironomidae (Insecta: Diptera) of key sites covering the last 25 kyrs. In: Battarbee RW et as paleothermometers in the African tropics. J Paleolimnol al (Hrsg) Past climate variability through Europe and Africa. 43:413–435 Springer, Dordrecht, S 181–198 Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335 Elliot M et al (2013) Giant clam recorders of ENSO variability. PAGES News 21(2):54–55 Ehlers E (2008) Das Anthropozän. Die Erde im Zeitalter des Menschen. WBG, Darmstadt Elsner JB (2007) Tempests in time. Nature 447:647–649 Ehlers E (2015) Down to Earth – geography in the anthropo- Elsner JB et al (2008) The increasing intensity of the strongest cene. In: Krass F et al (Hrsg) Down to Earth Documenting the tropical cyclones. Nature 455:92–95 32nd International Geographical Congress, Cologne, 26–30 Embley RW, Morley JJ (1980) Quaternary sedimentation and August 2012. Kölner Geographische Arbeiten, Bd. 95. Geo- paleoenvironmental studies off Namibia (South-West Africa). graphisches Institut, Köln. S 26–32 Mar Geol 36:183–204 Ehlers J (2011) Das Eiszeitalter. Springer Spektrum, Heidelberg Endfield GH (2008) Climate and society in colonial Mexico. A Ehlers J et al (Hrsg) (2011) Quaternary Glaciations – Extent and study in vulnerability. Wiley-Blackwell, Malden Chronology, A Closer Look. Dev Quat Sci 15:1–1108 Endfield GH, Fernández-Tejedo I (2006) Decades of drought, Ehrlich R (2007) Solar resonant diffusion as a driver years of hunger: archival investigations of multiple year of terrestrial climate change. J Atmospheric Solar-terrestrial droughts in late colonial chihuahua. Clim Change 75:391– Phys 69:759–766 419 Eisenman I et al (2014) A spurious jump in the satellite record: England MH et al (2014) Recent intensification of wind-driven has Antarctic sea ice expansion been overestimated? Cryo- circulation in the Pacific and the ongoing warming hiatus. Nat sphere 8:1289–1296. https://doi.org/10.5194/tc-8-1289-2014 Clim Chang. https://doi.org/10.1038/nclimate2106 Eitel B et al (2002) Environmental transitions between 22 ka EPICA Community Members (2004) Eight glacial cycles from and 8 ka in monsoonally influenced Namibia – a preliminary an Antarctic ice core. Nature 429:623–628 chronology. Zeitschrift Geomorphol Suppl 116:31–57 EPICA Community Members (2006) One-to-one coupling of Eitel B et al (2004) Palaeoenvironmental transitions between glacial climate variability in Greenland and Antarctica. Na- 22 ka and 8 ka in Monsoonally influenced Namibia. In: ture 444:195–198 Smykatz-Kloss W, Felix-Henningsen P (Hrsg) Palaeoecolo- Eronen M et al (2003) Reconstruction of low- and high- gy of quaternary Drylands. Lecture notes of earth sciences, frequency summer temperature changes from a tree- Bd. 102. Springer, Berlin, Heidelberg, S 167–194 ring archive of fennoscandian forest-limit. PAGES News Eitel B et al (2006) Environmental changes at the eastern Na- 11(2/3):14–15 mib desert margin before and after the last glacial maximum: Escobar J et al (2012) A 43-ka record of paleoenvironmental new evidence from fluvial deposits in the upper Hoanib river change in the Central American lowlands inferred from stable catchment, northwestern Namibia. Palaeogeogr Palaeoclima- isotopes of lacustrine ostracods. Quat Sci Rev 37:92–104 tol Palaeoecol 234:201–222 Esper J et al (2012) Orbital forcing of treering data. Nat Clim Ekman AML (2014) From clouds to carbon: land-atmosphere Chang 2:862–866 interactions in the spotlight. Glob Chang 82:16–17 Evan AT et al (2016) Tha past, present and future of African Elderfield H, Rickaby REM (2000) Oceanic Cd/P ratio and dust. Nature 531:493–495 nutrient utilization in the glacial Southern Ocean. Nature 405:305–310 Evans DJA (2008) and moraines. Nat Geosci 1:493– 494 Elenga H et al (1991) Présence d’éléments forestiers mon- tagnards sur les Plateaux Batéké (Congo) au Pléistocène Evans DJA (2009) Special theme: modern analogues in qua- supérieur: nouvelles données palynologiques. Palaeoecol Af- ternary palaeoglaciological reconstruction. Quat Sci Rev rica 22:239–252 28:181–182 Literatur 675

Evans ME et al (2003) Magnetoclimatology: teleconnection be- Tropical East Africa. Palaeogeogr Palaeoclimatol Palaeoecol tween the Siberian loess record and North Atlantic Heinrich 252:405–423 events. Geology 31:537–540 Ferrari R (2014) What goes down must come up. Nature Evaristo J et al (2015) Global separation of plant transpiration 513:179–180 from groundwater and streamflow. Nature 525:91–94 Finkel RC et al (2003) Beryllium-10 dating of Mount Everest Eyles N (2008) Glacio-epochs and the supercontinent cycle after moraines indicates a strong monsoon influence and glacial ~3.0 Ga: tectonic boundary conditions for glaciation. Palaeo- synchroneity throughout the Himalaya. Geology 31:561–564 geogr Palaeoclimatol Palaeoecol 258:89–129 Fischer E (2006) Climate response to major volcanic eruptions. Faegri K, Iversen J (1989) Textbook of pollen analyses, 4. Aufl. PAGES News 13(3):8–10 Wiley, New York Fischer H (2006) Editorial: past, present and future ice core re- Fairbridge RW (1964) The importance of limestone and its search. PAGES News 14(1):2 Ca/Mg content to paleoclimatology. In: Nairn AEM (Hrsg) Problems in palaeoclimatology. Wiley, New York Fischer H et al (1999) Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283:1712– Fairbridge RW (1972) Climatology of a glacial cycle. Quat Res 1714 2:283–302 Fitzsimmons KE et al (2007) The timing of linear dune activity Fairchild IJ et al (2014) Seasonality in speleothems. PAGES in the Strzelecki and Tirari deserts, Australia. Quat Sci Rev Mag 22(1):24–25 26:2598–2616 Falkowski P (2012) The power of plankton. Nature 482:S17– Fitzsimmons KE et al (2013) Late Quaternary palaeoenviron- S20 mental change in the Australian drylands. Quat Sci Rev Fall PL (2005) Vegetation change in the coastal-lowland rainfor- 74:78–96 est at Avai’o’vuna Swamp, Vava’u, Kingdom of Tonga. Quat Fleitmann D, Matter A (2009) The speleothem record of cli- Res 64:451–459 mate variability in southern Arabia. Comptes Rendus Geosci Farber DL et al (2005) The age and extent of tropical alpine 341:633–642 glaciation in the Cordillera Blanca, . J Quat Sci 20:759– Fleitmann D et al (2003a) Holocene forcing of the Indian mon- 776 soon recorded in a stalagmite from southern Oman. Science Farley KA, Patterson DB (1995) A 100-kyr periodicity in the 300:1737–1739 flux of extraterristrial 3He to the sea floor. Nature 378:600– 603 Fleitmann D et al (2003b) Changing moisture sources over the last 330,000 years in northern Oman from fluid-inclusion evi- Farmer EC et al (2005) Holocene and deglacial ocean tempe- dence in speleothems. Quat Res 60:223–232 rature variability in the Benguela upwelling region: impli- cations for low-latitude . Paleoceano- Fleitmann D et al (2007a) Holocene ITCZ and Indian monsoon graphy 20:PA2018. https://doi.org/10.1029/2004PA001049 dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188 Farrera I et al (1999) Tropical climates at the last glacial ma- ximum: a new synthesis of terrestrial palaeoclimate data: I. Fleitmann D et al (2007b) East African soil erosion recorded in Vegetation, lake-levels and geochemistry. Clim Dyn 15:823– a 300-year old coral colony from Kenya. Geophys Res Lett 856 34:L4401. https://doi.org/10.1029/2006GL028525 Faure H (1969) Lacs quaternaires du Sahara. Mitteilungen, In- Fleitmann D et al (2008) Advances in speleothem research. ternationale Vereinigung für Theoretische und Angewandte PAGES News 16(3):1–40 Limnologie 17:131–164 Flenley JR (1979) The equatorial rain forest, a geological histo- Faust D et al (2004) High-resolution fluvial record of late Holo- ry. Butterworths, London cene geomorphic change in northern Tunisia: climatic or Flenley JR (1985) Relevance of quaternary palynology to geo- human impact? Quat Sci Rev 23:1757–1775 morphology in the tropics and subtropics. In: Douglas I, Feldman DR et al (2015) Observational determination of surface Spencer T (Hrsg) Environmental change and tropical geomor- radiative forcing by CO2 from 2000 to 2010. Nature 519:339– phology. McMillan, London, S 153–164 343 Flenley JR (1993) Cloud forest, the Massenerhebung effect, and Felgentreff C, Pott A (2016) Climatic turn in migration studies? ultraviolet insolation. In: Hamilton LS et al (Hrsg) Tropical Geographical perspectives on the relationship between cli- Montane Cloud Forests. Proceedings of an international sym- mate and migration. Die Erde 147:73–80 posium, , East-West-Center, S 94–96 Felton AA et al (2007) Paleolimnological evidence for the on- Flenley JR (1996) Problems of the Quaternary on mountains of set and termination of glacial aridity from Lake Tanganyika, the Sunda-Sahul region. Quat Sci Rev 15:549–555 676 Literatur

Flenley JR (1997) The Quaternary in the tropics. J Quat Sci d’altitude: les Andes Centrales du Perou. Géographie Phy- 12:345–346 sique Et Quaternaire 43:97–112 Flenley JR (1998) Tropical forests under the climates of the last Francou B (1990) Stratification mechanisms in slope deposits 30,000 years. Clim Change 39:177–197 in high subequatorial mountains. Permafr Periglac Process 1:249–263 Flint RF (1971) Glacial and quaternary geology. Wiley, New York Francou B et al (1999) Symptoms of degradation in a trop- ical rock glacier, Bolivian Andes. Permafr Periglac Process Flohn H (1969) Ein geophysikalisches Eiszeit-Modell. Eiszeit- 10:91–100 alt Gegenwart 20:204–231 Frank N (2016) Bipolare Klimawippe. Der lange Weg von Nord Flohn H (1979) On time scales and causes of abrupt paleoclima- nach Süd. Ruperto Carolina (Forschungsmagazion Univ Hei- tic events. Quat Res 12:135–149 delberg) 8:60–67 Flohn H (1980) Possible climatic consequences of a man-made Fraser B (2012) Goodbye glaciers. Nature 491:180–182 global warming. International Institute for Applied Systems Analysis (IASA), Laxenburg Fraser B (2014) Carving up the Amazon. Nature 509:418–419 Flohn H (1985) Das Problem der Klimaänderungen in Vergan- Freeman KH (2014) Controls on isotopic gradients in rain. Na- genheit und Gegenwart. WBG, Darmstadt ture 516:41–42 Flohn H, Nicholson SE (1980) Climatic fluctuations in the arid Frenzel B (1960) Die Vegetations- und Landschaftszonen belt of the ,Old World‘ since the last glacial maximum: possi- Nordeurasiens während der letzten Eiszeit und während der ble causes and future implications. Palaeoecol Africa 12:3–21 postglazialen Wärmezeit. Akademie der Wissenschaften und der Literatur in Mainz, Abhandlungen der Mathematisch- Florescano E, Swan S (1995) Breve Historia de la Sequía en Naturwissenschaftlichen Klasse 13, S 937–1099 México. Bibliotheca Universidad Veracruzana, Xalapa, Ver., México Friedrich M et al (2004) The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe – a Foerster V et al (2015) Environmental change and human oc- unique annual record for radiocarbon calibration and palaeo- cupation of southern Ethiopia and northern Kenya during the environment reconstructions. Radiocarbon 46:1111–1122 last 20,000 years. Quat Sci Rev 129:333–340 Friedrich WL et al (2006) eruption radiocarbon dated Fogwill CJ, Kubik PW (2005) A glacial stage spanning the An- ı to 1627–1600 B.C. Science 312:548 tarctic Cold Reversal in Torres del Paine (51 S),Chile,based on preliminary cosmogenic exposure ages. Geografisca Ann Frisia S et al (2008) The use of stalagmite geochemistry to de- 87A:403–408 tect pastvolcanic eruptions and their environmental impacts. PAGES News 16(3):25–26 Folland CK et al (1990) Observed climate variations and change. In: Houghton JT et al (Hrsg) Climate change. The Fritz SC et al (2004) Hydrologic variation during the last IPCC scientific assessment. Cambridge University Press, 170,000 years in the southern hemisphere tropics of South Cambridge, S 195–238 America. Quat Res 61:95–104 Fölster H (1969) Slope development in SW-Nigeria during late Fritz SC et al (2006) Large lake drilling projects supported Pleistocene and Holocene. Gießener Geogr Schriften 20:3–56 by U.S. National Science Foundation Earth Systems Histo- ry Program. PAGES News 14(2):19–20 Fontana SL, Bennett KD (2012) Postglacial vegetation dyna- mics of western Tierra del Fuego. Holocene 22:1337–1350 Fritz SC et al (2007) and hydrologic va- riation in the South American tropics as reconstructed from Fontana SL, Bennett KD (2014) Quaternary paleoecology: re- the Lake Titicaca drilling project. Quat Res 68:410–420 constructing past environments. PAGES Mag 22(1):46 Fritz SC et al (2008) Corrigendum to “Quaternary glaciation and Ford HL et al (2015) Reduced el Niño–southern oscillation dur- hydrologic variation in the South American tropics as recon- ing the last glacial maximum. Science 347:255–258 structed from the Lake Titicaca drilling project” [Quat Res Forest CE, Reynolds RW (2008) Hot questions of temperature 68(2007):410–420]. Quat Res 69:342–342 bias. Nature 453:601–602 Fritz SC et al (2010) Millenial-scale climate variability during Forschungsgruppe Geowissenschaften (1998) Weltkarte der the last Glacial period in the tropical Andes. Quat Sci Rev Naturgefahren. Münchener Rückversicherungsgesellschaft, 29:1017–1024 München Froese DG et al (Hrsg) (2008) Global Tephra Studies: John Foukal P et al (2006) Variations in solar luminosity and their Westgate and Andrei Sarna-Wojcicki Commemorative Vol- effect on the Earth’s climate. Nature 443:161–166 ume. Quaternary International 178:1–320 Francou B (1989) Regime thermique des sols et rô1e du gel Fu Q et al (2016) The genetic history of Ice Age Europe. Nature. dans la dynamique des versants d’un milieu subéquatorial https://doi.org/10.1038/nature17993 Literatur 677

Fuller DQ et al (2011) The contribution of rice agriculture and Garcin Y et al (2006) Wet phases in tropical southern Africa livestock to prehistoric methane levels: An archeological as- during the last glacial period. Geophys Res Lett 33:L7703. sessment. Holocene 21:743–759 https://doi.org/10.1029/2005GL025531 Furnas M et al (2014) Selective evisence of eutrophication in the Garcin Y et al (2007) Abrupt resumption of the African Mon- Great Barrier Reef: comment on Bell et al. Ambio 43:377– soon at the YoungerDryas-Holocene climatic transition. Quat 378 Sci Rev 26:690–704 Gagan MK et al (2000) New views of tropical paleoclimates Gardelle J et al (2012) Slight mass gain of Karakorum glaciers from corals. Quat Sci Rev 19:45–64 in the early twenty-first century. Nat Geosci 5:322–325 Gagné M-È et al (2015) Impact of aerosol emission controls on Garleff K, Stingl H (1984) Neue Befunde zur jungquartären future Arctic sea ice cover. Geophys Res Lett. https://doi.org/ Vergletscherung in Cuyo und Patagonien. Berl Geogr Ab- 10.1002/2015GL065504 handlungen 36:105–112 Gale SJ et al (1990) Megafloods in inland eastern Australia. Garleff K, Stingl H (1985) Höhenstufen und ihre raum- Z Geomorphol 38:1–11 zeitlichen Veränderungen in den argentinischen Anden. Zen- tralblatt Für Geol Paläontologie I(11/12):1701–1707 Gallet Y et al (2006) Possible impact of the Earth’s magnetic field on the history of ancient civilizations. Earth Planet Sci Garleff K, Stingl H (1994) Reply to Gosse & Evenson: reinter- Lett 246:17–26 pretation of the evidence for a significant mid-holocene ice advance in the Rio Atuel valley, Mendoza province, Argenti- Galonska A (1987) Zur Bildgeometrie von Landschaftsge- na. Z Geomorphol 38:339–342 mälden; Bildanalysen am Beispiel zweier Gletschergemälde von Adolf Schlagintweit 1856. Diplomarbeit, Universität der Garstang M, Fitzjarrald DR (1999) Observations of surface- Bundeswehr München. 75 S und 13 Bilder to-atmosphere interactions in the tropics. Oxford University Press, Oxford Gan SQ, Scholz CA (2011) A batch method for retrieving primary and derived datasets of laminae in sediment core Gärtner H (2014) Neue Entwicklungen zur Integration der images. In: Besonen MR (Hrsg) Second Workshop of the Holzanatomie in die Jahrringforschung. Geogr Rundsch PAGES Varves Working Group & INQUA Project Number 66(7/8):50–52 1102 Corpus Christi, 17–19 March 2011, PAGES Internatio- Gasse F (1977) Evolution of Lake Abhé (Ethiopia and T.F.A.I.) nal Project Office, S 35–40 (Program and Abstracts) from 70,000 B.P. Nature 265:42–45 Ganopolski A et al (1998) The influence of vegetation– Gasse F (2000) Hydrological changes in the African tropics atmosphere–ocean interaction on climate during the mid- since the last glacial maximum. Quat Sci Rev 19:189–211 holocene. Science 280:1916–1919 Gasse F, Street FA (1978) Late Quaternary lake-level fluctua- Gao C et al (2006) The 1452 or 1453 A.D. Kuwae eruption tions and environments of the northern rift valley and Afar signal derived from multiple ice core records: greatest vol- region (Ethiopia and Djibouti). Palaeogeogr Palaeoclimatol canic sulfate event of the past 700 years. J Geophys Res Palaeoecol 25:145–150 111(12):D12107 Gasse F, van Campo E (1998) A 40,000-yr pollen and diatom Gao Q et al (2016) Lateglacial and early Holocene climatic fluc- record from Lake Tritrivakely, , in the southern tuations recorded in the diatom flora of Xiaolongwan maar tropics. Quat Res 49:299–311 lake, NE China. Boreas 45:61–75 Gasse F, van Campo E (2001) Late Quaternary environmen- Garcia RR et al (2001) Atmospheric circulation changes in tal changes from a pollen and diatom record in the southern the tropical Pacific inferred from the voyages of the Mani- tropics (Lake Tritrivakely, Madagascar). Palaeogeogr Palaeo- la galleons in the 16th–18th centuries. Bull Am Meteorol Soc climatol Palaeoecol 167:287–308 8:2435–2456 Gasse F et al (1989) Water-level fluctuations of Lake Tanganyi- Garcia RR, Herrera GR (2003) Sailing ship records as proxies ka in phase with oceanic changes during the last glaciation of climate variability over the world’s oceans. Glob Chang and deglaciation. Nature 342:57–59 Newsl 53:10–13 Gasse F et al (2008) Climatic patterns in equatorial and southern Garcia-Castellanos D et al (2009) Catastrophic flood of the Mei- Africa from 30,000 to 10,000 years ago reconstructed from terranean after the Messinian crisis. Nature 462:778–781 terrestrial and near-shore proxy data. Quat Sci Rev 27:2316– 2340 García Cook A (1986) El control de la erosion en Tlaxcala: un problema secular. Erdkunde 40:241–262 Ge Q et al (2002) 2000 years of temperature history in China. PAGES News 10(3):18–19 García Cook A (1995) Cruce de caminos. Desarrollo históri- co de la region poblano-tlaxcalteca. Arqueología Mexicana Gedney N et al (2006) Detection of a direct carbon dioxid effect III(13):12–17 in continental river runoff records. Nature 439:835–838 678 Literatur

Gedney N et al (2014) Detection of solar dimming and brighten- Gibbard PL et al (2010) Formal ratification of the Quaternary ing effects on Northern Hemisphere river flow. Nat Geosci system/period and the Pleistocene series/epoch with a base at 7:796–800 2.58 ma. J Quat Sci 25:96–102 George SS (2014) The global network of tree-ring widths and its Gibbons A (2013) When early hominins got a grip. Science application to paleoclimatology. PAGES Mag 22(1):16–17 340:426–427 •18 Gergis JL, Fowler AM (2009) A history of ENSO events since Gibbons FT et al (2014) Deglacial O and hydrologic variabil- A.D. 1525: implications for future climate change. Clim ity in the tropical Pacific and Indian Oceans. Earth Planet Sci Change 92:343–387 Lett 387:240–251 Gergis J, Henley BJ (2016) Southern Hemisphere rainfall var- Giering SL et al (2014) Reconciliation of the carbon budget in iability over the past 200 years. Clim Dyn. https://doi.org/10. the ocean’s twilight zone. Nature 507:480–483 1007/s00382-016-3191-7 Gill RB (2000) The great Maya droughts: water, life and death. University of New Mexico Press, Albuquerque Gergis J et al (2006) Reconstructing El Niño–Southern Oscilla- tion (ENSO) from high-resolution palaeoarchives. J Quat Sci Gillespie A, Molnar P (1995) Asynchronous maximum ad- 21:707–722 vances of mountain and continental glaciers. Rev Geophys 33:311–364 German K et al (Hrsg) (1988) Die Erde. Dynamische Ent- wicklung, menschliche Eingriffe, globale Risiken. Springer, Gillett NP et al (2012) Improved constraints on 21st- Berlin century warming derived using 160 years of tempera- ture observations. Geophys Res Lett. https://doi.org/10.1029/ Gersonde R (2012) Reports on Polar and Marine Research 643. 2011GL050226 https://doi.org/10.2312/BzPM_0643_2012 Gil-Romera G et al (2007) Late holocene environmental change Gersonde R, Seidenkrantz M-S (2013) Sampling marine sedi- in the northwestern Namib desert margin: new fossil pollen ment. PAGES News 21(1):8–9 evidence from hyrax middens. Palaeogeogr Paleoclimatol Pa- laeoecol 249:1–17 Gersonde R et al (1997) Geological record and reconstructi- on of the late Pliocene impact of the Eltanin in the Giralt S et al (2010) Paleolimnology. Palaeogeogr Paleoclimatol Southern Ocean. Nature 390:357–363 Palaeoecol 294:1–3 Gerstmann R (1928) Bolivia. Braun & Co, Paris. Giresse P (2008) Tropical and Sub-Tropical West Africa. Mari- ne and Continental Changes during the Late Quaternary. Dev Geyh MA (1983) Physikalische und Chemische Datierungs- Quat Sci 10:1–395 methoden in der Quartär-Forschung. Clausthaler Tektonische Hefte 19. Pilger, Clausthal-Zellerfeld Giresse P, Ngos S III (2014) Palaeoenvironmental observations on a Late Holocene debris-flow process in Lake Assom (Ada- Geyh MA (1986) Gletscherschwankungen der letzten mawa, Cameroon). Palaeoecol Africa 32:123–141 10 000 Jahre. 14C-Daten zu Gletscherständen – Probleme der Deutung. In: Röthlisberger F (Hrsg) 10 000 Jahre Gletscher- Giresse P et al (1982) La lithostratigraphie des sediments hé- geschichte der Erde. Sauerländer, Aarau, Frankfurt/Main, S mipélagiques du delta du fleuve Congo et ses indications sur 317–370 les paléoclimats de la fin du Quaternaire. Bull Société Géolo- gie Française Série 24:803–815 Geyh MA (2005) Handbuch der physikalischen und chemischen Giresse P et al (1991) Sedimentation and palaeoenvironment in Altersbestimmung. WBG, Darmstadt crater lake Barombi Mbo, Cameroon, during the last 25,000 Geyh MA, Heine K (2014) Several distinct wet periods since years. Sediment Geol 71:151–175 420 ka in the Namib Desert inferred from U-series dates of Giresse P et al (1994) Late Quaternary palaeoenvironments speleothems. Quat Res 81:381–391 in the Lake Barombi Mbo (West Cameroon) deduced from Geyh MA, Jäkel D (1974) Spätpleistozäne und holozäne Kli- pollen and carbon isotopes of organic matter. Palaeogeogr Pa- mageschichte der Sahara aufgrund zugänglicher 14C-Daten. laeoclimatol Palaeoecol 107:65–78 Z Geomorphol 18:82–98 Giresse P et al (2005) Sedimentary environmental changes and Geyh MA, Obenauf K-P (1974) Zur Frage der Neubildung von millennial climatic variability in a tropical shallow lake (Lake Grundwasser unter ariden Bedingungen. Informationen aus Ossa, Cameroon) during the Holocene. Palaeogeogr Palaeo- Lehre und Forschung an der freien Universität Berlin 5:70– climatol Palaeoecol 218:257–285 91 Giresse P et al (2014) Lake level changes of Barombi Mbo (Ca- meroon) during the late quaternary: compared catchment and Geyh MA, Thiedig F (2008) The Middle Pleistocene Al crater lake records. Palaeoecol Africa 32:91–122 Mahrúqah Formation in the Murzuq Basin, northern Saha- ra, Libya evidence for orbitally-forced humid episodes during Gischler E et al (2005) Coral climate proxy data from a marginal the last 500,000 years. Palaeogeogr Palaeoclimatol Palaeo- reef area, Kuwait, northern Arabian-Persian Gulf. Palaeogeo- ecol 257:1–21 gr Palaeoclimatol Palaeoecol 228:86–95 Literatur 679

Glaser R (2001) Klimageschichte Mitteleuropas. 1000 Jahre Gourlay I (1995) Growth ring characteristics of some African Wetter, Klima, Katastrophen. WBG, Darmstadt Acacia species. J Trop Ecol 11:121–140 Glaser R, Riemann D (2009) A thousand-year record of tempe- Gouze P et al (1986) Interprétation paléoclimatique des oscilla- rature variations for Germany and Central Europe based on tions des glaciers au cours des 20 derniers millénaires dans les documentary data. J Quat Sci 24:437–449 régions tropicales; exemple des Andes boliviennes. Comptes Gleckler P et al (2016) Industrial-era global ocean heat uptake Rendus De L’académie Des Sci 303:219–224 doubles in recent decades. Nat Clim Chang. https://doi.org/ Govin A et al (2014) Astronomically forced variations in west- 10.1038/nclimate2915 ern African rainfall (21ıN–20ıS) during the Last Interglacial Gliganic LA et al (2014) Late-Holocene climatic variability in- period. Geophys Res Lett 41:2117–2125 dicated by three natural archives in arid southern Australia. Graf K (1979) Untersuchungen zur rezenten Pollen- und Spo- Holocene 24:104–117 renflora in der nördlichen Zentralkordillere Boliviens und der Godfrey LV et al (2003) Stable isotope constraints on the trans- Versuch einer Auswertung von Pollen aus postglazialen Torf- port of water to the Andes between 22ı and 26ıS during mooren. Habilitationsschrift Phil. Fak. II, Universität Zürich. the last glacial cycle. Palaeogeogr Palaeoclimatol Palaeoecol Juris, Zürich, 104 S 194:299–317 Graf K (1992) Pollendiagramme aus den Anden. Eine Synthe- Goebel T et al (2008) The late Pleistiocene dispersal of modern se zur Klimageschichte und Vegetationsentwicklung seit der humans in the . Science 319:1497–1502 letzten Eiszeit. Phys Geogr (geogr Inst Univ Zürich) 34:138 Goff J et al (2012) The Eltanin asteroid impact: possible Graf K et al (2012) Aviation induced diurnal North Atlantic cir- South Pacific palaeomegatsunami footprint and potential im- rus cover cycle. Geophys Res Lett. https://doi.org/10.1029/ plications for the Pliocene-Pleistocene transition. J Quat Sci 2012GL052590 27:660–670 Graham MD (2015) Turbulence spreads like wildfires. Nature Goldberg A et al (2016) Post-invasion demography of prehisto- 526:508–509 ric humans in South America. Nature 532:232–235 Graham RW et al (2016) Timing and causes of mid-Holocene Gómez-Olivencia A et al (2014) New evidence of reindeer (Ran- mammoth extinction on St. Paul Island, Alaska. Proc Natl gifer tarandus) on the Iberian Peninsula in the Pleistocene: Academy Sci 113(33):9310–9314 an archaeopalaeontological and chronological reassessment. Boreas 43:286–308 Green H et al (2013) Re-analysis of key evidence in the case for a hemispherically synchronous response to the Younger González C, Dupont LM (2009) Tropical salt marsh succession Dryas climatic event. J Quat Sci 28:8–12 as sea-level indicator during Heinrich events. Quat Sci Rev 28:939–946 Greenbaum N et al (2014) Paleohydrology of extraordinary floods along the Swakop River at the margin of the Na- Gonzalez E et al (1965) Late Quaternary glacial and vegetation- mib Desert and their paleoclimate implications. Quat Sci Rev al sequence in Valle de Lagunillas, Sierra Nevada del Cocuy, 103:153–169 Colombia. Leidse Geol Mededeelingen 32:157–182 Grefe I (2015) A tropical hotspot. Nat Geosci 8:504–505 Gonzalez-Ferran O (1994) Volcanes de Chile. Instituto Geográ- fico Militar, Santiago Gregoire LJ et al (2012) Deglacial rapid rises caused by ice-sheet saddle collapses. Nature 487:219–222 Goodman AY et al (2001) Subdivision of glacial deposits in southeastern Peru based on pedogenic development and ra- Greve P et al (2014) Global assessment of trends in wetting and diometric ages. Quat Res 56:31–50 drying over land. Nat Geosci 7:716–721 Goosse H et al (2010) Description of the Earth system model Griffiths ML et al (2010) Evidence for Holocene changes of intermediate complexity LOVECLIM version 1.2. Geosci in Australian-Indonesian monsoon rainfall from stalagmite Model Dev Discuss 3:309–390 trace element and stable isotope ratios. Earth Planet Sci Lett Gosse JC, Evenson EB (1994) Reinterpretation of the evi- 29:27–38 dence for a significant mid-holocene ice advance in the Rio Griffiths ML et al (2016) Western Pacific hydroclimate linked Atuel valley, Mendoza Province, Argentina. Z Geomorphol to global climate variability over the past two millennia. Nat 38:327–338 Commun https://doi.org/10.1038/ncomms11719 Goudie A (1973) Duricrusts in tropical and subtropical landsca- Grindrod J et al (2002) Late quaternary mangrove pollen re- pes. Clarendon, Oxford cords from and ocean cores in the north Goudie A (Hrsg) (1998) Geomorphologie. Ein Methodenhand- Australian-Indonesian region. Adv Geoecology 34:119–146 buch für Studium und Praxis. Springer, Berlin Grine FE (1981) Trophic differences between ‘gracile’ and Goudie AS, Middleton NJ (2006) Desert dust in the global sys- ‘robust’ Australopithecines: a scanning electron microscope tem. Springer, Berlin analysis of occlusal events. S Afr J Sci 77:203–230 680 Literatur

Members GRIP (1993) Climate instability during the last in- Gunnarson BE et al (2003) Holocene humidity fluctuations in terglacial period recorded in the GRIP ice core. Nature Sweden inferred from dendrochronology and peat stratigra- 364:203–207 phy. Boreas 32:347–360 Grodek T et al (2013) The last millennium largest floods in Guo ZT et al (2002) Onset of Asian desertification by 22 Myr the hyperarid Kuiseb River basin, Namib Desert. J Quat Sci ago inferred from loess deposits in China. Nature 416:159– 28:258–270 163 Groot M et al (2011) Ultra-high resolution pollen record from Gupta AK et al (2003) Abrupt changes in the Asian southwest the northern Andes reveals rapid shifts in montane climates monsoon during the Holocene and their links to the North within the last two glacial cycles. Clim Past 7:299–316 Atlantic Ocean. Nature 421:354–357 Grosjean J (2001) Mid-holocene climate in the south-central Gupta S (2016) Clever eating. Nature 531:S12–S13 Andes: humid or dry? Science 292:2391 Guthrie R (2015) The catastrophic nature of humans. Nat Geosci 14 Grosjean M et al (2001) A 22,000 C year BP sediment and pol- 8:421–422 len record of climate change from Laguna Miscanti (23ıS), northern Chile. Glob Planet Change 28:35–51 Gutiérrez Elorza M (2001) Geomorfología Climática. Ediciones Omega, Barcelona Grosjean M et al (2014) Hyperspectral imaging: a novel, non- destructive method for investigating sub-annual sediment Gutiérrez Elorza M (2008) Geomorfología. Pearson Prentice structures and composition. PAGES Mag 22(1):10–11 Hall, Madrid Gross G et al (1978) Methodische Untersuchungen über die Guzman HM et al (2008) Historical decline in coral reef growth Schneegrenze in alpinen Gletschergebieten. Zeitschrift Glet- after the Panama canal. Ambio 37:342–346 scherkd Glazialgeol 12:223–251 Haberlah D et al (2010) Loess and floods: high-resolution multi- Grottoli AG et al (2006) Heterotrophic plasticity and resilience proxy data of Last Glacial Maximum (LGM) slackwater in bleached corals. Nature 440:1186–1189 deposition in the Flinders Ranges, semi-arid South Australia. Quat Sci Rev 29:2673–2693 Grove AT (1969) Landforms and climate change in the Kahahari and Ngamiland. Geogr J 135:192–212 Haberle SG et al (2001) Biomass burning in Indonesia and Papua New Guinea: natural and human induced fire events Grove AT (2008) A brief consideration of climate forcing fac- in the fossil record. Palaeogeogr Palaeoclimatol Palaeoecol tors in view of the Holocene glacier record. Glob Planet 171:259–268 Change 60:141–147 Haeberli W et al (1993) Mountain permafrost and climate Grundmann R (2016) Climate change as a wicked social pro- change. Permafr Periglac Process 4:165–174 blem. Nat Geosci 9:562–563 Guan K et al (2015) Photosynthetic seasonality of global trop- Haffer J (1969) Speciation in Amazonian forest birds. Science ical forests constrained by hydroclimate. Nat Geosci 8:284– 165:131–137 289 Haffer J (1987) Quaternary history of tropical America. In: Gubbins D (2008) Geomagnetic reversals. Nature 452:165–167 Whitmore TC, Prance GT (Hrsg) Biogeography and quater- nary history in tropical Amazonia. Clarendon Press, Oxford, Gudmundsdóttir ER et al (2012) Tephra stratigraphy on the S 1–18 north Icelandic shelf: extending tephrochronology into ma- rine sediments off North Iceland. Boreas 41:718–734 Haffer J, Prance GT (2002) Impulsos climáticos da evolução na Amazônia durante o Cenozóico: sobre a teoria dos Refúgios Guilderson TP et al (1994) Tropical temperature variations da diferenciação biótica. Estudos Avançados 16(46):175–206 since 20,000 years ago: modulating interhemispheric climate change. Science 263:663–665 Hahn A et al (2015) Holocene paleo-climatic record from the south African Namaqualand mudbelt: a source to sink ap- Guilderson TP et al (2005) The bone and bane od radiocarbon proach. Quat Int 404:121–135 dating. Science 307:362–364 Haigh JD (2001) Climate variability and the influence of the sun. Gulev SK et al (2013) North Atlantic Ocean control on surface Science 294:2109–2111 heat flux on multidecadal timescales. Nature 499:464–467 Haigh JD et al (2010) An influence of solar spectral variations Gumbricht T et al (2001) The topography of the Okavango on radiative forcing of climate. Nature 467:696–699 Delta, Botswana, and its tectonic and sedimentological im- plications. South African J Geol 104:243–264 Haile-Selassie Y et al (2015) New species from Ethiopia further expands Middle Pliocene hominin diversity. Nature 521:483– Gumnior M, Preusser F (2007) Late Quaternary river develop- 488 ment in the southwest Chad Basin: OSL dating of sediment from the Komadugu palaeofloodplain (northeast Nigeria). Haine TWN (2016) Vagaries of Atlantic overturning. Nat Geo- J Quat Sci 22:709–719 sci 9:479–480 Literatur 681

Haldon J (2016) Cooling and societal change. Nat Geosci Harsch MA, Ris Lambers HJ (2015) Species distributions shift 9:191–192 downward across western North America. Glob Chang Biol 21:1376 (Retraction statement) Hall BL et al (2015) Accumulation and marine forcing of ice dy- namics in the western Ross Sea during the last deglaciation. Hartsch K et al (2009) The Nasca and Palpa geoglyphs: geophy- Nat Geosci 8:625–628 sical and geochemical data. Naturwissenschaften 96:1213– 1220 Hall SR et al (2009) Geochronology of Quaternary glaciations from the tropical Cordillera Huayhuash, Peru. Quat Sci Rev Harvey LD (1988) Climatic impact of Ice-Age aerosols. Nature 28:2991–3009 33:333–335 Hambrey M, Alean J (2004) Glaciers, 2. Aufl. Cambridge Uni- Haslett SK (Hrsg) (2002) Quaternary environmental micropa- versity Press, Cambridge leontology. Arnold, London Hamilton AC, Perrott RA (1979) Aspects of the glaciation of Hassan FA (2001) The collapse of the old kingdom: low floods, Mt. Elgon, East Africa. Palaeoecol Africa 11:153–161 , and anarchy. Monsoon 3:39 Hamilton C (2016) Define the anthropocene in terms of the Hassan FA (2011) Nile flood discharge during the medieval cli- whole earth. Nature 536:251 mate anomaly. PAGES News 19(1):30–31 Hamilton G (2016) The secret lives of jellyfish. Nature 531:432– Hassig R (1981) The of one rabbit: ecological causes and 434 social consequences of a pre-columbian calamity. J Anthro- pol Res 37:172–182 Hanselman JA et al (2011) A 370,000-year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru). Palaeo- Hastenrath S (1974) Spuren pleistozäner Vergletscherung in den geogr Palaeoclimatol Palaeoecol 305:201–214 Altos de Cuchumatanes, Guatemala. Eiszeitalt Gegenwart 25:25–34 Hansen BCS et al (1994) Late quaternary vegetation change in the central Peruvian Andes. Palaeogeogr Palaeoclimatol Pa- Hastenrath S (1981) The glaciation of the Ecuadorian Andes. laeoecol 109:263–285 Balkema, Rotterdam Hansen J et al (2011) Earth’s energy imbalance and implica- Hastenrath S (1985) A review of Pleistocene to Holocene glacier tions. Atmospheric Chem Phys 11:13421–13449 variations in the tropics. Zeitschrift Gletscherkd Glazialgeol 21:183–194 Hansen JE, Sato M (2012) Paleoclimate implications for human- made climate change. In: Berger A et al (Hrsg) Climate Hastenrath S (2009) Past glaciations in the tropics. Quat Sci Rev change, inferences from paleoclimate and regional aspects. 28:790–798 Springer, Wien, S 21–47 Hastenrath S (2010) Climatic forcing of glacier thinning on the Hansen MC et al (2013) High-resolution global maps of 21st- mountains of equatorial East Africa. Int J Climatol 30:146– century forest cover change. Science 34:850–853 152 Hantson S et al (2016) in the earth system. Bridging Hastenrath S (2012) Contemporary climate and circulation of data and modeling research. Bull Am Meteorol Soc (June the tropics. In: Metcalfe SE, Nash DJ (Hrsg) Quaternary en- 2016):1069–1072 vironmental change in the tropics. Wiley, Chichester, S 34–43 Hardy DR et al (2003) Variability of snow accumulation and Haug GH, Sigman DM (2009) Polar twins. Nat Geosci 2:91–92 isotopic composition on Nevado Sajama, Bolivia. J Geophys Haug GH, Tiedemann R (1998) Effect of the formation of the Res. https://doi.org/10.1029/2003JD003623 Isthmus of Panama on Atlantic Ocean thermohaline circula- Harris SA (1990) Long-term air and ground temperature re- tion. Nature 393:673–676 cords from the Canadian Cordillera and the probable effects Haug GH et al (2001) Southward migration of the Intertropical of mositure changes. In: Proceedings, Fifth Canadian Per- Convergence Zone through the Holocene. Science 293:1304– mafrost Conference . Collection Nordicana 54:151– 1308 158. https://doi.org/10.5885/464033ND-E650BFA9E Haug GH et al (2003a) Climate and the collapse of the Maya Harris SE, Mix AC (1999) Pleistocene precipitation balance in Civilization. Science 299:1731–1735 the amazon basin recorded in deep sea sediments. Quat Res 51:14–26 Haug GH et al (2003b) Climate and the Maya. PAGES News 11(2–3):28–30 Harrison S, Glasser NF (2011) The pleistocene Glaciations of Chile. In: Ehlers J et al (Hrsg) Quaternary Glaciations— Haug GH et al (2005) North Pacific seasonality and the glacia- extent and chronology. A closer look. Elsevier, Amsterdam, tion of North America 2.7 million years ago. Nature 433:821– S 739–756 825 Harrison SP et al (2016) What have we learnt from palaeocli- Hauthal R (1906) Quartäre Vergletscherung der Anden in Boli- mate simulations? J Quat Sci 31:363–385 vien und Peru. Zeitschrift Gletscherkd 1906:230 682 Literatur

Hauthal R (1911) Reisen in Bolivien und Peru, ausgeführt Spätglazials (Wisconsin) und Holozäns. Erdkunde 27:161– 1908. Wissenschaftliche Veröffentlichungen Ges Für Erdkd 180 Zu Leipz 7:1–247 Heine K (1974) Bemerkungen zu neueren chronostratigraphi- Hays J et al (1976) Variations in the earth’s orbit: Pacemaker of schen Daten zum Verhältnis glazialer und pluvialer Klimabe- the ice ages. Science 194:1121–1132 dingungen. Erdkunde 28:303–312 Haywood JM et al (2008) Overview of the dust and biomass- Heine K (1975a) Permafrost am Pico de Orizaba/Mexiko. Eis- burning experiment and African monsoon multidisciplina- zeitalt Gegenwart 26:212–217 ry analysis special observing period-0. J Geophys Res 113:D00C17. https://doi.org/10.1029/2008JD010077 Heine K (1975b) Studien zur jungquartären Glazialmorpholo- gie mexikanischer Vulkane – mit einem Ausblick auf die He F et al (2013) Northern Hemisphere forcing of Southern He- Klimaentwicklung. Das Mexiko-Projekt der Deutschen For- misphere climate during the last deglaciation. Nature 494:81– schungsgemeinschaft VII. Steiner, Wiesbaden 85 Heine K (1976a) Auf den Spuren der Eiszeit in Mexiko. Nat He Y et al (2016) Radiocarbon constraints imply reduced carbon Mus 106:289–298 uptake by soils during the 21st century. Science 353:1419– 1424 Heine K (1976b) Blockgletscher- und Blockzungen- Generationen am Nevado de Toluca, Mexiko. Die Erde Hearty PJ et al (1999) A ~20m middle Pleistocene sea level 107:330–352 highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice. Geology 27:375–378 Heine K (1976c) Changes in climate in the Central Mexican Heaton THE et al (1983) Origin and history of nitrate in con- Highland during the Upper Pleistocene and Holocene: Evi- fined groundwater in the western Kalahari. J Hydrol (Amst) dence from glacial morphology and tephrochronology of the 62:243–262 volcanoes. XXIII Intern. Geogr. Congr., Moskau 1976, Vol. 1 (Geomorphology and Palaeogeography), S 298–301 Hecky RE, Degens ET (1973) Late Pleistocene-Holocene chem- ical stratigraphy and paleolimnology of the Rift Valley lakes Heine K (1976d) Schneegrenzdepressionen, Klimaentwicklung, of central Africa. Woods Hole Ocean Inst Tech Rep. https:// Bodenerosion und Mensch im zentralmexikanischen Hoch- doi.org/10.1575/1912/4362 land im jüngeren Pleistozän und Holozän. Zeitschrift Geo- morphol Suppl 24:160–176 Hedrick KA et al (2011) Towards defining the transition in style and timing of Quaternary glaciation between the monsoon- Heine K (1977) Beobachtungen und Überlegungen zur eiszeitli- influenced Greater Himalaya and the semi-arid Transhimala- chen Depression von Schneegrenze und Strukturbodengrenze ya of Northern India. Quat Int 236:21–33 in den Tropen und Subtropen. Erdkunde 31:161–178 Heffernan O (2010) The climate machine. Nature 463:1014– Heine K (1978a) Jungquartäre Pluviale und Interpluviale in der 1016 Kalahari (südliches Afrika). Palaeoecol Africa 10:31–39 Heffernan O (2016) The mystery of the expanding tropics. Na- Heine K (1978b) Radiocarbon chronology of late Quaternary ture 530:20–22 Lakes in the Kalahari, Southern Africa. Catena 5:145–149 Hegglin MI et al (2014) Vertical structure of stratospheric water Heine K (1979) Reply to Cooke’s discussion of: K. Heine: vapour trends derived from merged satellite data. Nat Geosci Radiocarbon Chronology of Late Quaternary Lakes in the 7:768–776 Kalahari, Southern Africa. Catena 6:259–266 Heim A (1885) Handbuch der Gletscherkunde. Engelhorn, Heine K (1980a) Quartäre Pluvialzeiten und klimamorphologi- Stuttgart scher Formenwandel in den Randtropen (Mexiko, Kalahari). Heine JT (1993) A reevaluation of the evidence for a Younger Arbeiten aus dem Geographischen Institut der Universität des Dryas climatic reversal in the tropical Andes. Quat Sci Rev Saarlands, Bd. 29, S 135–157 12:769–779 Heine K (1980b) Wann regnete es in der Kalahari? Umsch Wiss Heine JT (1995) Comments on C.M. Clapperton’s “Glacier re- Tech 80:250–251 advances in the Andes at 12,500–10,000 yr BP: implications Heine K (1980c) Studien zur jungpleistozänen Klima- und for mechanism of Late-glacial climatic change (JQS 8, 197– Landschaftsentwicklung der Kalahari, südliches Afrika. 42. 215)”. J Quat Sci 10:87–88 Deutscher Geographentag 1979, Tagungsberichte und wis- Heine K (1970) Einige Bemerkungen zu den Liefergebieten senschaftliche Abhandlungen, Göttingen. Steiner, Wiesba- und Sedimentationsräumen der Lösse im Raum Marbur- den, S 281–283 g/Lahn aufgrund tonmineralogischer Untersuchungen. Erd- Heine K (1981) Aride und pluviale Bedingungen während der kunde 24:180–194 letzten Kaltzeit in der Südwest-Kalahari (südliches Afrika). Heine K (1973) Zur Glazialmorphologie und präkeramischen Ein Beitrag zur klimagenetischen Geomorphologie der Dü- Archäologie des mexikanischen Hochlandes während des nen, Pfannen und Täler. Z Geomorphol 38(Suppl):1–37 Literatur 683

Heine K (1982) The Main Stages of the Late Quaternary Evo- In: Slaymaker O (Hrsg) Steepland Geomorphology. Wiley, lution of the Kalahari Region, Southern Africa. Palaeoecol Chichester, S 257–278 Africa 15:53–76 Heine K (1995b) Late quaternary glacier advances in the Ecua- Heine K (1983a) Führt die Quartärforschung zu nicht- dorian Andes: a preliminary report. Quat S Am Antarct aktualistischen Modellvorstellungen in der Geomorphologie? Peninsula 9:1–22 Colloquium Geogr 16:93–121 Heine K (1995c) Paläoklimatische Informationen aus südwest- Heine K (1983b) Mesoformen der Periglazialstufe der semihu- afrikanischen Böden und Oberflächenformen. Geomethodica miden Randtropen, dargestellt an Beispielen der Cordillera (= Basl Geomethodisches Colloquium) 20:27–74 Neovólcanica, Mexiko. Abh. Akad. Wiss. Göttingen, Math.- Heine K (1996) The extent of the last glaciation in the Bolivian Phys. Kl. 3. Folge, Nr. 35, S 403–424 Andes (Cordillera Real) and paleoclimatic implications. Zeit- Heine K (1984) Comment on “Pleistocene glaciation of volcano schrift Geomorphol Suppl 104:187–202 Ajusco, Central Mexico, and comparison with the Standard Heine K (1998a) Neue Ergebnisse der Paläoklimaforschung in Mexican Glacial Sequence” by SIDNEY E. WHITE and SAL- den Tropen und Subtropen (Lateinamerika, südliches Afri- VATO R E VALASTRO, Jr. Quat Res 22:242–246 ka). In: Karrasch H et al (Hrsg) Globaler Wandel – Welterbe. Heine K (1985) Neue absolute Daten zur holozänen Gletscher- HGG-Journal 13, S 19–44 , Vegetations- und Klimageschichte mexikanischer Vulkane. Regensbg Geogr Schr 19/20:79–92 Heine K (1998b) Climate change over the past 135,000 years in the Namib desert (Namibia) derived from proxy data. Palaeo- Heine K (1987) Zum Alter jungquartärer Seespiegelschwankun- ecol Africa 25:171–198 gen in der Mittleren Kalahari, südliches Afrika. Palaeoecol Africa 18:73–101 Heine K (1998c) Geomorphologische Beobachtungen zur Be- siedlungsgeschichte der Neuen Welt: Das Problem des “eis- Heine K (1988a) Late Quaternary glacial chronology of the Me- freien Korridors”. Regensbg Beiträge Zur Prähistorischen xican volcanoes. Die Geowissenschaften 6:197–205 Archäologie 5:1–22 Heine K (1988b) Southern African palaeoclimates 35-25 ka ago: Heine K (2000) Tropical South America during the Last Gla- a preliminary summary. Palaeoecol Africa 19:305–315 cial Maximum: evidence from glacial, periglacial and fluvial records. Quat Int 72:7–21 Heine K (1988c) Klimagang, Geomorphodynamik und Kultur- entwicklung in Zentralmexiko. Jahrb Geogr Ges Zu Hann Jb Heine K (2001) Fließgewässer und Flußauen. Eine Einführung 1988:189–211 zum Symposium “Fließgewässer und Flußauen – schützens- würdige Naturlandschaften und/oder moderne Wasserstra- Heine K (1990) Some observations concerning the age of the ßen?”. Zeitschrift Geomorphol Suppl 124:1–24 dunes in the western Kalahari and palaeoclimatic implica- tions. Palaeoecol Africa 21:161–178 Heine K (2002) Sahara and Namib/Kalahari during the late Quaternary – inter-hemispheric contrasts and comparisons. Heine K (1991) Paläoklima und Reliefentwicklung der Namib- Zeitschrift Geomorphol Suppl 126:1–29 wüste im überregionalen Vergleich. Geomethodica (basler Geomethodisches Colloquium) 16:53–92 Heine K (2003) Paleopedological evidence of human-induced environmental change in the Puebla-Tlaxcala area (Mexico) Heine K (1992) On the ages of humid Late Quaternary phases during the last 3,500 years. Revista Méxicana De Ciencias in southern African arid areas (Namibia, Botswana). Palaeoe- Geológicas 20:235–244 colology Africa 23:149–164 Heine K (2004a) reconstructions in the Namib desert, Na- Heine K (1994a) Present and past geocryogenic processes in Mexico. Permafr Periglac Process Mexico 5:1–12 mibia, and little ice Age climatic implications: evidence from slackwater deposits and desert soil sequences. In: Kale VS Heine K (1994b) The Mera site revisited: Ice-Age Amazon in et al (Hrsg) Progress in palaeohydrology: focus on monsoo- the light of new evidence. Quat Int 21:113–119 nal areas. Special Issue of the Journal Geological Society of India, Bd. 64, S 535–547 Heine K (1994c) Eis am Äquator – Wasser in der Wüste. For- schungsmagazin Fre Regensbg 3(4):46–61 Heine K (2004b) Late quaternary glaciations of Ecuador. In: Eh- lers J, Gibbard PL (Hrsg) Quaternary glaciations – extent and Heine K (1994d) The late-glacial moraine sequences in Mexico: chronology, part III. Developments in Quaternary Science 2. is there evidence for the Younger Dryas event? Palaeogeogr Elsevier, Amsterdam, S 165–169 Palaeoclimatol Palaeoecol 112:113–123 Heine K (2004c) Little ice Age climatic fluctuations in the Heine K (1994e) Bodenzerstörung – ein globales Umweltpro- Namib desert, Namibia, and adjacent areas: evidence of ex- blem. Akademie Wissenschaften Lit Mainz Abhandlungen ceptionally large floods from deposits and desert Math Kl 1994(2):65–91 soil sequences. In: Smykatz-Kloss W, Felix-Henningsen P Heine K (1995a) Bedded slope deposits with respect to the late (Hrsg) Palaeoecology of quaternary Drylands. Lecture Notes glacial sequence in the high Andes of Ecuador and Bolivia. of Earth Sciences 102, S 137–165 684 Literatur

Heine K (2004d) Late Quaternary glaciations of Bolivia. In: Heine K, Walter R (1996) Gypcretes of the central Namib Desert Ehlers J, Gibbard PL (Hrsg) Quaternary Glaciations – Ex- (Namibia). Palaeoecol Africa 24:173–201 tent and Chronology, Part III. Developments in Quaternary Heine K et al (2014) Why ‘Younger Dryas’, why not ‘Antarctic Science 2. Elsevier, Amsterdam. S 83–88 Cold Reversal’? Eksteenfontein revisited. Palaeoecol Africa Heine K (2005) Holocene climate of Namibia: a review based 32:163–183 on geoarchives. African Study Monogr Suppl 30:119–133 Heinrich H (1988) Origin and consequences of cyclic ice rafting Heine K (2010) Dürren, Bevölkerungskollaps und Bodenerosi- in the northeast Atlantic Ocean during the past 130,000 years. on: Epidemien und Umweltveränderungen in Zentralmexiko Quat Res 29:142–152 vor 400 bis 500 Jahren. Geoöko 31:162–197 Heiri O et al (2009) Stable isotopes in chitinous fossils of aqua- Heine K (2011a) Late quaternary glaciations of Ecuador. In: tic invertebrates. PAGES News 17(3):100–102 Ehlers J et al (Hrsg) Quaternary glaciations – extent and chro- nology, a closer look. Developments in Quaternary Science Helgren DM (1978) Environmental history in the northwest Ka- 15, S 803–813 lahari – a preliminary report. Palaeoecol Africa 10:65–66 Heine K (2011b) Late Quaternary glaciations in Bolivia: com- Helle G, Panferov O (2004) Tree-rings, isotopes, climate and ments on some new approaches to dating morainic sequences. environment: TRICE. PAGES News 12(2):22–23 In: Ehlers J et al (Hrsg) Quaternary glaciations – extent Helmens KF (1988) Late Pleistocene glacial sequence in the and chronology, A closer look. Developments in Quaternary area of the high plain of Bogotá (Eastern Cordillera, Colom- Science 15, S 757–772 bia). Palaeogeogr Palaeoclimatol Palaeoecol 67:263–283 Heine K, Geyh MA (1984) Radiocarbon dating of speleothem Helmens KF (1990) Neogene-Quaternary geology of the high from the Rössing cave, Namib desert, and palaeoclimatic im- plain of Bogotá, Eastern Cordillera, Colombia (stratigra- plications. In: Vogel JC (Hrsg) Late cainozoic palaeoclimates phy, paleoenvironments and landscape evolution). Diss Bot of the southern hemisphere. Balkema, Rotterdam, S 465–470 163:1–202 14 Heine K, Geyh MA (2002) Neue C-Daten zur Jüngeren Dryas- Helmens KF (2011) Quaternary glaciations of Colombia. In: zeit in den ecuadorianischen Anden. Eiszeitalt Gegenwart Ehlers J et al (Hrsg) Quaternary glaciations – extent and chro- 51:33–50 nology, a closer look. Developments in Quaternary Science Heine K, Heine JT (1996) Late glacial climatic fluctuations in 15, S 815–834 Ecuador: glacier retreat during the Younger Dryas time. Arct Helmholtz Perspektiven (2014) Forschung. “Wir stehen viel- Alp Res 28:496–501 leicht am Anfang einer evolutionären Krise”. Helmholtz Heine K, Heine JT (2002) A paleohydrologic reinterpretation of Perspektiven 2 (März–April 2014):16–20 the Homeb Silts, Kuiseb River, central Namib Desert (Nami- Hemming SR (2004) Heinrich events: massive late Pleistocene bia) and paleoclimatic implications. Catena 48:107–130 detritus layers of the North Atlantic and their global climate Heine K, Ohngemach D (1976) Die Pleistozän/Holozän-Grenze imprint. Rev Geophys 42(RG1):5–2004. https://doi.org/10. in Mexiko. Münstersche Forschungen Zur Geol Paläontolo- 1029/2003RG000128 gie 38/39:229–251 Hempson GP et al (2015) A continent-wide assessment of the Heine K, Schönhals E (1973) Entstehung und Alter der “toba”- form and intensity of large mammal herbivory in Africa. Sedimente in Mexiko. Eiszeitalt Gegenwart 23/24:201–215 Science 350:1056–1061 Heine K, Vázquez-Selem L (2002) Das 8,2 ka-Ereignis in Henderson GM (2006) Caving in to new chronologies. Science Mexiko: Gletscherverhalten und klimatische Folgerungen. 313:620–622 Schriftenr Dtsch Geol Ges 21:154 Hendy EJ et al (2002) Abrupt decrease in tropical pacific sea Heine K, Völkel J (2009) Desert flash flood series – Slackwa- surface salinity at end of little Ice Age. Science 295:1511– ter deposits and floodouts in Namibia: their significance for 1514 paleoclimatic reconstructions. Zentralblatt Für Geol Paläon- Herget J (2012) Am Anfang war die Sintflut. Hochwasserkata- tologie Teil I 2007(3–4):287–308 strophen in der Geschichte. WBG, Darmstadt Heine K, Völkel J (2010) Soil clay minerals in Namibia Hermanowski B et al (2012) Environmental changes in south- and their significance for the terrestrial and marine past eastern Amazonia during the last 25,000 yr revealed from a global change research. African Study Monogr (Kyoto) paleoecological record. Quat Res 77:138–148 40(Suppl):15–34 Hesse PP (1994) The record of continental dust from Australia Heine K, Völkel J (2011) Extreme floods around AD 1700 in the in Tasman sea sediments. Quat Sci Rev 13:257–272 northern Namib Desert, Namibia, and in the Orange River catchment, South Africa, forced by a decrease of solar irra- Hesse PP, McTainsh GH (2003) Australian dust deposits: mo- diance during the Little Ice Age? Geogr Polonica 84(Special dern processes and the quaternary record. Quat Sci Rev Issue Part 1):61–80 22:2007–2035 Literatur 685

Hesse PP et al (2004) Late Quaternary climates of the Australian Hodell DA et al (1995) Possible role of climate in the collapse arid zone: a review. Quat Int 118–119:87–102 of classic Maya civilization. Nature 375:91–394 Hettner A (1888) Reisen in den columbianischen Anden. Dun- Hodell DA et al (2001) Solar forcing of drought frequency in cker & Humblot, Leipzig. the Maya lowlands. Science 292:1367–1370 Hettner A (1889) Dritter Bericht von Herrn Alfred Hettner über Hodell DA et al (2005) Terminal Classic drought in the northern seine Reisen in Peru und Bolivien. Verhandlungen Ges Für Maya lowlands inferred from multiple sediment cores in Lake Erdkd Berl 16:269–276 Chichancanab (México). Quat Sci Rev 24:1413–1427 Hettner A (1892) Die Kordillere von Bogotá. Gotha, Perthes. Hodell DA et al (2008) An 85-ka record of climate change in VI, 131 S. [Übersetzung von E. Guhl (1966). La Cordillera lowland Central America. Quat Sci Rev 27:1152–1165 de Bogotá. Resultados de Viajes y Estudios. Bogotá, Talleres Hodgson DA, Convey P (2005) A 7000-year record of oribatid Gráficos del Banco de la República. 351 S.] mite communities on a maritime-antarctic island: responses Heusser CJ (1966) Polar hemispheric correlation: palynological to climate change. Arct Antarct Alp Res 37:239–245 evidence from Chili and the Pacific Northwest of Ameri- Hodgson DA, Sime LC (2010) Southern westerlies and CO . ca. In: Swayer JS (Hrsg) World climate from 8000 to 0 BP. 2 Nat Geosci 3:666–667 Proceedings international symposium world climate. Royal Meteorological Society, London, S 124–142 Hodgson JA et al (2014) Early back-to-Africa migration into the Horn of Africa. PLoS Genet. https://doi.org/10.1371/journal. Heusser CJ, Rabassa J (1987) Cold climatic episode of Younger pgen.1004393 Dryas age in Tierra del Fuego. Nature 328:609–611 Hoegh-Guldberg O et al (2007) Coral reefs under rapid climate Heusser CJ, Streeter SS (1980) A temperature and precipitation change and ocean acidification. Science 318:1737–1742 record of the past 16 000 years in southern Chile. Science 210:1345–1347 Hoek H, Steinmann G (1905) Erläuterungen zur Routenkarte der Expedition Steinmann, Hoek, v. Bistram in den Anden Heusser CJ et al (1981) Temperature and precipitation record in von Bolivien 1903–04. Petermanns Geogr Mitt 52:1–13, 25– southern Chile extended to ~43,000 yr ago. Nature 294:65–67 31 Hewitt K et al (2011) Rock avalanches and the pace of late Hoelzmann P et al (2004) Palaeoenvironmental changes in the Quaternary development of river valleys in the Karakoram arid and subarid belt (Sahara-Sahel-Arabian Peninsula) from Himalaya. Geol Soc Am Bull 123:1836–1850 150 kyr to present. In: Batterbee RW et al (Hrsg) Past climate Heyman J et al (2009) Palaeoglaciation of Bayan Har Shan, variability through Europe and Africa. Springer, Dordrecht, S northeastern Tibetan Plateau: glacial geology indicates ma- 219–256 ximum extents limited to ice cap and ice field scales. J Quat Hoffmann J et al (2014) Disentangling abrupt deglacial hydro- Sci 24:710–727 logical changes in northern South America: insolation versus Heyman J et al (2011) Too young or too old: evaluating cos- oceanic forcing. Geology 42:579–582 mogenic exposure dating based on an analysis of compiled Hogan J (2007) Cosmic-ray results auger well for future. Nature boulder exposure ages. Earth Planet Sci Lett 302:71–80 448:7–8 Hibbert FD et al (2016) Coral indicators of past sea-level Hoganson JW, Ashworth AC (1992) Fossil beetle evidence for change: a global repository of U-series dated benchmarks. climatic change 18,000–10,000 years B.P. in south-central Quat Sci Rev 145:1–56 Chile. Quat Res 37:101–116 Higgins JA et al (2015) Atmospheric composition 1 million Holbourn A et al (2005) Impacts of orbital forcing and at- years ago from blue ice in the Allan Hills, Antarctica. Proc mospheric carbon dioxide on Miocene ice-sheet expansion. Natl Acad Sci 112:6887–6891 Nature 438:483–487 Hill JC, Condron A (2014) Subtropical iceberg scours and melt- Holdaway RN, Jacomb C (2000) Rapid extinction of the water routing in the deglacial western North Atlantic. Nat moas (aves: dinornithiformes): model, test, and implications. Geosci 7:806–810 Science 287:2250–2254 Hillesheim MB et al (2005) Climate change in lowland Central Hollesen J et al (2015) Permafrost thawing in organic Arctic America during the late deglacial and early Holocene. J Quat soils accelerated by ground heat production. Nat Clim Chang Sci 20:363–376 5:574–578 Hipondoka MHT (2005) The Development and Evolution of Holmgren CA et al (2001) Holocene vegetation history from Etosha Pan, Namibia. Unveröff. Dissertation Universität fossil rodent middens near Arequipa, Peru. Quat Res 56:242– Würzburg. 152 S 251 Hodell DA (2011) Maya megadrought? Nature 479:45 Holmgren CA et al (2006) A 36,000-yr vegetation history from Hodell DA et al (1991) Reconstruction of Caribbean climate the Peloncillo Mountains, southeastern Arizona, USA. Pa- change over the past 10,500 years. Nature 352:790–793 laeogeogr Palaeoclimatol Palaeoecol 240:405–422 686 Literatur

Holmgren K et al (1999) A 3000-year high-resolution record Hora JM et al (2007) Volcano evolution and eruptive flux on the of palaeoclimate for north-eastern South Africa. Holocene thick crust of the Andean Central Volcanic Zone: 40Ar/39Ar 9:295–309 constraints from Volcán Parinacota, Chile. Geol Soc Am Bull 119(3):343–362 Holmgren K et al (2003) Persistent millennial-scale climatic variability over the past 25,000 years in southern Africa. Quat Hori N (1977) Weathering and cuirasses in the Yaoundé area and Sci Rev 22:2311–2326 geographical variation of weathering profile and superficial deposits. In: Kadomura H (Hrsg) Geomorphological studies Hooghiemstra H (1984) Vegetational and climatic history of the in the forest and Savanna areas of Cameroon. Laboratory high plain of Bogotá, Colombia: a continuous record of the of fundamental research, division of environmental structure, last 3.5 million years. Diss Bot 79:1–368 graduate school of science, Hokkaido University, special pu- Hooghiemstra H (1996) Aspects of neogene-Quaternary envi- blication 1, S 67–71 ronmental and climatic change in equatorial and Saharan Horiuchi K et al (2008) Ice core record of 10Be over the past Africa. Palaeoecol Africa 24:115–132 millennium from Dome Fuji, Antarctica: a new proxy record Hooghiemstra H (1989) Quaternary and Upper-Pliocene glacia- of past solar activity and a powerful tool for stratigraphic dat- tions and forest development in the tropical Andes: evidence ing. Quat Geochronol 3:253–261 from a long high-resolution pollen record from the sedimen- Horn SP (1990) Timing of deglaciation in the Cordillera de Tala- tary basin of Bogotá, Colombia. Palaeogeogr Palaeoclimatol manca, Costa Rica. Clim Res 1:81–83 Palaeoecol 72:11–26 Horowitz A (1992) Palynology of Arid lands. Elsevier, Amster- Hooghiemstra H (1997) Climatic change at low elevations: ex- dam pedition to the savannas and rain forest of Colombia. PAGES News 5(3):11 Hostetler SW, Clark PU (2000) Tropical climate at the last gla- cial maximum inferred from glacier mass-balance modeling. Hooghiemstra H, Cleef AM (1995) Pleistocene climatic change Science 290:1747–1750 and environmental and generic dynamics in the north Ande- an montane forest and paramo. In: Churchill SP et al (Hrsg) Hotchkiss S, Juvik JO (1999) A Late-Quaternary pollen record Biodiversity and conservation of neotropical montane forests. from Ka’au crater, O’ahu, Hawai’i. Quat Res 52:115–128 The New York Botanical Garden, New York, S 35–49 Hovenden MJ et al (2014) Seasonal not annual rainfall deter- mines grassland biomass response to carbon dioxide. Nature Hooghiemstra H, van ’t Veer R (1999) A 0.6 million year pollen 511:583–586 record from the Colombian Andes. PAGES News 7(3):4–5 Hövermann J (1988) The Sahara, Kalahari and Namib deserts: Hooijer DA (1974) Quaternary mammals west and east of Wal- a geomorphological comparison. In: Dardis GF, Moon BP lace’s Line. Neth J Zool 25:46–56 (Hrsg) Geomorphological studies in southern Africa. Balke- LeB. Hooke R (2005) Principles of glacier mechanics, 2. Aufl. ma, Rotterdam, S 71–83 Cambridge University Press, Cambridge Hövermann J et al (1992) Neue Befunde zur Paläoklimatologie Lebreiro SM et al (1996) Evidence for Heinrich layers off Nordafrikas und Zentralasiens. Abhandlungen Braunschw Portugal (Tore : 39ıN, 12ıW). Wissenschaftlichen Ges 43:127–150 131:47-56 Hovey EO (1907) The geological society of America. Science Hope GS (1996) Quaternary change and historical biogeogra- 25:761–775 phy of Pacific Islands. In: Keast A und Miller SE (Hrsg) The Hsiang SM et al (2011) Civil conflicts are associated with the Origin and Evolution of Pacific Island Biotas, New Guinea global climate. Nature 476:438–441 to Eastern Polynesia: Patterns and Process. SPB Publishing, Amsterdam, S 165–190 Hu X-F et al (2009) Influence of the aging of Fe oxides on the decline of magnetic susceptibility of the Tertiary red clay in Hope GS, Peterson JA (1975) Glaciation and vegetation in the the Chinese Loess Plateau. Quat Int 209:22–30 high New Guinea mountains. In: Suggate RP, Cresswell MM (Hrsg) Quaternary studies. The Royal Society of New Zea- Huang J et al (2014) Climate effects of dust aerosols over East land, Bulletin 13, S 155–162 Asian arid and semiarid regions. J Geophys Res Atmospheres 119:11398–11416 Hope G et al (2004) History of vegetation and habitat change in the Austral-Asian region. Quat Int 118–119:103–126 Huang S et al (1999) Global database of Borehole temperatures and climate reconstructions. PAGES News 7(2):18–19 Hopkin M (2005) Antarctic ice puts climate predictions to the Huang S et al (2000) Temperature trends over the past five test. Nature 438:536–537 centuries reconstructed from borehole temperatures. Nature Hopkin M (2007) Missing gas saps plant theory. Nature 447:11 403:756–758 Hoppenrath M et al (2014) Marine benthic dinoflagellates – Huang S (2006) Consolidating high- and low-resolution infor- unveiling their worldwide biodiversity. Kleine Senckenberg- mation from different sources into a Northern Hemisphere Reihe. Schweizerbarth, Stuttgart. climate reconstruction. PAGES News 14(2):22–24 Literatur 687

Huber M, Knutti R (2012) Anthropogenic and natural warming Hupfer P, Kuttler W (Hrsg) (1998) Witterung und Klima. Teub- inferred from changes in Earth’s energy balance. Nat Geosci ner, Stuttgart 5:31–36 Hürkamp K et al (2011) Late Quaternary environmental chan- Huber M, Knutti R (2014) Natural variability, radiative forcing ges from aeolian and fluvial geoarchives in the Southwestern and climate response in the recent hiatus reconciled. Nat Geo- Kalahari, South Africa: Implications for past African climate sci 7:651–656 dynamics. South African J Geol 114:459–474 Huffman TN, Woodborne S (2015) Archaeology, baobabs and Hurlbert SH, Chang CCY (1984) Ancient Ice Islands in Salt drought: cultural proxies and environmental data from the Lakes of the Central Andes. Science 224:299–302 Mapungubwe landscape. Holcene. https://doi.org/10.1177/ 0959683615609753 Hurrell JW et al (Hrsg) (2003) The North Atlantic oscillation: climatic significance and environmental impact. Geophysical Hughen KA et al (1996) Rapid climate changes in the tropical Monograph Series 134. AGU (American Geophysical Union) Atlantic region during the last deglaciation. Nature 380:51– 54 Hutchins DA (2011) Forecasting the rain ratio. Nature 476:41– 42 Hughen KA et al (2000) Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290:1951–1954 Huusko A, Hicks S (2009) Conifer pollen abundance provides a proxy for summer temperature: evidence from the latitudinal Hughen K et al (2004) 14C activity and global carbon cycle forest limit in Finland. J Quat Sci 24:522–528 changes over the past 50,000 years. Science 303:202–207 Huybers P, Curry W (2006) Links between annual, Milanko- Hughes MK et al (2002) The ancient Bristlecone pines of vitch and continuum temprature variability. Nature 441:329– Methuselah walk, , as a natural archive of past en- 332 vironment. PAGES News 10(1):16–17 Huybers P, Denton G (2008) Antarctic temperature at orbital Hulbe C (2010) Extreme iceberg generation exposed. Nat Geo- timescales controlled by local summer duration. Nat Geosci sci 3:80–81 1:787–792 Humboldt A von und Bonpland A (1810) Vues des Cordillères Hvidberg CS (2016) Ice sheet in peril. Science 351:562–563 et Monumens des Peuples Indigènes de l’Amerique. Paris [de l’Imprimerie de JH Stône] chez F Schoell. Two volumes Iles CE et al (2015) Volcanic eruptions and the global hydrolo- bound in one gical cycle. PAGES Mag 23(2):56–57 Humboldt A v (1978) Kosmos. Quellen u. Forsch. z. Gesch. d. Imbrie J, Palmer-Imbrie K (1981) Die Eiszeiten. Naturgewalten Geographie u. d. Reisen, 12. Brockhaus, Stuttgart verändern unsere Welt. Knauer, München Humboldt A v (2008) Werke. Darmstädter Ausgabe, hrsg. und Imbrie J et al (1984) The orbital theory of Pleistocene climate: komm. von Hanno Beck. 7 Abteilungen mit 10 Bänden. support from a revised chronology of the marine •18O record. 2. Aufl. Zus. LXXVIII, 3819 S In: Berger AL et al (Hrsg) Milankovitch and climate. Reidel, Dordrecht, S 269–305 Humboldt A v, Bonpland A (1807) Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer. Ineson S, Scaife AA (2009) The role of the stratosphere in the Cotta, Tübingen European climate response to El Niño. Nat Geosci 2:32–36 Humlum O (1988) Rock glacier appearance level and rock gla- Insel N et al (2009) Influence of the Andes Mountains on South cier initiation line altitude: a methodological approach to the American moisture transport, convection, and precipitation. study of rock glaciers. Arct Alp Res 20:160–178 Clim Dyn. https://doi.org/10.1007/s00382-009-0637-1 Humlum O (1997) Active layer thermal regime at three rock IPCC (1990) Climate change. The IPCC scientific assessment, glaciers in Greenland. Permafr Periglac Process 8:383–408 working group 1 report. Intergovernmental Panel on Climate Change 1990 Humlum O (1998) The climatic significance of rock glaciers. Permafr Periglac Process 9:375–395 IPCC (2007) Zusammenfassung für politische Entschei- dungsträger. In: Solomon S et al (Hrsg) Klimaände- Huntingford C et al (2013) Simulated resilience of tropical ra- rung 2007: Wissenschaftliche Grundlagen. Beitrag der Ar- inforests to CO -induced climate change. Nat Geosci 6:268– 2 beitsgruppe zum Vierten Sachstandsbericht des Zwischen- 273 staatlichen Ausschusses für Klimaänderung (IPCC). Cam- Huntington E (1915) Civilization and climate. Yale University bridge University Press, Cambridge (Deutsche Übersetzung Press durch ProClim-, österreichisches Umweltbundesamt, deut- sche IPCC-Koordinationsstelle, Bern/Wien/Berlin. 18 S) Huntsman-Mapila P et al (2006) Use of the geochemical and biological sedimentary record in establishing palaeo- IPCC (2011) Summary for policymakers. In: Field CB et~al environments and climate change in the Lake Ngami basin, (Hrsg) Intergovernmental Panel on Climate Change, Speci- NW Botswana. Quat Int 148:51–64 al Report on Managing the Risks of Extreme Events and 688 Literatur

Disasters to Advance Climate Change Adaptation. Cam- Jankaew K et al (2008) Medieval forewarning of the 2004 Indian bridge University Press, Cambridge, United Kingdom and Ocean tsunami in Thailand. Nature 455:1228–1231 New York, NY, USA Jankowski NR et al (2016) A late Quaternary vertebrate depo- IPCC (2013) Summary for policymakers. In: Stocker TF et al sit in Kudjal Yolgah Cave, south-western Australia: refining (Hrsg) Climate change 2013: the physical science basis. Con- regional late Pleistocene extinctions. J Quat Sci 31:538–550 tribution of working group to the fifth assessment report of the intergovernmental panel on climate change. Cambridge Jansen E et al (2007) Palaeoclimate. In: Solomon S et al (Hrsg) University Press, Cambridge Climate change 2007: the physical science basis; contribu- tion of working group I to the fourth assessment report of IPICS (2016) International Partnerships in ice core sciences. Se- the Intergovernmental Panel on Climate Change. Cambridge cond open conference 7-11 March 2016, Hobart, Australia. University Press, Cambridge, S 433–497 http://www.ipics2016.org/. Zugegriffen: 11.09.2018 Jansen JHF et al (1984) Late Quaternary and cli- Iriondo M, Latrubesse E (1994) A probable scenario for a dry matology of the Zaire-Congo fan and the adjacent eastern climate in Central Amazonia during the Late Quaternary. Angola basin. Neth J Sea Res 17:201–249 Quat Int 21:121–128 Jansen JHF et al (1986) A mid-Brunhes climatic event: long Irvine EA et al (2014) A simple framework for assessing term changes in global atmosphere and ocean circulation. the trade-off between the climate impact of aviation carbon Science 232:619–622 dioxide emissions and contrails for a single flight. Environ Res Lett 9(6):64021. https://doi.org/10.1088/1748-9326/9/6/ Jasechko S (2017) Global aquifers dominated by fossil ground- 064021 waters but wells vulnerable to modern contamination. Nat Geosci 10:425–429 Ishikawa M et al (2001) Genetic differences of rock glaciers and the discontinuous mountain permafrost zone in Kan- Jasechko S et al (2013) Terrestrial water fluxes dominated by chanjunga Himal, eastern Nepal. Permafr Periglac Process transpiration. Nature 496:347–350 12:243–253 Jennerjahn TC et al (2004) Asynchronous terrestrial and mari- Islebe GA et al (1996) A Holocene vegetation history from low- ne signals of climate change during Heinrich events. Science land Guatemala. Holocene 6:265–271 306:2236–2239 Israde-Alcántara I et al (2005) Lake level change, climate, and Jerolmack DJ et al (2012) Internal boundary layer model for the the impact of natural events: the role of seismic and volcanic evolution of desert dune fields. Nat Geosci 5:206–210 events in the formation of the Lake Patzcuaro Basin, Michoa- Jerret M (2015) The death toll from air-pollution sources. Na- can, Mexico. Quat Int 135:35–46 ture 525:330–331 Iturrizaga L (2015) Extremereignisse aus Fels und Eis im Hoch- Jessen CA et al (2007) Climate forced atmospheric CO2 var- gebirge. Geogr Rundsch 67(7–8):14–23 iability in the early Holocene: a stomatal frequency recon- Jacobson PJ et al (1995) Ephemeral rivers and their catchments. struction. Glob Planet Change 57:247–260 Desert Research Foundation of Namibia (DRFN), Windhoek Jin H et al (2000) Permafrost and climatic change in China. Glob Jacoby GC (1989) Overview of tree-ring analysis in tropical Planet Change 26:387–404 regions. IAWA Bull (International Assoc World Anat) 10:99– Jochmann H, Greiner-Mai H (1995) Klimazyklen, Erdkerndy- 108 namik und Schwerefeld. In: Helmholtz-Gemeinschaft Deut- Jäger F (1927) Die Etoschapfanne. Mitteilungen Aus Den Dtsch scher Forschungszentren (Hrsg) Paläoklima und Klimapro- Schutzgebieten 34(7):1–22 zesse. HGF, Bonn, S 30–31 Jäger F (1928) Afrika, 3. Aufl. Bibliographisches Institut, Leip- Johnsen SJ et al (1992) Irregular glacial interstadials recorded zig in a new Greenland ice core. Nature 359:311–313 Jäkel D (1978) Eine Klimakurve für die Zentralsahara. In: Johnson B (2013) Extinction promoted fire. Nat Geosci 6:595– Museen der Stadt Köln (Hrsg) Sahara, 10.000 Jahre zwi- 596 schen Weide und Wüste. Handbuch zu einer Ausstellung des Johnson BC et al (2016) The reduction of friction in long ru- Rautenstrauch-Joest-Museums für Völkerkunde. Museen der nout landslides as an emergent phenomenon. J Geophys Res. Stadt Köln, Köln, S 382–396 https://doi.org/10.1002/2015JF003751 Jameson J, Strohmenger C (2012) Relative Sea-Level Chan- Johnson GC, Lyman JM (2014) Oceanography: where’s the ges during the Late Pleistocene to Holocene of Qatar: heat? Nat Clim Chang. https://doi.org/10.1038/nclimate2409 Implications for Eustasy and Tectonics: Qatar Cen- ter for Coastal Research. ExxonMobil Research Qatar. Johnson TC (1996) Sedimentary processes and signals of past http://www.searchanddiscovery.com/pdfz/documents/2012/ climatic change in the large lakes of the East African rift 50704jameson/ndx_jameson.pdf.html valley. In: Johnson TC, Odada EO (Hrsg) The Limnology, Literatur 689

climatology and paleoclimatology of the East African lakes. Jordan E (1991) Die Gletscher der bolivianischen Anden. Stei- Gordon & Breach, , S 367–412 ner, Stuttgart Johnson TC, Odada EO (Hrsg) (1996) The limnology, climato- Jordan E (2003) Die Glazialforschungen Hans Meyers aus logy and Paleoclimatology of the East African lakes. Gordon heutiger Sicht. Wertung der wissenschaftlichen Leistungen & Breach, Meyers in den Hochanden von Ekuador aus aktueller Sicht und Ausblick auf die geographischen Forschungsergebnis- Johnson TC et al (1996) Late pleistocene desiccation of se der vergangenen 100 Jahre. In: Brogiato HP (Hrsg) Die lake Victoria and rapid evolution of cichlid fishes. Science Anden. Geographische Erforschung und künstlerische Dar- 273:1091–1093 stellung. 100 Jahre Andenexpedition von Hans Meyer und Johnson TC et al (2002) A high-resolution paleoclimate re- Rudolf Reschreiter 1903–2003. Wissenschaftliche Alpenver- cord spanning the past 25,000 years in southern East Africa. einshefte 37, S 159–193 Science 296:113–132 Jordan E, Hastenrath S (1998) Glaciers of Ecuador. United Johnson TC et al (2016) A progressively wetter climate in States Geological Survey, , Professional Paper southern East Africa over the past 1.3 million years. Nature 1386-I, S 131–150 537:220–224 Jordan E et al (1993) Pleistocene moraine sequences in diffe- Johnson WC (2014) Sequestration in buried soils. Nat Geosci rent areas of glaciation in the Bolivian Andes. Zentralblatt 7:398–399 Für Geol Paläontologie I 1/2/1993:455–470 Jolly D, Haxeltine A (1997) Effect of low glacial atmosphe- Jordan E et al (2003) Die Glazialforschungen Hans Meyers aus ric CO2 on tropical African montane vegetation. Science heutiger Sicht. Wertung der wissenschaftlichen Leistungen 276:786–788 Meyers in den Hochanden von Ekuador aus aktueller Sicht und Ausblick auf die geographischen Forschungsergebnisse Jomelli V et al (2009) Fluctuations of glaciers in the tropical An- der vergangenen 100 Jahre. Wissenschaftliche Alpenvereins- des over the last millennium and palaeoclimatic implications: hefte 37:159–193 a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:269– 282 Jourdan F et al (2007) The problem of inherited 40Ar*indat- ing impact glass by the 40Ar/39Ar method: Evidence from the Jomelli V et al (2011) Irregular tropical glacier retreat over Tswaing impact crater (South Africa). Geochim Cosmochim the Holocene epoch driven by progressive warming. Nature Acta 71:1214–1231 474:196–199 Jouzel J et al (1987) Vostok ice core: a continuous isotope tem- Jomelli V et al (2014) A major advance of tropical Andean gla- perature record over the last climatic cycle (160,000 years). ciers during the . Nature 513:224–228 Nature 329:403–407 Jones AM et al (2008) A community change in the algal Jouzel J et al (2007) Orbital and millennial antarctic climate var- endosymbionts of a scleractinian coral following a natural iability over the past 800,000 years. Science 317:793–796 bleaching event: field evidence of acclimatization. Proc R Soc B 275(1641):1359–1365 Juggins S (2013) Quantitative reconstructions in palaeolimnolo- gy: new paradigm or sick science? Quat Sci Rev 64:20–32 Jones MQW et al (1999) Modelling climatic change in South Africa from perturbed borehole temperature profiles. Quat Int Jullien E et al (2007) Low-latitude “dusty events” vs. high- 57/58:185–192 latitude “icy Heinrich events”. Quat Res 68:379–386 Jones N (2013) Catastrophes from the past will strike again – Joyce DA et al (2005) An extant cichlid fish radiation emerged we just do not know when. Nature 493:155–156 in an extinct Pleistocene lake. Nature 435:90–95 Jones PD et al (1998) High-resolution palaeoclimatic records Juyal N et al (2010) Late Quaternary fluvial aggradation and in- for the last millennium: interpretation, integration and com- cision in the monsoon-dominated Alaknanda valley, Central parison with General Circulation Model control-run tempera- Himalaya, Uttrakhand, India. J Quat Sci 25:1293–1304 tures. Holocene 8:455–471 Kääb A et al (2008) Climate change impacts on mountain gla- Jones PD et al (2001) The evolution of climate over the last ciers and permafrost. Glob Planet Change 56(1–2):VII–IX millennium. Science 292:662–667 Kadomura H (1980) Reconstruction of palaeoenvironments in Jones PD et al (2009) High-resolution palaeoclimatology of the tropical Africa during the Würm glacial maximum: a review. last millennium: a review of current status and future pro- Environ Sci Hokkaido 3(3):147–154 spects. Holocene 19:3–49 Kadomura H (1986) Late glacial – early holocene environmental Joordens JCA et al (2015) Homo erectus at Trinil on Java used changes in tropical Africa: a comparative analysis with deg- shells for tool production and engraving. Nature 518:228–231 laciation history. Geogr Reports Tokyo Metrop Univ 21:1–21 Jordan E (1983) Die Vergletscherung des Cotopaxi – Ecuador. Kadomura H (1995) Palaeoecological and palaeohydrologi- Zeitschrift Gletscherkd Glazialgeol 19:73–102 cal changes in the humid tropics during the last 20,000 690 Literatur

years, with reference to equatorial Africa. In: Gregory KJ Kaser J, Osmaston H (2002) Tropical glaciers. Cambridge Uni- et al (Hrsg) Global continental palaeohydrology. Wiley, New versity Press, Cambridge York, S 177–202 Kaser G et al (2004) Modern glacier retreat on Kilimanjaro as Kadomura H, Hori N (1978) Some notes on landforms and su- evidence of climate change: observations and facts. Int J Cli- perficial deposits in the forest and Savanna zones of inland matol 24:329–339 Cameroon. J Geogr 87(6):37–55 (In Japanisch) Kaser G et al (2010) Is the decline of ice on Kilimanjaro unpre- Kahlke HD (1981) Das Eiszeitalter. Urania, Leipzig cedented in the Holocene? Holocene 20:1079–1091 Kaiser E (1926) Die Diamantenwüste Südwest-Afrikas, zu- Kaufman D et al (2013) A regional view of global climate gleich Erläuterung zu einer geologischen Spezialkarte der change. Glob Chang 81:18–23 südl. Diamantenfelder. 2 Bände. Reimer, Berlin Kaufman YJ et al (2002) A satellite view of aerosols in the cli- Kaiser K-F (1993) Klimageschichte vom späten Hochglazial bis mate system. Nature 419:215–223 ins frühe Holozän, rekonstruiert mit Jahrringen und Mollus- kenschalen aus verschiedenen Vereisungsgebieten. Ziegler, Kaufmann A (1936) Ägypten und der englisch-ägyptische Su- Winterthur dan. In: Klute F et al (Hrsg) Afrika in Natur, Kultur und Wirtschaft. Akademische Verlagsgesellschaft, Potsdam, S Kamenik C et al (2009) Pollen/climate calibration based on a 147–210 near-annual peat sequence from the Swiss Alps. J Quat Sci 24:529–546 Kayser E (1918) Lehrbuch der Allgemeinen Geologie Teil I, Kandiano ES et al (2004) Sea surface temperature variabil- 5. Aufl. Enke, Stuttgart ity in the North Atlantic during the last two glacial- Keefer DK et al (2003) A 38 000-year record of floods and de- interglacial cycles: comparison of faunal, oxygen isotopic, bris flows in the Ilo region of southern Peru and its relation to and Mg/Ca-derived records. Palaeogeogr Palaeoclimatol Pa- El Niño events and great . Palaeogeogr Palaeocli- laeoecol 204:145–164 matol Palaeoecol 194:41–77 Kaplan MR et al (2010) Glacier retreat in New Zealand during Keenan TF et al (2016) Recent pause in the growth rate of atmo- the Younger Dryas stadial. Nature 467:194–197 spheric CO2 due to enhanced terrestrial carbon uptake. Nat Kapnick SB et al (2014) Snowfall less sensitive to warming in Commun. https://doi.org/10.1038/ncomms13428 Karakoram than in Himalayas due to a unique seasonal cycle. Keigwin LD (1996) The little Ice Age and medieval warm peri- Nat Geosci 7:834–840 od in the Sargasso sea. Science 274:1503–1508 Karátson D et al (2010) Late-stage volcano geomorphic evo- lution of the Pleistocene San Francisco Mountain, Ari- Keigwin L et al (2005) Seasonality and stable isotopes in plank- zona (USA), based on high-resolution DEM analysis and tonic foraminifera off Cape Cod, Massachusetts. Paleoceano- 40Ar/39Ar chronology. Bull Volcanol 72:833–846 graphy 20:PA4011. https://doi.org/10.1029/2005PA001150 Karátson D et al (2012) Erosion rates and erosion patterns of Kellerhals T et al (2010) Ammonium concentration in ice Neogene to Quaternary stratovolcanoes in the Western Cor- cores: a new proxy for regional temperature reconstruc- dillera of the Central Andes: an SRTM DEM based analysis. tion? J Geophys Res 115:D16123. https://doi.org/10.1029/ Geomorphology 139–140:122–135 2009JD012603 Karl TR et al (2015) Possible artifacts of data biases in the recent Kelly KA, Thompson L (2016) Unexpected fix for ocean mo- global surface warming hiatus. Science 348:1469–1472 dels. Nature 535:497–498 Karlén W, Rosqvist G (1988) Glacier fluctuations recorded Kelly MA et al (2012) Late glacial fluctuations of Quelccaya Ice in lacustrine sediments on Mount Kenya. Natl Geogr Res Cap, southeastern Peru. Geology 40:991–994 4:219–232 Kelly MA et al (2014) Expanded glaciers during a dry and cold Karlén W et al (1999) Glacier fluctuations on mount Kenya Last Glacial Maximum in equatorial East Africa. Geology since 6000 cal. Years BP: implications for holoceneclimatic 42:519–522 change in Africa. Ambio 28:409–418 Kelly MA et al (2015) A locally calibrated, late glacial 10Be Karte J (1990) Das Ensemble der periglaziären Formen in drei- production rate from a low-latitude, high-altitude site in the dimensionaler Sicht. In: Liedtke H (Hrsg) Eiszeitforschung. Peruvian Andes. Quat Geochronol 26:70–85 WBG, Darmstadt, S 238–249 Kelso C, Vogel C (2007) The climate of Namaqualand in the Karte J, Liedtke H (1981) The theoretical and practical defini- nineteenth century. Climatic Change 83:357–380 tion of the term “periglacial” in geographical and geological meaning. Biuletyn Periglacjalny 28:123–135 Kemp AES (2014) Seasonal laminae in marine sediments: app- lications and potential. PAGES Mag 22(1):14–15 Kaser G (1999) A review of the modern fluctuations of tropical glaciers. Glob Planet Change 22:93–103 Kennedy D (2007) Year of the reef. Science 318:1695 Literatur 691

Kennett DJ et al (2012) Development and disintegration of Ma- Kim J-H, Schneider RR (2003) Low-latitude control of inter- ya political systems in response to climate change. Science hemispheric sea-surface temperature contrast in the tropical 338:788–791 Atlantic over the past 21 kyr: the possible role of SE trade winds. Clim Dyn 21:337–347 Kennett JP et al (2003) Methane hydrates in quaternary climate change. American Geophysical Union, Washington, DC. Kim J-H et al (2002) Interhemispheric comparison of deglacial sea-surface temperature patterns in Atlantic eastern boundary Keppler F et al (2006) Methane emissions from terrestrial plants currents. Earth Planet Sci Lett 194:383–393 under aerobic conditions. Nature 439:187–191 Kim J-H et al (2003) Reconstruction of SE trade-wind intensity Kerr RA (2007) Is a thinning haze unveiling the real global based on sea-surface temperature gradients in the Southeast warming? Science 315:1480 Atlantic over the last 25 kyr. Geophys Res Lett 30(22):2144. Kerr RA (2009a) Clouds appear to be big, bad player in global https://doi.org/10.1029/2003GL017557 warming. Science 325:376 King J (2014) A resolution of the Antarctic paradox. Nature Kerr RA (2009b) Joining forces to pump up a variable sun’s 505:491–492 climate effects. Science 325:1058–1059 Kinzl H (1942) Gletscherkundliche Begleitworte zur Karte der Kerr RA (2011) Humans are driving extreme weather; time to Cordillera Blanca, Peru. Zeitschrift Gletscherkd 28(1+2):1– prepare. Science 334:1040 13 Kerr RA (2013) Soot is warming the world even more than Kinzl H (1949) Die Vergletscherung in der Südhälfte der Cordil- thought. Science 339:382 lera Blanca, Peru. Zeitschrift Gletscherkd Glazialgeol 1:1–28 Kerschner H, Ivy-Ochs S (2008) Palaeoclimate from glaciers: Kinzl H (1973) Die frühesten Meinungen und Beobachtun- examples from the Eastern Alps during the Alpine Lateglacial gen über die pleistozäne Vergletscherung in den südame- and early Holocene. Glob Planet Change 60:58–71 rikanischen Tropen. In: Geographische Zeitschrift Beihefte ,Geographie heute – Einheit und Vielfalt‘ (E. Plewe 65. Kershaw P, van der Kaars S (2012) Australia and the southwest Geburtstag-Festschrift), S 94–104 Pacific. In: Metcalfe SE, Nash DJ (Hrsg) Quaternary environ- mental change in the tropics. Wiley, Chichester, S 236–262 Kirby ME (2016) Water’s past revisited to predict its future. Na- ture 532:44–45 Kershaw P et al (2002) Quaternary records of vegetation, bio- mass burning, climate and possible human impact in the Kirchhoff H (1944) Bolivia, its people and scenery. Kraft, Bue- Indonesian-northern Australian region. Catena 48:97–118 nos Aires Kershaw P et al (2007) A complete pollen record of the last 230 Kirillova IV et al (2016) Taphonomic phenomenon of ancient ka from Lynch’s Crater, north-eastern Australia. Palaeogeogr hair from Glacial : perspectives for palaeontological Palaeoclimatol Palaoecology 251:23–45 reconstructions. Boreas 45:455–469 Kessler A (1984) The paleohydrology of late pleistocene lake Kirkbride MP (2010) A glacial test of timing. Nature 467:129– Tauca on the Bolivian Altiplano and recent climatic fluctuati- 130 ons. In: Vogel JC (Hrsg) Late Cainozoic paleoclimates of the Kirkby J et al (2016) Ion-induced nucleation of pure biogenic southern hemisphere. Balkema, Rotterdam, S 115–122 particles. Nature 533:521–526 Kiage LM, Liu K-B (2006) Late Quaternary palaeoenvironmen- Kirst GJ et al (1999) Late Quaternary temperature variability in tal changes in East Africa: a review of multiproxy evidence the Benguela current system derived from alkenones. Quat from palynology, lake sediments, and associated records. Res 52:92–103 Prog Phys Geogr 30:633–658 Klein RG (1984) The large mammals of southern Africa: late Kick W (1994) Gletscherforschung am Nanga Parbat 1856– pliocene to recent. In: Klein RG (Hrsg) Southern African 1990. Wissenschaftliche Alpenvereinshefte 30:1–153 prehistory and Paleoenvironments. Balkema, Rotterdam, S Kiefer T, Kienast M (2005) Patterns of deglacial warming in the 107–146 Pacific Ocean: a review with emphasis on the time interval of Klein Goldewijk K (2000) Estimating global land use change 1. Quat Sci Rev 24:1063–1081 over the past 300 years: the HYDE database. Global Biogeo- Kienast M et al (2006) Eastern Pacific cooling and Atlantic chem Cycles 15:417–434 overturning circulation during the last deglaciation. Nature Kleypas JA et al (2001) The future of coral reefs in an age of 443:846–849 global change. Int J Earth Sci 90:426–437 Kienel U, Negendank JFW (2010) Die „Kleine Eiszeit“ do- Klitzsch E et al (1976) Grundwasser der Zentralen Sahara: Fos- kumentiert in Landschaftsbildern und den Sedimenten eines sile Vorräte. Geol Rundsch 65:264–287 Maarsees. In: Wefer G, Schmieder F (Hrsg) Expedition Erde. Wissenswertes und Spannendes aus den Geowissenschaften. Klitzsch E, Thorweihe U (Hrsg) (1999) Deutsche Forschungs- Marum, Bremen, S 416–421 gemeinschaft. Nordost-Afrika: Strukturen und Ressourcen. 692 Literatur

Ergebnisse aus dem Sonderforschungsbereich „Geowissen- von Koenigswald W (2002) Lebendige Eiszeit. Klima und Tier- schaftliche Probleme in ariden und semiariden Gebieten“. welt im Wandel. WBG, Darmstadt Wiley, Weinheim Kogelnik-Mayer B et al (2011) Possibilities and limitations of Klotzbach P et al (2015) Active era at its end? dendrogeomorphic time-series reconstructions on sites influ- Nat Geosci 8:737–738 enced by debris flows and frequent snow activity. Arct Antarct Alp Res 43:649–658 Klute F (1920) Ergebnisse der Forschungen am Kilimandscharo 1912. Reimer (Vohsen), Berlin (VIII + 136 S. + 1 grosse gef. Köhler P et al (2010) What caused Earth’s temperature varia- stereophotogrammetrischen Karte) tions during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat Klute F (1930) Verschiebung der Klimagebiete der letzten Eis- Sci Rev 29:129–145 zeit. Petermanns Mitteilungen Ergänzungsh 209:166–182 von Koken E (1912) Die Geologie und Tierwelt der paläolithi- Klute F (1936) Afrika südlich der Sahara mit Ausnahme des schen Kultstätten Deutschlands. In: Schmidt RR (Hrsg) Die anglo-ägyptischen Sudans. In: Klute F et al (Hrsg) Afrika diluviale Vorzeit Deutschlands. Schweizerbart, Stuttgart, S in Natur, Kultur und Wirtschaft. Akademische Verlagsgesell- 159–227 schaft, Potsdam, S 211–447 Kononov YM et al (2009) Regional summer temperature recon- Klute F (1949) Wie der höchste Berg Afrikas erforscht wurde. struction in the Khibiny low mountains (Kola Peninsula, NW Geogr Rundsch 1:2–6 Russia) by means of tree-ring width during the last four cen- Knight PG (Hrsg) (2006) Glacier science and environmental turies. Arct Antarct Alp Res 41:460–468 change. Blackwell, Malden Koopmans BN, Stauffer PH (1967) Glacial phenomena on Knipp DJ et al (2016) The May 1967 great and radio Mount Kinabalu, Sabah, Borneo Region. Malaysia Geol Surv disruption event: extreme space weather and extraordina- Bull 8:25–35 ry responses. Agu Earth Space Sci. https://doi.org/10.1002/ Kopp G, Lean JL (2011) A new, lower value of total solar irra- 2016SW001423 diance: evidence and climate significance. Geophys Res Lett Knorr G, Lohmann G (2014) Climate warming during Antarc- 38:L1706. https://doi.org/10.1029/2010GL045777 tic ice sheet expansion at the Middle Miocene transition. Nat Koppes M et al (2015) Observed latitudinal variations in erosion Geosci 7:376–381 as a function of glacier dynamics. Nature 526:100–103 Knudsen MF et al (2008) Variations in the geomagnetic dipole Koren I et al (2006) The Bodele depression: a single spot in the moment during the Holocene and the past 50 kyr. Earth Planet Sahara that provides most of the mineral dust to the Amazon Sci Lett 272:319–329 forest. Environ Res Lett 1:1–5 Knutti R et al (2002) Constraints on radiative forcing and future Koren I et al (2012) Aerosol-induced intensification of rain from climate change from observations and climate model ensem- the tropics to the mid-latitudes. Nat Geosci 5:118–122 bles. Nature 416:719–723 Korn H und Martin H (1957) The Pleistocene in South West Knutti R, Hegerl GC (2008) The equilibrium sensivity of the Africa. Proceedings of the 3rd Pan African Congress in Pre- Earth’s temperature to radiation changes. Nat Geosci 1:735– history, Livingstone, London. S 14-22 743 Kossin JP et al (2014) The poleward migration of the location Koch J, Clague JJ (2006) Are insolation and sunspot activity of maximum intensity. Nature 509:349–352 the primary drivers of Holocene glacier fluctuations? PAGES News 14(3):20–21 Kotlia BS et al (2012) Climatic fluctuations during the LIA and post-LIA in the Kumaun Lesser Himalaya, India: Evidence Kochel RC, Baker VR (1988) Palaeoflood analysis using slack- from a 400 y old stalagmite record. Quat Int 263:129–138 water deposits. In: Baker VR et al (Hrsg) Flood geomorpho- logy. Wiley, New York, S 357–376 Kowalski K (1986) Die Tierwelt des Eiszeitalters. WBG, Darm- stadt Kocurek G (1998) Aeolian system response to external forcing factors – a sequence stratigraphic view of the Saharan region. Kraas F (2009) Megastädte als Motoren globalen Wandels In: Alsharhan S et al (Hrsg) Quaternary deserts and climatic im System Mensch – Erde: Aktuelle Forschungsfragen und change. Balkema, Rotterdam, S 327–337 Handlungsoptionen. Terra Nostra 2/2009:83–86 Koeberl C et al (1993) The age of the Roter Kamm impact crater, Kramer B et al (2014) Marked differentiation in a new species of Namibia: Constraints from 40Ar-39Ar, K-Ar, Rb-Sr, fission dwarf stonebasher, Pollimyrus cuandoensis sp. nov. (Mormy- track, and 10Be-26Al studies. Meteoritics 28:204–212 ridae: Teleostei), from a contact zone with two sibling species of the Okavango and Zambezi rivers. J Nat Hist 48:429–463 Koeberl C et al (1999) Tswaing, investigations into the ori- gin, age and palaeoenvironments of the Pretoria Saltpan. In: Krapf CBE et al (2003) Contrasting styles of ephemeral river Council of Geoscience (Geological Survey of South Africa), systems and their interaction with dunes of the Skeleton Coast S 55–63 erg (Namibia). Quat Int 104:41–52 Literatur 693

Kristen I et al (2007) Hydrological changes in southern Africa Kuhle M (1994) Kurzbericht über die Tibet-Exkursion 14-A im over the last 200 Ka as recorded in lake sediments from the Rahmen des XIII. INQUA-Kongresses 1991 in Peking. Eis- Tswaing impact crater. South African J Geol 110:311–326 zeitalt Gegenwart 44:129–131 Kristen I et al (2010) Biomarker and stable carbon isotope Kuhle M (2003) New geomorphological indicators of a former analyses of sedimentary organic matter from Lake Tswaing: Tibetan ice sheet in the central and northeastern part of the evidence for deglacial wetness and early Holocene drought high plateau. Zeitschrift Geomorphol Suppl 130:75–97 from South Africa. J Paleolimnol 44:143–160 Kuhle M (2004) The high glacial (last ice age and LGM) ice Kromer B, Friedrich M (2007) Jahrringchronologien und Radio- cover in high and central Asia. In: Ehlers J, Gibbard PL kohlenstoff. Ein ideales Gespann in der Paläoklimaforschung. (Hrsg) Quaternary glaciations: extent and chronology. Part Geogr Rundsch 59(4):50–55 III: South America, Asia, Africa, Australia, Antarctica. El- sevier, Amsterdam, S 175–199 Kromer B et al (2004) Solar variability and holocene climate: evidence from radiocarbon, tree-ring proxies and climate sys- Kuhle M (2011) The high glacial (last ice age and last glacial tem modeling. PAGES News 12(2):13–15 maximum) ice cover of high and central Asia, with a critical review of some recent OSL and TCN dates. In: Ehlers J et Kronberg BI, Benchimol RE (1993) Climate changes reflected al (Hrsg) Quaternary Glaciations – extent and chronology, a in geochemistry and stratigraphy of Acre Basin sediments closer look. Developments in Quaternary Science 15, S 943– (Western Amazonia). Quat S Am 8:191–199 965 Kröpelin S (1999) Terrestrische Paläoklimatologie heute arider Kuhlmann H et al (2004) The transition of the monsoonal and Gebiete: Resultate aus dem Unteren Wadi Howar (Südöstli- the N Atlantic climate system off NW Africa during the Holo- che Sahara/Nordwest-Sudan). In: Klitzsch E, Thorweihe U cene. Geophys Res Lett 31:L22204. https://doi.org/10.1029/ (Hrsg) Deutsche Forschungsgemeinschaft. Nordost-Afrika: 2004GL021267 Strukturen und Ressourcen. Ergebnisse aus dem Sonderfor- Kull C et al (2003) Evidence of an LGM cooling in NW- schungsbereich „Geowissenschaftliche Probleme in ariden ı und semiariden Gebieten“. Wiley, Weinheim, S 446–506 Argentina (22 S) derived from a glacier climate model. Quat Int 108:3–11 Kröpelin S (2009) Holozäne Umweltrekonstruktion und Kultur- geschichte der Sahara: Perspektiven aus der sudanesischen Kull C et al (2008) Late Pleistocene glaciation in the central Wüste. Nova Acta Leopoldina NF 108(373):165-191 Andes: temperature versus humidity control — a case study from the eastern Bolivian Andes (17ıS) and regional synthe- Kröpelin S, Kuper R (2007) Holozäner Klimawandel und Be- sis. Glob Planet Change 60:148–164 siedlungsgeschichte der östlichen Sahara. Geogr Rundsch 59(4):22–29 Kulongoski JT et al (2004) Climate variability in the Bots- wana Kalahari from the late Pleistocene to the present day. Kröpelin S et al (2008a) Climate-driven ecosystem succession Geophys Res Lett 31(10):L10204. https://doi.org/10.1029/ in the sahara: the past 6000 years. Science 320:765–768 2003gl019238 Kröpelin S et al (2008b) Response to comment by Brovkin and Kump LR (2001) Chill taken out of the tropics. Nature 413:470– Claussen on “climate-driven ecosystem succession in the Sa- 471 hara: the past 6000 years”. Science 322:1326 Kump LR (2005) Foreshadowing the glacial era. Nature Krüger T (2013) Discovering the ice ages. International re- 436:333–334 ception and consequences for a historical understanding of Kuper R, Kröpelin S (2006) Climate-controlled holocene oc- climate. History of Science and Medicine Library 37. Ko- ninklijke Brill NV, Leiden cupation in the Sahara: motor of Africa’s evolution. Science 313:803–807 Krüger Y et al (2008) Paleotemperatures from fluid inclusion Kutzbach JE, Street-Perrott FA (1985) Milankovitch forcing of liquid-vapor homogenization in speleothems. PAGES News fluctuations in the level of tropical lakes from 18 to 0 kyr BP. 16(3):13–14 Nature 317:130–134 Kuhle M (1985) Ein subtropisches Inlandeis als Eiszeitauslöser, Kwiatkowski L et al (2013) Carribean coral growth influenced Südtibet und Mt. Everest Expedition 1984. Georgia Augusta by anthropogenic aerosol emissions. Nat Geosci 6:362–366 (Nachrichten aus der Universität Göttingen), S 1–17 Kwon EY, Galbraith ED (2013) When dust settles. Nat Geosci Kuhle M (1991) Glazialgeomorphologie. WBG, Darmstadt 6:423–424 Kuhle M (1993) Eine Autozyklentheorie zur Entstehung und Lachniet MS, Seltzer G (2002) Late quaternary glaciation of Abfolge der quartären Kalt- und Warmzeiten auf der Grund- Costa Rica. Geol Soc Am Bull 114:547–558 lage epirogener und glazialisostatischer Bewegungsinterfe- renzen im Bereich des tibetischen Hochlandes. Petermanns Lachniet MS, Vazquéz-Selem L (2005) Last Glacial Maximum Geogr Mitt 137(3):133–152 equilibrium line altitudes in the circum-Caribbean (Mexico, 694 Literatur

Guatemala, Costa Rica, Colombia, and Venezuela). Quat Int Lancaster N (2002) How dry was dry?: late Pleistocene palaeo- 138–139:129–144 climates in the Namib Desert. Quat Sci Rev 21:769–782 Lachniet MS et al (2014) Orbital control of western North Ame- Lancaster N et al (2016) The INQUA dunes Atlas chronologic rica atmospheric circulation and climate over two glacial database. Quat Int. https://doi.org/10.1016/j.quaint.2015.10. cycles. Nat Commun. https://doi.org/10.1038/ncomms4805 044

Lacis A (2015) Volcanic aerosol radiative properties. PAGES Landais A et al (2013) Two-phase change in CO2, Antarctic Mag 23(2):50–51 temperature and global climate during Termination II. Nat Geosci 6:1062–1065 Lacis AA et al (2010) Atmospheric CO2: principal control knob governing earth’s temperature. Science 330:356–359 Lane CS et al (2013) Ash from the Toba super-eruption in Lake Laepple T und Huybers P (2014) Ocean surface temperature Malawi shows no volcanic winter in East Africa at 75 ka. Proc variability: Large model–data differences at decadal and lon- Natl Acad Sci U S A 110:8025–8029 ger periods. Proc Natl Acad Sci 111(47):16682–16687 Langdon P, Brooks SJ (2014) 12th International Workshop on La Frenierre J et al (2011) Ecuador, Peru and Bolivia. In: Ehlers Subfossil Chironomids. PAGES Mag 22(1):39 J et al (Hrsg) Quaternary glaciations – extent and chronolo- Langejans GHJ et al (2014) A hazy shade of winter: Late Plei- gy, a closer look. Developments in Quaternary Science 15, S stocene environments and behavioural adaptations at Blom- 773–802 bos Cave, South Africa. Palaeoecol Africa 32:19–51 Lal D (1991) Cosmic ray labelling of erosion surfaces: in situ Lara A, Villalba R (1993) A 3620-year temperature record from nuclide production rates and erosion models. Earth Planet Sci Fitzroya cupressoides tree rings in southern South America. Lett 104:429–439 Science 260:1104–1106 Laland K et al (2014) Does evolutionary theory need a rethink? Nature 514:161–164 Laskar AH et al (2011) Potential of stable carbon and oxygen isotope variations of speleothems from Andaman islands, In- Lamb HH (1965) The early medieval warm epoch and its sequel. dia, for paleomonsoon reconstruction. J Geol Res. https://doi. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37 org/10.1155/2011/272971 Lamb HH (1969) The new look of climatology. Nature Laskar J et al (2004) A long-term numerical solution for the 223:1209–1215 insolation quantities of the Earth. Astron Astrophys 428:261– Lamb HH (1982) Climate: history and the modern world. Me- 285 thuen, London Latham J et al (2008) Global temperature stabilization via con- Lambert F et al (2008) Dust-climate couplings over the past trolled albedo enhancement of low-level maritime clouds. 800,000 years from the EPICA Dome C ice core. Nature Philos Trans Royal Soc A 366(1882):3969–3987 452:616–619 Latorre C et al (2002) Vegetation invasions into absolute desert: a 45,000 yr rodent midden record from the Calama–Salar de Lamy F et al (2010) Holocene changes in the position and ı ı intensity of the southern westerly wind belt. Nat Geosci Atacama basins, northern Chile (lat 22 –24 S). Geol Soc Am 3:695–699 Bull 114:349–366 Lamy F et al (2014) Increased dust deposition in the Pacific Latrubesse EM (2007) The late pleistocene in Amazonia: a pa- Southern Ocean during glacial periods. Science 343:403–407 leoclimatic approach. In: Smolka PP, Volkheimer W (Hrsg) Southern hemisphere paleo- and neoclimates. Springer, Ber- Lancaster N (1979a) Evidence for a widespread late Pleistocene lin, S 209–224 humid period in the Kalahari. Nature 279:145–146 Latrubesse EM, Franzinelli E (1998) Late quaternary alluvial Lancaster N (1979b) Quaternary environments in the Arid zone sedimentation in the upper Rio Negro basin, Amazonia, Bra- of southern Africa. Environmental studies occasional paper zil: Palaeohydrological implications. In: Benito G et al (Hrsg) no. 22. Department of Geography and Environmental Studies, Palaeohydrology and environmental change. Wiley, Chiches- University of Witwatersrand, Johannesburg ter, S 259–271 Lancaster N (1981) Palaeoenvironmental implications of fixed Latrubesse EM, Rancy A (2000) Neotectonic influence on dune systems in southern Africa. Palaeogeogr Palaeoclimatol tropical rivers of southwestern Amazon during the late Qua- Palaeoecol 33:327–346 ternary: the Moa and Ipixuna river basins, Brazil. Quat Int Lancaster N (1989) The Namib Sand Sea. Dune forms, proces- 72:67–72 ses and sediments. Balkema, Rotterdam Latrubesse E et al (2012) Late Quaternary megafans, fans and Lancaster N (2000) Eolian deposits. In: Partridge TC, Maud RR fluvio-aeolian interactions in the Bolivian Chaco, Tropical (Hrsg) The cenozoic of southern Africa. Oxford University South America. Palaeogeogr Palaeoclimatol Palaeoecol 356– Press, New York, S 73–87 357:75–88 Literatur 695

Lauer W (1952) Humide und aride Jahreszeiten in Afrika und from a paleoecological record of a Mauritia L.f. swamp. Acta Südamerika und ihre Beziehungen zu den Vegetationsgürteln. Amazon 41:513–520 Bonn Geogr Abhandlungen 9:15–98 Lean J (2006) Solar forcing of climate change: current status. Lauer W (1975) Vom Wesen der Tropen. Klimaökologi- PAGES News 13(3):13–15 sche Studien zum Inhalt und zur Abgrenzung eines irdi- schen Landschaftsgürtels. Akademie der Wissenschaften und Lean JL, Rind DH (2009) How will Earth’s surface tempera- der Literatur in Mainz, Abhandlungen der Mathematisch- ture change in future decades? Geophys Res Lett 36:L15708. Naturwissenschaftlichen Klasse, Bd. 1975/3. Steiner, Wies- https://doi.org/10.1029/2009GL038932 baden Lechtenfeld OJ et al (2015) Marine Sequestration of Carbon Lauer W (1979) Medio ambiente y desarrollo cultural en la re- in Bacterial Metabolites. Nature Communications 6, March gión de Puebla-Tlaxcala. Comun Proyecto Puebbla-tlaxcala 2015.https://doi.org/10.1038/ncomms7711 (puebla) 16:29–54 Ledru M-P et al (2006) Millennial-scale climatic and vegetation Lauer W (1989) Climate and weather. In: Lieth H, Werger MJA changes in a northern Cerrado (Northeast, Brazil) since the (Hrsg) Tropical rain forest ecosystems. Elsevier, Amsterdam, Last Glacial Maximum. Quat Sci Rev 25:1110–1126 S 7–53 Lee KE et al (2001) Glacial sea surface temperatures in the sub- •18 Lauer W, Rafiqpoor MD (1986) Geoökologische Studien in tropical North Pacific: a comparison of U-K379, O, and Ecuador. Erdkunde 40:68–72 foraminiferal assemblage temperature estimates. Paleoceano- graphy 16:268–279 Lauer W et al (1996) Die Klimate der Erde. Eine Klassifikati- on auf ökophysiologischer Grundlage der realen Vegetation. Lee KE, Slowey NC (1999) Cool surface waters of the sub- Erdkunde 50: 275–300 tropical North Pacific Ocean during the last glacial. Nature 397:5412–5514 Lauritzen S-E (1997) SPEP: the speleothem record in the Pole- Equator-Pole transects. In: Gasse F et al (Hrsg) PEP III: Lee-Thorp JA, Beaumont PB (1995) Vegetation and seasonality 13 12 The Pole-Equator-Pole transect through Europe and Africa. shifts during the late quaternary deduced from C/ C ratios PAGES Workshop Report, Bd. 97–2, S 37–43 of grazers at Equus Cave, South Africa. Quat Res 43:426–432 Lautridou JP, Francou B (1992) Present-day periglacial pro- Lee-Thorp J, Schneider R (2002) Linking the continental envi- cesses and landforms in mountain areas. Permafr Periglac ronmental Quaternary history of southern Africa with ocean Process 3:93–101 currents and Antarctica. PAGES News 10(2):2 Lavigne F et al (2013) Source of the great A.D. 1257 mystery LeGrande AN, Anchukaitis KJ (2015) Volcanic eruptions and eruption unveiled, Samalas volcano, Rinjani Volcanic Com- climate. PAGES Mag 23(2):46–47 plex, Indonesia. Proc Natl Acad Sci 110:14742–14748 Lehmkuhl F (1995) Zum vorzeitlichen glazialen Formenschatz Lawler A (2010) Collapse? What collapse? Societal change re- im zentralen Qilian Shan (Tulai Shan). Petermanns Geogr visited. Science 330:907–909 Mitt 139:239–251 Lawler DM (1988) Environmental limits of needle ice: a global Lehmkuhl F, Owen LA (2005) Late Quaternary glaciation of survey. Arct Alp Res 20:137–159 Tibet and the bordering mountains: a review. Boreas 34:87– 100 Lazareth CE et al (2013) A controversial insight into Southwest Pacific mid-Holocene seasonality: from corals to models. Leinweber P et al (1996) Molecular characterization of soil PAGES News 21(2):66–67 organic matter in Pleistocene moraines from the Bolivian An- des. Geoderma 72:133–148 Lea DW (2015) Climate sensitivity in a warmer world. Nature 518:46–47 Lemieux-Dudon B et al (2010) Consistent dating for Antarctic and Greenland ice cores. Quat Sci Rev 29:8–20 Lea DW et al (2000) Climate impact of Late Quaternary equa- torial Pacific sea surface temperature variations. Science Lenderink G (2012) Tropical extremes. Nat Geosci 5:689–699 289:1719–1724 Leng MJ (Hrsg) (2006) Isotopes in Palaeoenvironmental re- Lea DW et al (2003) Synchroneity of tropical and high- search. Developments in Palaeoenvironmental research 10. latitude Atlantic temperatures over the last glacial termina- Springer, Berlin tion. Science 301:1361–1364 Leng MJ, Barker PA (2006) A review of the oxygen isotope Lea DW et al (2014) COMPARE 2013: constraining tropical composition of lacustrine diatom silica for palaeoclimate re- ocean cooling during the last glacial maximum. PAGES Mag construction. Earth Sci Rev 75:5–27 22(1):43 Lenssen-Erz T (2007) Brandberg/Daureb, Namibia – painters Leal A et al (2011) Contribution to early Holocene vegetati- of a prehistoric hunter-gatherer world. Africa Praehistorica on and climate history of eastern Orinoco llanos, Venezuela, 21:72–73 696 Literatur

Lenssen-Erz T, Erz M-T (2000) Brandberg. Der Bilderberg Na- Lewis SL et al (2006) Impacts of global atmospheric change on mibias. Thorbecke, Stuttgart tropical forests. Trends Ecol Evol 21:173–174 Lentz DL et al (2014) Forests, fields, and the edge of sustaina- Leyden BW (1984) Guatemalan forest synthesis after Pleistoce- bility at the ancient Maya city of Tikal. Proc Natl Acad Sci ne aridity. Proc Natl Acad Sci USA 81:4856–4859 111:18513–18518 Leyden BW (1985) Late Quaternary aridity and Holocene mois- Leopold M, Völkel J (2007) Colluvium: Definition, differen- ture fluctuations in the Lake Valencia Basin, Venezuela. tiation, and possible suitability for reconstructing Holocene Ecology 66:1279–1295 climate data. Quat Int 162–163:133–140 Leyden BW (1987) Man and climate in the Maya lowlands. Leopold M et al (2006) A ground-penetrating radar survey Quat Res 28:407–414 of late Holocene fluvial sediments in NW Namibian river Leyden BW et al (1993) Late Pleistocene climate in the Central valleys: characterization and comparison. J Geol Soc Lond American lowlands. In: Swart PK et al (Hrsg) Climate change 163:923–936 in continental isotopic records. Geophysical Monograph 78. Leopoldo PR et al (1982) Estimativa da evapotranspiracáo da American Geophysical Union, Washington, DC, S 165–178 floresta Amazónica de terra firme. Acta Amazon 12:23–28 Leyden BW et al (1994) Orbital and internal forcing of climate Leroy SAG, Niemi TM (2009) Hurricanes and : From on the Yucatan Peninsula for the past ca 36 ka. Palaeogeogr the field records to the forecast. Quat Int 195:1–3 Palaeoclimatol Palaeoecol 109:193–210 Leroy SAG, Simms MJ (2006) Iron age to medieval entomo- Leyden BW et al (1996) A record of long and short-term cli- gamous vegetation and Rhinolophus hipposideros roost in matic variation from northwest Yucatan: Cenote San Jose South-Eastern Wales (UK). Palaeogeogr Palaeoclimatol Pa- Chulchaca. In: Fedick SL (Hrsg) The managed mosaic: an- laeoecol 237:4–18 cient Maya agriculture and resource use. University of Utah Press, Salt Lake City, S 30–50 Leser H (2000) Methodische Probleme sedimentologischer Un- Lézine A-M et al (2014) Orbitally-induced changes of the At- tersuchungen pleistozäner Sedimente im Kaokoveld (Nami- lantic and Indian monsoons over the past 20,000 years: new bia). Regensbg Geogr Schriften 33:19–36 insights based on the comparison of continental and marine Leser H et al (1995) DIERKE-Wörterbuch der Allgemeinen records. Bull De La Société Géologique De France 185:3–12 Geographie Bd. 2. Deutscher Taschenbuch-Verlag, München Li SJ, Li SD (1992) Quaternary glacial and environmental chan- Lettau HH, Lettau K (Hrsg) (1978) Exploring the World’s Driest ges in the region of Hoh Xil, Qinghai Province. J Glaciol Climate. IES Report 101. Center for Climatic Research. In- Geocryol 14:316–324 (Chinese with English summary) stitute of Environmental Studies. University of Wisconsin, Li SJ, Jiao KQ (1990) Glacier variation on the south slope of Madison west Kunlun Mountains since 30,000 14C yr BP. (Chinese Leuschner DC, Sirocko F (2000) The low-latitude monsoon cli- with English summary). J Glaciol Geocryol 12:311–318 mate during the Dansgaard-Oeschger cycles and Heinrich Li Y, Harrison SP (2008) Simulations of the impact of orbital Events. Quat Sci Rev 19:243–254 forcing and ocean on the Asian summer monsoon during the Leuschner DC, Sirocko F (2003) Orbital insolation forcing of Holocene. Glob Planet Change 60:505–522 the Indian monsoon – a motor for global climate change. Pa- Li X et al (2014) Impacts of the north and tropical Atlan- laeogeogr Palaeoclimatol Palaeoecol 197:83–95 tic Ocean on the Antarctic Peninsula and sea ice. Nature Lewis CFM, Teller JT (2006) Glacial runoff from North Ameri- 505:538–542 ca and its possible impact on oceans and climate. In: Knight Li X et al (2015) Sedimentary and hydrological studies of the PG (Hrsg) Glacier science and environmental change. Black- Holocene palaeofloods in the Shanxi-Shaanxi Gorge of the well, Oxford, S 138–150 middle Yellow River, China. Geol Rundsch 104:277–288 Lewis CFM, Teller JT (2007) North American late-Quaternary Licciardi JM et al (2009) Holocene glacier fluctuations in the meltwater and floods to the oceans: Evidence and impact — Peruvian Andes indicate northern climate linkages. Science Introduction. Palaeogeogr Palaeoclimatol Palaeoecol 246:1– 325:1677–1679 7 Lichte M, Behling H (1999) Dry and cold climatic conditions in Lewis SE et al (2007) A multi-trace element coral record of the formation of the present landscape in Southeastern Brazil. land-use changes in the Burdekin River catchment, NE Aus- An interdisciplinary approach to a controversially discussed tralia. Palaeogeogr Palaeoclimatol Palaeoecol 246:471–487 topic. Z Geomorphol 43:341–358 Lewis SL (2012) Climate science: at the storm front. (Buchbe- Liedtke H (1986) Stand und Aufgabe der Eiszeitforschung. Geo- sprechung). Nature 483:402–403 gr Rundsch 38:412–419 Lewis SL, Maslin MA (2015) Defining the Anthropocene. Na- Lifton NA et al (2005) Addressing solar modulation and long- ture 519:171–180 term uncertainties in scaling secondary cosmic rays for in Literatur 697

situ cosmogenic nuclide applications. Earth Planet Sci Lett Liu Z, Herbert TD (2004) High-latitude influence on the east- 239:140–161 ern equatorial Pacific climate in the early Pleistocene epoch. Nature 427:720–723 Lifton N et al (2014) Scaling in situ cosmogenic nuclide pro- duction rates using analytical approximations to atmospheric Liu Z et al (2014) Evolution and forcing mechanisms of El Niño cosmic-ray fluxes. Earth Planet Sci Lett 386:149–160 over the past 21,000 years. Nature 515:550–553 Limardo AJ, Worden AZ (2015) Exclusive networks in the sea. Liverman DM (1999) Vulnerability and adaptation to drought in Nature 522:36–37 Mexico. Natl Resour J 39:99–115 Lin H-L et al (1997) Late Quaternary climate change from •18O Livingstone D (1858) Missionary Travels and Researches in records of multiple species of planktonic foraminifera: High- South Africa; including a sketch of Sixteen Years‘ Residence resolution records from the anoxic Cariaco Basin, Venezuela. in the Interior of Africa, and a Journey from the Cape of Good Paleoceanography 12:415–427 Hope to Loanda on the West Coast; thence across the Conti- nent, down the River Zambezi, to the Eastern Ocean. Harper Lin H, Wu Z (2011) Contribution of the autumn Tibetan plateau &Brothers,NewYork snow cover to seasonal prediction of North American winter temperature. J Clim 24:2801–2813 Livingstone DA (1962) Age of deglaciation in the Ruwenzori range, Uganda. Nature 194:859–860 Lin L et al (2016) Sensitivity of precipitation extremes to radia- tive forcing of greenhouse gases and aerosols. Geophys Res Ljungqvist FC et al (2016) Northern hemisphere hydroclimate Lett 43:9860–9868. https://doi.org/10.1002/2016GL070869 variability over the past twelve centuries. Nature 532:94–98 Lindholm M et al (2002) Recent fennoscandian pine records of Lliboutry L et al (1977) Glaciological problems set by the con- temperature, precipitation and the North Atlantic oscillation. trol of dangerous lakes in Cordillera Blanca, Peru. III. Study PAGES News 10(1):20 of moraines and mass balances at Safuna. J Glaciol 18:275– 290 Lisiecki LE (2010) Links between eccentricity forcing and the 100,000-year glacial cycle. Nat Geosci 3:349–352 Lockwood M et al (2010) The solar influence on the probability of relatively cold UK winters in the future. Environ Res Lett Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 6(11):34004 57 globally distributed benthic •18O records. Paleoceanogra- phy 20:PA1003. https://doi.org/10.1029/2004PA001071 Löffler E et al (1980) Potassium-argon ages from some of the Papua New Guinea highland volcanoes, and their relevance Lisiecki LE et al (2008) Atlantic overturning responses to Late to Pleistocene geomorphic history. J Geol Soc Aust 26:387– Pleistocene climate forcings. Nature 456:85–88 397 Little MG et al (1997) Tradewind forcing of upwelling, seaso- Lohne S et al (2014) IntCal13 calibrated ages of the Vedde and nality, and Heinrich events as a response to sub-Milankovitch Saksunarvatn ashes and the Younger Dryas boundaries from climate variability. Paleooceanography 12:568–576 Kråkenes, western . J Quat Sci 29:506–507 Liu B et al (2014) Spatial-temporal difference in climate change Loibl D et al (2014) Reconstructing glacier retreat since the Lit- at different altitudes, northeastern Qinghai-Tibetan Plateau tle Ice Age in SE Tibet by glacier mapping and equilibrium during the Holocene period. Int J Earth Sci 103:1699–1710 line altitude calculation. Geomorphology 214:22–39 Liu J et al (2016) Sea-level constraints on the amplitude and Loibl D et al (2015) Toward a late Holocene glacial chronology source distribution of Meltwater Pulse 1A. Nat Geosci 9:130– for the eastern Nyainqêntanglha Range, southeastern Tibet. 134 Quat Sci Rev 107:243–259 Liu K-B, Colinvaux PA (1985) Forest changes in the Amazon Lokier SW et al (2015) Late Quaternary sea-level changes of the Basin during the last glacial maximum. Nature 318:556–557 Persian Gulf. Quat Res 84:69–81 Liu K-B et al (2005) Ice-core pollen record of climatic changes Lomax J et al (2003) The onset of dune formation in the in the Central Andes during the last 400 yr. Quat Res 64:272– Strzelecki Desert, South Australia. Quat Sci Rev 22:1067– 278 1076 Liu T et al (1999) Comparison of Milankovitch periods between Lomax J et al (2011) Palaeoenvironmental change recorded continental loess and deep sea records over the last 2.5 Ma. in the palaeodunefields of the western Murray Basin, South Quat Sci Rev 18:1205–1212 Australia – new data from single grain OSLdating. Quat Sci Rev 30:723–736 Liu W et al (2015) The earliest unequivocally modern humans in southern China. Nature 526:696–699 Loomis SE et al (2012) Calibration and application of the branched GDGT temperature proxy on East African lake se- Liu Z, Braconnot P (2012) Modelling of tropical environments diments. Earth Planet Sci Lett 357–358:277–288 during the quaternary. In: Metcalfe SE, Nash DJ (Hrsg) Quaternary environmental change in the tropics. Wiley, Chi- Loomis SE et al (2017) The tropical lapse rate steepened during chester, S 315–359 the Last Glacial Maximum. Science Advances 3(1):e1600815 698 Literatur

Lopes dos SRA et al (2013) Abrupt vegetation change after the Luterbacher J, Pfister C (2015) The year without a summer. Nat Late Quaternary megafaunal extinction in southeastern Aus- Geosci 8:246–248 tralia. Nat Geosci 6:627–631 Lyle M (1988) Climatically forced organic carbon burial in Lorenzen ED et al (2011) Species-specific responses of Late equatorial Atlantic and Pacific Oceans. Nature 335:529–532 Quaternary megafauna to climate and Humans. Nature Lyle MW et al (1992) Upwelling and productivity changes in- 479:359–364 ferred from a temperature record in the central equatorial Lorius C et al (1979) A 30,000 year isotope climatic record from Pacific. Nature 355:812–815 Antarctic ice. Nature 280:644–648 Lynch-Stieglitz J (2004) Hemispheric asynchrony of abrupt cli- Lorius C et al (1985) A 150,000 year climatic record from An- mate change. Science 304:1919–1920 tarctic ice. Nature 316:591–596 Lynch-Stieglitz J et al (2014) Muted change in Atlantic overtur- Lorius C et al (1990) The ice-core record: climate sensitivity ning circulation over some glacial-aged Heinrich events. Nat and future greenhouse warming. Nature 347:139–145 Geosci 7:144–150 Lorius C et al (1993) Glacial- in Vostok: climate and MacDougall AH et al (2012) Significant contribution to climate greenhouse gases. Glob Planet Change 7:131–143 warming from the permafrost carbon feedback. Nat Geosci 5:719–721 Lough JM (2007) Tropical river flow and rainfall reconstruc- tions from coral luminescence: Great Barrier Reef, Aus- Mächtle B, Eitel B (2009) Holozäne Umwelt- und Kulturent- tralia. Paleoceanography 22:PA2218. https://doi.org/10.1029/ wicklung in der nördlichen Atacama (mit einem Exkurs zum 2006PA001377 „Neodeterminismus-Paradigma“). Nova Acta Leopoldina Nf 108(373):109–124 Louis H (1955) Schneegrenze und Schneegrenzbestimmung. Geogr Taschenb 1954/55:414–418 Macklin MG, Lewin J (2008) Alluvial responses to the changing earth system. Earth Surf Process Landf 33:1374–1395 Lowe DC (2006) Global change: a green source of surprise. Na- ture 439:148–149 Macquaker JHS, Bohacs KM (2007) On the accumulation of mud. Science 318:734–1735 Lowell TV, Kelly MA (2008) Was the Younger Dryas global? Science 321:348–349 Madeja J (2015) A new tool to trace past human presence from lake sediments: the human-specific molecular marker Bacte- Lowell TV et al (1995) Interhemispheric correlation of late plei- roides strain HF 183. J Quat Sci 30:349–354 stocene glacial events. Science 269:1541–1549 Madin EMP et al (2011) Landscape of fear visible from space. Lowe J, Walker M (2015a) Measuring quaternary time: a 50- Nat Sci Reports. https://doi.org/10.1038/srep00014 year perspective. J Quat Sci 30:104–113 Magee JW et al (1995) Stratigraphy, sedimentology, chronolo- Lowe J, Walker M (2015b) Reconstructing quaternary environ- gy and paleohydrology of Quaternary lacustrine deposits at ments, 3. Aufl. Routledge, London Madigan Gulf, Lake Eyre, South Australia. Palaeogeogr Pa- Lozano-García S, Ortega-Guerrero B (1994) Palynological and laeoclimatol Palaeoecol 113:3–42 magnetic susceptibility records of Lake Chalco, central Me- Magee JW et al (2004) Continuous 150 k.y. monsoon record xico. Palaeogeogr Palaeoclimatol Palaeoecol 109:177–191 from Lake Eyre, Australia: insolation-forcing implications Lozano-García S, Vázquez-Selem L (2005) A high-elevation and unexpected Holocene failure. Geology 32:885–888 Holocene pollen record from Iztaccíhuatl volcano, central Magny M (2013) Orbital, ice-sheet, and possible solar forcing Mexico. Holocene 15:329–338 of Holocene lake-level fluctuations in west-central Europe: a Lu J (2014) Tropical expansion by ocean swing. Nat Geosci comment on Bleicher. Holocene 23:1202–1212 7:250–251 Mahaney WC (1990) Ice on the Equator. Quaternary geology of Lucas C et al (2014) The expanding tropics: a critical as- mount Kenya, East Africa. Caxton, Sister Bay sessment of the observational and modeling studies. WIREs Mahaney WC (2011) Quaternary glacial chronology of mount 5:89–112 Kenya massif. In: Ehlers J et al (Hrsg) Quaternary Glaciati- Luo J-J (2011) not required? Nature 477:544– ons – extent and chronology, a closer look. Developments in 546 Quaternary science 15, S 1075–1080 Luoto TP (2009) Subfossil Chironomidae (Insecta: Diptera) Mahaney WC et al (1989) Quaternary glaciations and palaeo- along a latitudinal gradient in Finland: development of a new climate of Mount Kanya, East Africa. In: Oerlemans J (Hrsg) temperature inference model. J Quat Sci 24:150–158 Glacier fluctuations and climatic change: proceedings of the workshop on glacier fluctuations and climatic change 1–5 Ju- Luterbacher J (2003) Ungehobene Schätze im Reich der Mit- ne 1987 Kluwer, Dordrecht, S 13–35 te. Chinesische Dokumente verheissen spektakuläre Klima- rekonstruktionen. Unipress (Forschung Wissenschaft Univ Maher LJ Jr (2006) Environmental information from guano pa- Bern) 116:15–17 lynology of insectivorous bats of the central part of the United Literatur 699

States of America. Palaeogeogr Palaeoclimatol Palaeoecol Mann ME et al (1999) Northern Hemisphere temperatures 237:19–31 during the past millennium: inferences, uncertainties and li- mitations. Geophys Res Lett 26:759–762 Mahowald NM et al (2006) Change in atmospheric mineral aerosols in response to climate: last glacial period, pre- Mann ME et al (2004) Corrigendum. Global-scale temperature industrial, modern, and doubled carbon dioxide climates. patterns and climate forcing over the past six centuries. Na- J Geophys Res Atmospheres 111:D10. https://doi.org/10. ture 430:105 1029/2005JD006653 Mann ME et al (2007) Robustness of proxy-based climate field Mairesse A, Goosse H (2013) Using data assimilation to estima- reconstruction methods. J Geophys Res 112:D12109. https:// te the consistency between climate proxies and climate model doi.org/10.1029/2006JD008272 results. PAGES News 21(1):14–15 Mann ME et al (2009) Global signatures and dynamical origins Maisch M (2004) Gletscher im Brennpunkt des Klimawandels. of the little ice age and medieval climate anomaly. Science In: Zängl W, Hamberger S (Hrsg) Gletscher im Treibhaus. 326:1256–1260 Tecklenborg, Steinfurt, S 204–214 Mann ME et al (2012) Underestimation of volcanic cooling in Majeda J (2015) A new tool to trace past human presence from tree-ring-based reconstructions of hemispheric temperatures. lake sediments: the human-specific molecular marker Bacte- Nat Geosci 5:202–205 roides strain HF 183. J Quat Sci 30:349–354 Mannion AM (1999) Natural environmental change. The last 3 Majorowicz J, Šafanda J (2015) Effect of postglacial warming million years. Routledge, London seen in high precision temperature log deep into the granites Manzini E (2009) ENSO and the stratosphere. Nat Geosci in NE . Int J Earth Sci 10:1563–1571 2:749–750 Majorowicz J et al (2014) The little Ice Age signature and sub- Marchant R et al (2009) Climate of the Past Pollen-based bio- sequent warming seen in borehole temperature logs versus me reconstructions for Latin America at 0, 6000 and 18 000 solar forcing model. Int J Earth Sci 103:1163–1173 radiocarbon years ago. Clim Past 5:725–767 Malcolm JR et al (2006) Global warming and extinctions of Marcott SA et al (2013) A reconstruction of regional and global endemic species from biodiversity hotspots. Conserv Biol temperature for the past 11,300 years. Science 339:1198– 20:538–548 1201 Maley J (1991) The African rain forest vegetation and palaeoen- Marcott SA et al (2014) Centennial-scale changes in the global vironments during late Quaternary. Clim Change 19:79–98 carbon cycle during the last deglaciation. Nature 514:616– 619 Maley J (1996) Fluctuacions majeures de la fôret dense humide Africaine. In: Hladik CM et al (Hrsg) L’Alimentation en forêt Marean CW et al (2015) A new research strategy for integrating tropicale. UNESCO, Paris (Chapter 3) studies of paleoclimate, paleoenvironment, and paleoanthro- pology. Evol Anthropol 24(2):62–72 Maley J, Brenac P (1998) Vegetation dynamics, palaeoenvi- ronments and climatic changes in the forests of western MARGO Project Members (2009) Constraints on the magnitude Cameroon during the last 28,000 years B.P. Rev Palaeobot and patterns of ocean cooling at the last glacial maximum. Palynol 99:157–187 Nat Geosci 2:127–132 Maley J et al (1990) Lithostratigraphy, volcanism, paleomagne- Margono BA et al (2014) Primary forest cover loss in Indo- tism and palynology of Quaternary lacustrine deposits from nesia over 2000–2012. Nat Clim Chang. https://doi.org/10. Barombi Mbo (West Cameroon): preliminary results. J Vol- 1038/nclimate2277 canol Geotherm Res 42:319–335 Mariaux A (1995) Growth periodicity in tropical trees. Int Assoc Malone AGO (2015) Constraints on southern hemisphere trop- Wood Anat (IAWA) J 16(4):327–328 ical climate change during the Little Ice Age and Younger Marino G, Zahn R (2015) The Agulhas Leakage: the missing Dryas based on glacier modeling of the Quelccaya Ice Cap, link in the interhemispheric climate seesaw? PAGES Mag Peru. Quat Sci Rev 125:106–116 23(1):22–23 Malvido E (1973) Cronología de la epidemías y crisis agricolas Marino G et al (2013) Agulhas salt-leakage oscillations during de la época colonial. Historia Méxicana 89:96–101 abrupt climate changes of the Late Pleistocene. Paleoceano- graphy 28:599–606. https://doi.org/10.1002/palo.20038 Mann ME (2012) The hockey stick and the climate wars: dis- patches from the front lines. Columbia University Press, New Mark BG (2008) Tracing tropical andean glaciers over space and York City time: some lessons and transdisciplinary implications. Glob Planet Change 60:101–114 Mann ME et al (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779– Mark BG, Helmens KF (2005) Reconstruction of glacier 787 equilibrium-line altitudes for the last glacial maximum on the 700 Literatur

high plain of Bogotá, eastern Cordillera, Colombia: climatic Martínez JI et al (2015) Climate Change and human impact in and topographic implications. J Quat Sci 20:789–800 Central and South America over the last 2000 years. PAGES Mag 23(1):32 Mark BG, Osmaston HA (2008) Quaternary glaciation in Af- rica: key chronologies and climatic implications. J Quat Sci Martínez-Garcia A et al (2009) Links between iron supply, ma- 23:589–608 rine productivity, sea surface temperature, and CO2 over the Mark BG, Seltzer GO (2005) Evaluation of recent glacier reces- last 1.1 Ma. Paleoceanography 24, PA 1207 sion in the Cordillera Blanca, Peru (AD 1962–1999): spatial Martinson DG et al (1987) Age dating and the orbital theory of distribution of mass loss and climatic forcing. Quat Sci Rev the ice ages: Development of a high resolution 0 to 300,000 24:2265–2280 year chronostratigraphy. Quat Res 27:1–29 Mark BG et al (2004) Late quaternary glaciations of Ecuador, Marwick B (2009) Biogeography of Middle Pleistocene homin- Peru and Bolivia. In: Ehlers J, Gibbard PL (Hrsg) Quaternary ins in mainland Southeast Asia: a review of current evidence. glaciations – extent and chronology, part III: South America, Quat Int 202:51–58 Asia, Africa, Australia, Antarctica. Elsevier, Amsterdam, S 151–163 Mascarelli A (2014) Designer reefs. Nature 508:444–446 Mark BG et al (2005) Tropical snowline changes at the last gla- Maslin M (2016) Forty years of linking orbits to ice ages. Nature cial maximum: a global assessment. Quat Int 138–139:168– 540:208–210 201 Maslin M, Austin P (2012) Climate models at their limit? Nature Marker ME, Muller D (1978) Relict vlei silts of the Kuiseb Riv- 486:183–184 er valley, South West Africa. Madoqua II(2):151–162 Markgraf V (1991) Younger Dryas in southern South America. Maslin MA et al (2014) East African climate pulses and early Boreas 20:63–69 human evolution. Quat Sci Rev 101:1–17 Markgraf V (1993) Younger Dryas in southernmost South Ame- Mastepanov M et al (2008) Large tundra methane burst during rica – an update. Quat Sci Rev 12:351–355 onset of freezing. Nature 456:628–630 Markgraf V et al (1992) Evolution of late Pleistocene and Holo- Matthes K (2011) Solar cycle and climate predictions. Nat Geo- cene climates in the circum-South Pacific land areas. Clim sci 4:735–736 Dyn 6:193–211 McIntyre S, McKitrick R (2005) Hockey sticks, principal Markgraf V et al (2000) Paleoclimate reconstruction along the components, and spurious significance. Geophys Res Lett Pole–Equator–Pole transect of the Americas (PEP 1). Quat 32(3):L3710. https://doi.org/10.1029/2004GL021750 Sci Rev 19:125–140 Mauelshagen F (2010) Klimageschichte der Neuzeit. WBG, Marlon JR et al (2016) Reconstructions of biomass burning from Darmstadt sediment-charcoal records to improve data–model compari- sons. Biogeosciences 13:3225–3244 Mauquoy D et al (2002) High resolution records of late- Holocene climate change and carbon accumulation in two Marotzke J, Forster PM (2015) Forcing, feedback and internal north-west European ombrotrophic peat bogs. Palaeogeogr variability in global temperature trends. Nature 517:565–570 Palaeoclimatol Palaeoecol 186:275–310 Marques I et al (1980) Cálculo de evapotranspiracao real na Ba- cia Amazônica através do método aerológico. Acta Amazon Mauritsen T (2016) Clouds cooled the Earth. Nat Geosci 9:865– 19:357–361 867 Marris E (2006) Written in elements. Nature 442:505 Mauritsen T, Stevens B (2015) Missing iris effect as a possible cause of muted hydrological change and high climate sensiti- Marris E (2015) Fishing for the first Americans. Nature vity in models. Nat Geosci 8:346–351 525:176–178 Maxwell AL, Liu K (2002) Late quaternary pollen and asso- Marshall J, Speer K (2012) Closure of the meridional over- ciated records from the monsoonal areas of continental south turning circulation through Southern Ocean upwelling. Nat and SE Asia. Adv Geoecology 34:189–228 Geosci 5:171–180 Martin EE (2015) Earth science: ocean circulation and rapid cli- May J-H (2014) Dunes and dunefields in the Bolivian Chaco mate change. Nature 517:30–31 as potential records of environmental change. Aeolian Res 10:89–102 Martin L et al (1997) Astronomical forcing of contrasting rain- fall changes in tropical South America between 12,400 and Mayer LA et al (1996) Three-dimensional visualization of orbi- 8800 cal yr B.P. Quat Res 47:117–122 tal forcing and climatic response: interactively exploring the pacemaker of the ice ages. Geol Rundsch 85:505–512 Martin-Puertas C et al (2012) Regional atmospheric circulation shifts induced by a grand solar minimum. Nat Geosci 5:397– Mayewski PA et al (2004) Holocene climate variability. Quat 401 Res 62:243–255 Literatur 701

Mayle FE et al (2000) Millennial-scale dynamics of southern McGregor HV et al (2015) Robust global ocean cooling trend Amazonian rain forests. Science 290:2291–2294 for the pre-industrial Common Era. Nat Geosci 8:671–677 McCarroll D (2015) ‘Study the past, if you would divine the McGregor HV et al (2016) Data, age uncertainties and ocean future’: a retrospective on measuring and understanding Qua- •18O under the spotlight for Ocean2k Phase 2. PAGES Mag ternary climate change. J Quat Sci 30:154–187 24(1):44 McCauley JF et al (1982) Subsurface Valleys and Geoarchaeo- McKay NP, Emile-Geay J (2016) Technical note: the Linked logy of Eastern Sahara Revealed by Shuttle Radar. Science Paleo Data framework – a common tongue for paleoclima- 218:1004–1020 tology. Clim Past 12:1093–1100 McCauley JF et al (1995) SIR-C Definition of the Serir-Kufra McLaren SJ et al (2009) First evidence for episodic flooding River System in SE Libya. EOS Supplement, April 25 events in the arid interior of central Saudi Arabia over the last 60 ka. J Quat Sci 24:198–207 McCloskey TA, Keller G (2009) 5000 year sedimentary record of hurricane strikes on the central coast of Belize. Quat Int McLauchlan KK et al (2013) Changes in global nitrogen cycling 195:53–68 during the Holocene epoch. Nature 495:352–355 McClure HA (1976) Radiocarbon chronology of late Quaterna- McManus JF (2004) A great grand-daddy of ice cores. Nature ry lakes in the Arabian desert. Nature 263:755–756 429:611–612 McCulloch M et al (2003) Coral record of increased sediment McManus JF et al (1999) A 0.5 million year record of millen- flux to the inner Great Barrier Reef since European settle- nial scale climate variability in the North Atlantic. Science ment. Nature 421:727–730 283:971–975 McCulloch RD et al (2005) Chronology of the last glaciation McManus J, Tzedakis C (2006) Global climate during Marine in central Strait of Magellan and Bahía Inútil, southernmost Isotope Stage 11 (MIS 11). PAGES News 14(1):42–44 South America. Geografisca Ann 87A:289–312 McMichael CH et al (2012) Spatial and temporal scales of pre- McDowell MC et al (2015) Re-evaluating the Late Quaternary Columbian disturbance associated with western Amazonian fossil mammal assemblage of Seton Rockshelter, Kangaroo lakes. Holocene 22:131–141 Island, South Australia, including the evidence for late- McPhillips D et al (2014) Millennial-scale record of landslides surviving Megafauna. J Quat Sci 30:355–364 in the Andes consistent with trigger. Nat Geosci McFarlane MJ, Eckardt FD (2007) Paleodune morphology as- 7:925–930 sociated with the Gumare of the Okavango graben in Meadows ME (1988) Late Quaternary peat accumulation in the Botswana/Namibia borderland: a new model of tectonic southern Africa. Catena 15:459–472 influence. South African J Geol 110:535–542 Meadows ME (2007) Classics in physical geography revisi- McFarlane MJ et al (2005) Degradation of linear dunes in ted. Coetzee, JA 1967: Pollen analytical studies in East and northwest Ngamiland, Botswana and the implications for lu- Southern Africa. Palaeoecology of Africa 3, 1–146. Prog minescence dating of periods of aridity. Quat Int 135:83–90 Phys Geo 31:313–317 McGlone MS (1995) Lateglacial landscape and vegetation Meadows ME (2015) Seven decades of Quaternary palynologi- change and the Younger Dryas climatic oscillation in New cal studies in southern Africa: a historical perspective. Trans Zealand. Quat Sci Rev 14:867–881 Royal Soc South Africa 70:103–108 McGlone MS et al (2010) Divergent trends in land and ocean Meckler AN (2016) An extended yardstick for climate variabil- temperature in the Southern Ocean over the past 18,000 years. ity. Nature 534:626–628 Nat Geosci 3:622–626 Meckler AN et al (2012) Interglacial hydroclimate in the McGlue M et al (2006) Facies architecture of flexural margin tropical west Pacific through the late pleistocene. Science lowstand delta deposits in Lake Edward, East African rift: 336:1301–1304 Constraints from seismic reflection imaging. J Sediment Res 76:942–958 Meckler AN et al (2013) Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean. Nature 495:495– McGlue MM et al (2008) Seismic records of late Pleistocene 498 aridity in Lake Tanganyika, tropical East Africa. J Paleolim- nol 40:635–653 Meckler AN et al (2015) Glacial-interglacial temperature change in the tropical West Pacific: a comparison of McGowan S (2016) Muddy messages about American migrati- stalagmite-based paleo-thermometers. Quat Sci Rev. https:// on. Nature 537:43–44 doi.org/10.1016/j.quascirev.2015.06.015 McGraw MC et al (2016) Reconciling the observed and mo- Medina-Elizalde M, Rohling EJ (2012) Collapse of classic Ma- deled Southern Hemisphere circulation response to volcanic ya civilization related to modest reduction in precipitation. eruptions. Geophys Res Lett 43:7259–7266 Science 335:956–959 702 Literatur

Medina-Elizalde M et al (2010) High resolution stalagmite cli- Metcalfe SE et al (2000) Records of Late Pleistocene-Holocene mate record from the Yucatán Peninsula spanning the Maya climatic change in Mexico – a review. Quat Sci Rev 19:699– terminal classic period. Earth Planet Sci Lett 298:255–262 721 Meehl GA et al (2016) Antarctic sea-ice expansion between Metcalfe SE et al (2002) The potential of archival sources for 2000 and 2014 driven by tropical Pacific decadal climate var- reconstructing climate and climate-related processes in latin iability. Nat Geosci 9:590–595 Amerika. PAGES News 10(3):11–14 Meissner KJ (2015) The dynamics of cold events. Nat Geosci Metcalfe SE et al (2014) Hydrology and climatology at Lagu- 8:904–906 na La Gaiba, lowland Bolivia: complex responses to climatic Melles M et al (2012) 2.8 million years of arctic climate change forcings over the last 25 000 years. J Quat Sci 29:289–300 from lake el’gygytgyn, NE Russia. Science 337:315–320 Metcalfe SE et al (2016) Early-Mid Pleistocene environments in Mendelsohn J et al (2002) Atlas of Namibia. Ministry of Envi- the Valsequillo Basin, Central Mexico: a reassessment. J Quat ronment and Tourism (D. Philips Publ.), Cape Towm Sci 31:325–336 Mensching H et al (1970) Die Hochwasserkatastrophe in Tune- Metzner D et al (2014) Radiative forcing and climate impact re- sien im Herbst 1969. Geogr Z 58:81–94 sulting from SO2 injections based on a 200,000-year record of Plinian eruptions along the Central American . Mercer JH (1976) Glacial history of southernmost South Ame- Int J Earth Sci 103:2063–2079 rica. Quat Res 6:125–166 Mercer JH (1984) Late cainozoic paleoclimates of the southern Meyer H (1890) Ostafrikanische Gletscherfahrten. Die Er- hemisphere south of the Equator. In: Vogel JC (Hrsg) Late ce- steigung des Kilimandscharo und Forschungsreisen im nozoic Paleoclimates of the southern hemisphere. Balkema, Kilimandscharo-Gebiet. Duncker & Humblot, Leipzig Rotterdam, S 45–58 Meyer H (1900) Der Kilimandjaro. Reisen und Studien. Reimer, Mercer JH, Palacios MO (1977) Radiocarbon dating of the last Berlin glaciation in Peru. Geology 5:600–604 Meyer H (1904) Die Eiszeit in den Tropen. Geogr Z 10:593–600 Merck JH (1783) Über den Ursprung der Fossilien in Teutsch- Meyer H (1907a) In den Hoch-Anden von Ecuador: Chimbora- land. Der Teutsche Merkur, Weimar, S 50–63 zo, Cotopaxi etc. Reisen und Studien. Reimer, Berlin Mercuri AM et al (2015) Humans and water in desert “Refu- gium” areas: palynological evidence of climate oscillations Meyer H (1907b) In den Hoch-Anden von Ecuador: Chim- and cultural developments in early and mid-holocene saharan borazo, Cotopaxi etc. Reisen und Studien. Reimer, Berlin edges. Interdiscip Archaeol VI(2):151–160 (Bilder-Atlas, 24 farbige Tafeln (Lithographien nach Gemäl- den von Rudolf Reschreiter), 20 Tafeln (Lichtdruck nach Merkel U et al (Hrsg) (2014) Dust. PAGES Magazine 22(2):57– Originalen verschiedener Forscher und Künstler), Vorwort + 116 12 S. Erläuterungen) Mertens K (2009) Tracing hydrological millennial-scale cycles Meyer-Abich A (1963) Geleitwort. In: von Humboldt A (Hrsg) in the late Quaternary of the Cariaco Basin and the southern Ideen zu einer Geographie der Pflanzen. WBG, Darmstadt, S Gulf of Cádiz using coccoliths and dinoflagellate cysts. Ph. V–X D. thesis, Ghent University, Belgium. 205 S Meyers PA, Horie S (1993) An organic carbon isotopic record Mertens KJM et al (2009) Coccolithophores as palaeoecological of glacial-postglacial change in atmospheric pCO2 in the se- indicators for shifts of the ITCZ in the Cariaco Basin during diments of Lake Biwa, Japan. Palaeogeogr Palaeoclimatol the late Quaternary. J Quat Sci 24:159–174 Palaeoecol 105:171–178 Messerli B et al (1980) The Saharan and East African Uplands Michaletz ST et al (2014) Convergence of terrestrial plant pro- during the Quaternary. In: Williams MAJ, Faure H (Hrsg) The duction across global climate gradients. Nature 512:39–43 Sahara and the Nile. Balkema, Rotterdam, S 87–118 Messerli B et al (1992) Die Veränderungen von Klima und Michel P (1973) Les bassins de fleuves Sénéga et Gambie. Étude Umwelt in der Region Atacama (Nordchile) seit der letzten Géomorphologique. ORSTOM Série des Mémoires 63 (To- Kaltzeit. Erdkunde 46:257–272 mes 1–3, 752 S. + Kartenanhang.) Metcalfe DB (2014) A sink down under. Nature 509:566–567 Middleton N (2012) Rivers: a very short introduction. Oxford University Press, Oxford Metcalfe SE, Hales PE (1994) Holocene diatoms from a Mexi- can crater lake – la Piscina de Yuriria. Proceedings of the 11th Miehlich G (1991) Chronosequences of soils. international diatom symposium, San Francisco, 1990. Calif Hamburger Bodenkundliche Arbeiten 15 Acad Sci 17:505–515 Migowski C et al (2001) Holocene climatic record in laminated Metcalfe SE, Nash DJ (Hrsg) (2012) Quaternary environmental sediments from the Dead Sea (Israel): comparison with the change in the tropics. Wiley, Chichester development of the near East civilizations. Monsoon 3:62–64 Literatur 703

Migowski C et al (2006) Holocene climate variability and cultu- Mölg T et al (2006) Recent glacial recession in the Rwenzori ral evolution in the Near East from the Dead Sea sedimentary mountains of East Africa due to rising air temperature: com- record. Quat Res 66:421–431 ment. Geophys Res Lett 33:L20404. https://doi.org/10.1029/ 2006GL027254 Mikami T (2002) Summer and winter temperature reconstruc- tions in Japan. PAGES News 10(3):17–18 Mölg T et al (2008) Mass balance of a slope glacier on Kiliman- jaro and its sensitivity to climate. Int J Climatol 28:881–892 Milankovic´ M (1998) Canon of insolation and the ice-age problem. Agency for Textbooks, Belgrad (Translated From Molion LCB (1975) A climatologic study of the energy and German Edition of 1941) moisture fluxes of the Amazon Basin with consideration of deforestation effects. Ph. D. Thesis, Madison, Wisconsin, Milankovitch M (1920) Théorie mathématique des phénomènes USA thermiques produits par la radiation solaire. Acad. Yougosla- ve Sci. Arts (Zagreb), Paris Mollier-Vogel E et al (2013) Rainfall response to orbital and millennial forcing in northern Peru over the last 18 ka. Quat Milankovitch M (1941) Kanon der Erdbestrahlung und seine Sci Rev 76:29–38 Auswirkung auf das Eiszeitenproblem. In: Königlich Serbi- sche Akademie, Belgrad. Edit. Spec. 133, S 1–633 Monastersky R (2015) The human age. Nature 519:144–147 Miller CS, Gosling WD (2014) Quaternary forest associations Monecke K et al (2008) A 1,000-year sediment record of tsuna- in lowland tropical West Africa. Quat Sci Rev 84:7–25 mi recurrence in northern . Nature 455:1232–1234 Miller CS et al (2016) Drivers of ecosystem and climate change Monheim F (1956) Beiträge zur Klimatologie und Hydrologie in tropical West Africa over the past ~540 000 years. J Quat des Titicacabeckens. Heidelb Geogr Arb 1:1–152

Sci 31:671–677 Monnin E et al (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114 Miller DC et al (1993) Evidence for Holocene stability of steep slopes, northern Peruvian Andes, based on soils and radiocar- Montgomery DR (2007) Dirt: the erosion of civilizations. Uni- bon dates. Catena 20:1–12 versity of California Press, Oakland Miller GH et al (1999) Earliest modern humans in southern Afri- Moore CM et al (2013) Processes and patterns of oceanic nutri- ca dated by isoleucine epimerization in ostrich eggshell. Quat ent limitation. Nat Geosci 6:701–710 Sci Rev 18:1537–1548 Mora C et al (2013) The projected timing of climate departure Miller GH et al (2006) Detecting human impacts on the flora, from recent variability. Nature 502:183–187 fauna, and summer monsoon of Pleistocene Australia. Clim Morales MS et al (2011) Precipitation changes in the South Past Discuss 2:535–562 American Altiplano since 1300 AD reconstructed by tree- Miller GH et al (2007) Detecting human impacts on the flora, rings. Clim Past Discuss 7:4297–4334 fauna, and summer monsoon of Pleistocene Australia. Clim Moran AP et al (2016) Evidence of central Alpine glacier ad- Past Discuss 3:463–473 vances during the Younger Dryas-early Holocene transition Miller RM (2008) Palaeozoic to cenozoic. The geology of Na- period. Boreas 45:398–410 mibia, Bd. 3. Ministry of Mines and Energy, Geological Moran K et al (2006) The cenozoic palaeoenvironment of the Survey, Windhoek (Kap. 16–1 bis 28–13 + Index) . Nature 441:601–605 Miller R (2013) Climate change. Sci Soc Swakopmund Reports Morello L (2014) NASA carbon-monitoring orbiter readies for 45:29–32 launch. Nature 510:451–452 Mishchenko MI et al (2007) Long-term satellite record reveals Morgan V et al (2002) Relative timing of deglacial climate likely recent aerosol trend. Science 315:1543 events in Antarctica and Greenland. Science 297:1862–1864 Miyahara H et al (2012) Tracing the response of climate to ga- Morimoto M et al (2007) Intensified mid-Holocene Asian mon- lactic cosmic rays. PAGES News 20(2):80–81 soon recorded in corals from Kikai Island, subtropical North- Miyamoto S (2010) Late Pleistocene sedimentary environment western Pacific. Quat Res 67:204–214 of the “Homeb Silts” deposits, along the middle Kuiseb River Morrás H et al (2009) Genesis of subtropical soils with stony ho- in the Namib Desert, Namibia, African Study Monogr (Kyo- rizons in NE Argentina: autochthony and polygenesis. Quat to) 40(Suppl):51–66 Int 196:137–159 Moffa-Sánchez P et al (2014) Solar forcing of the North Atlan- Mountain Research Initiative EDW Working Group, Pepin N et tic surface temperature and salinity over the past millennium. al (2015) Elevation-dependent warming in mountain regions Nat Geosci 7:275–278 of the world. Nat Clim Chang 5:424–430 Mohtadi M et al (2016) Palaeoclimatic insights into forcing and Mourguiart P (1999) Commentaire á la note de Florence Sylve- response of monsoon rainfall. Nature 533:191–199 stre, Simone Servant-Vildary et Michel Servant. C. R. Acad. 704 Literatur

Sci. Paris Série IIa, Sciences de la terre et des planètes 329, S Murari MK et al (2014) Timing and climatic drivers for glacia- 153–155 tion across monsoon-influenced regions of the Himalayane Mourguiart P et al (1992) Reconstruction quantitative des ni- Tibetan orogen. Quat Sci Rev 88:159–182 veaux du petit lac Tititcaca au cours de l’Holocène. C. R. Muscheler R (2012) The enigmatic 1,500-year cycle. Nat Geo- Acad. Sci. Paris Série II 315, S 875–880 sci 5:851–852 Mourguiart P et al (1997) Changements limnologiques et cli- Muscheler R et al (2007) Solar activity during the last 1000 yr matologiques dans le bassin du lac Titicaca (Bolivie), depuis inferred from radionuclide records. Quat Sci Rev 26:82–97 30,000 ans. C. R. Acad. Sci. Paris, Sciences de la terre et des 14 planètes 325, S 139–146 Muscheler R et al (2008) Tree rings and ice cores reveal C ca- libration uncertainties during the Younger Dryas. Nat Geosci Mourguiart P et al (1998) Holocene palaeohydrology of Lake 1:263–267 Titicaca estimated from an ostracod-based transfer function. Palaeogeogr Palaeoclimatol Palaeoecol 143:51–72 Myhre G et al (2013) Anthropogenic and Natural Radiative Forcing. In: Stocker TF et al (Hrsg) Climate Change 2013: Mosblech NA et al (2012) North Atlantic forcing of Amazonian The Physical Science Basis. Contribution of Working Group precipitation during the last ice age. Nat Geosci 5:817–820 I to the Fifth Assessment Report of the Intergovernmental Mousinho de Meis MR (1968) Considerações geomorfológicas Panel on Climate Change. Cambridge University Press, Cam- sôbre o Médio Amazonas. Rev Bras Geogr 30(2):3–20 bridge Movius HL (1948) The Lower Palaeolithic Cultures of Southern Nagornov OV et al (2006) Temperature reconstruction for Arc- and Eastern Asia. Trans Amer Philos Soc 38(4):329–420 tic glaciers. Palaeogeogr Palaeoclimatol Palaeoecol 236:125– Moy CM et al (2002) Variability of El Niño/Southern Oscil- 134 lation activity at millennial timescales during the Holocene Naidu PD, Govil P (2010) New evidence on the sequence of epoch. Nature 420:162–165 deglacial warming in the tropical Indian Ocean. J Quat Sci Mühlinghaus C et al (2008) Temperature and precipitation 25:1138–1143 records from stalagmites grown under disequilibrium condi- Najafi MR et al (2015) Attribution of Arctic temperature change tions: a first approach. PAGES News 16(3):19–20 to greenhouse-gas and aerosol influences. Nat Clim Chang. Muhs DR et al (2008) Paleoclimatic significance of chemical https://doi.org/10.1038/nclimate2524 weathering in loess-derived paleosols of subarctic Central Nanson GC et al (2008) Alluvial evidence for major climate and Alaska. Arct Antarct Alp Res 40:396–411 flow regime changes during the middle and late Quaternary in Muhs DR et al (2014a) Loess as a quaternary paleoenvironmen- eastern central Australia. Geomorphology 101:109–129 tal indicator. PAGES Mag 22(2):84–85 Narama C (2002) Late Holocene variation of the Raigorodskogo Muhs D et al (2014b) Loess records. In: Knippertz P, Stuut J- Glacier and climate change in the Pamir Altai, central Asia. BW (Hrsg) Mineral dust: a key player in the earth system. Catena 48:21–37 Springer, Dordrecht, S 411–441 Narcisi B et al (2010) Extended East Antarctic ice-core tephro- Müller J et al (1995) Hydrological changes of the Amazon dur- stratigraphy. Quat Sci Rev 29:21–27 ing the last glacial-Interglacial cycle in central Amazonia Nash DJ, Adamson GCD (2014) Recent advances in the his- (Brazil). Naturwissenschaften 82:232–235 torical climatology of the tropics and subtropics. Bull Am Müller P (1973) The dispersal centres of terrestrial vertebrates in Meteorol Soc 95:131–146 the neotropical realm. A study in the evolution of the neotro- th pical biota and its native landscapes. Biogeographica 2:1–243 Nash DJ, Endfield GH (2002) A 19 century climate chronolo- gy of the Kalahari region of central southern Africa derived Müller R (1985) Zur Gletschergeschichte in der Cordille- from missionary correspondence. Int J Climatol 22:821–841 ra Quimsa Cruz (Depto. La Paz, Bolivien). Inaugural- Dissertation, Phil. Fak. II, Universität Zürich. Druck Müller, Nash DJ, Meadows ME (2012) Africa. In: Metcalfe SE, Nash Wildhaus DJ (Hrsg) Quaternary Environmental Change in the Tropics. Wiley, Chichester, S 79–150 Muller RA, MacDonald GJ (1995) Glacial cycles and orbital inclination. Nature 377:107–108 Nash DJ et al (2006) Holocene environmental change in the Okavango Panhandle, northwest Botswana. Quat Sci Rev Munyikwa K (2005a) The role of dune morphogenetic history in 25:1302–1322 the interpretation of linear dune luminescence chronologies: a review of linear dune dynamics. Prog Phys Geogr 29:317– Navarro-González R et al (2007) Paleoecology reconstruction 336 from trapped gases in a fulgurite from the late Pleistocene of the Libyen Desert. Geology 35:171–174 Munyikwa K (2005b) Synchrony of southern hemisphere late Pleistocene arid episodes: a review of luminescence chrono- NEEM community members (2013) interglacial recon- logies from arid aeolian landscapes south of the Equator. Quat structed from a Greenland folded ice core. Nature 493:489– Sci Rev 24:2555–2583 494 Literatur 705

Neff JC et al (2008) Increasing eolian dust deposition in the Workshop of the Excellence Cluster CliSAP (DFG EXC 177) western United Stzates linked to human activity. Nat Geosci and the Max Planck Institute for Meteorology at KlimaCam- 1:189–195 pus Hamburg, 7–9 February 2011 Negendank J (2001) Klima im Wandel: Die Geschichte des Kli- Nicholson SE et al (2012) Spatial reconstruction of semi- mas aus geobiowissenschaftlichen Archiven. In: Schluchter quantitative precipitation fields over Africa during the nine- W, Elkins S (Hrsg) Klima im Wandel – Eine disziplinüber- teenth century from documentary evidence and gauge data. schreitende Herausforderung. Brandenburgische Technische Quat Res 78:13–23 Universität Cottbus, Aktuelle Reihe, Bd. 10, S 32–38 Nield T (2014) Parsing eruptions. Nature 508:316–317 Negendank J (2006) Pragmatik wissenschaftlicher Erkenntnis- se. Geowissenschaften als Basis modernen Handlungsrah- Niemi NA (2014) Quake, rubble and roll. Nat Geosci 7:859–860 mens? Uwsf – Zeitschrift Umweltchemie Ökotoxikologie Nishiizumi K (1989) Cosmic ray production rates of 26Al and 18(2):80–87 10Be in quartz from glacially polished rocks. J Geophys Res Negendank J, KIHZ-Konsortium (Hrsg) (2004) Klima in 94:17907–17915 historischen Zeiten. Akademie der Wissenschaften und Ninglian W et al (2000) Nitrate concentration in the Guliya ice der Literatur in Mainz. Abhandlungen der Mathematisch- core and solar activity. PAGES News 2000–2:11 Naturwissenschaftlichen Klasse Jg., Bd. 2004, S 119–135 Nobre CA, de Borma LS (2009) ‘Tipping points’ for the Ama- Nehring A (1890) Ueber Tundren und Steppen der Jetzt- zon forest. Curr Opin Environ Sustain 1:28–36 und Vorzeit: Mit besonderer Berücksichtigung ihrer Fauna. Dümmler, Berlin Normile D (2011) Tohoku inundation spurs hunt for ancient tsu- namis. Science 334:1341–1343 Nemecz E et al (2000) The origin of the silt size quartz grains and minerals in loess. Quat Int 68–71:199–208 Norris JR et al (2016) Evidence for climate change in the satel- lite cloud record. Nature 536:72–75 Neukom R et al (2014a) Inter-hemispheric temperature variabil- ity over the past millennium. Nat Clim Chang 4:362–367 Norström E et al (2009) Reconstruction of environmental and climate changes at Braamhoek , eastern escarpment Neukom R et al (2014b) Multi-proxy summer and winter preci- South Africa, during the last 16,000 years with emphasis on pitation reconstruction for southern Africa over the last 200 the Pleistocene-Holocene transition. Palaeogeogr Palaeocli- years. Clim Dyn 42:2713–2726 matol Palaeoecol 271:240–258 Neumann K et al (2007) The third millennium BP Central Afri- Notaro M et al (2011) Did aboriginal vegetation burning im- can rainforest crisis and the Bantu question: Seasonality as a pact on the Australian summer monsoon? Geophys Res Lett factor for population movements. MARUM Abstracts, 13–16 38:L11704 November 2007, S 24 Nott J, Hayne M (2001) High frequency of ‘super-cyclones’ Newsome J, Flenley JR (1988) Late Quaternary Vegetational along the Great Barrier Reef over the past 5,000 years. Na- History of the Central Highlands of Sumatra. II. Palaeopa- ture 413:508–512 lynology and Vegetational History. J Biogeogr 15:555–578 Nott JF et al (1996) A 30,000 year record of extreme floods in Newton A (2012) Ice-free emigration. Nat Geosci 5:596 tropical Australia from relict plunge-pool deposits: Implica- Newton A (2013) The mummies’s tale. Nat Geosci 6:518 tions for future climate change. Geophys Res Lett 23:379– 382 Newton A (2015) Maritime cooling. Nat Geosci 8:259 Nott JF et al (2001) Alluvial fans, landslides and the Late NGRIP Members (2004) High-resolution record of Northern Quaternary climatic change in the wet tropics of northeast Hemisphere climate extending into the last interglacial pe- Queensland. Aust J Earth Sci 48:875–882 riod. Nature 431:147–151 Novakov T, Rosen H (2012) The Black Carbon Story: Early His- Nicholson SE (1996) A review of climate dynamics and cli- tory and New Perspectives. Ambio 42:840–851 mate variability in eastern Africa. In: Johnson TC, Odada EO (Hrsg) The Limnology, Climatology and Palaeoclimatology Nshimyimana JP et al (2014) Distribution and abundance of of the East African Lakes. Gordon and Breach, Amsterdam. human-specific Bacteroides and relation to traditional in- S 25–56 dicators in an urban tropical catchment. J Appl Microbiol 116:1369–1383 Nicholson SE (2009) A new picture of the structure of the “monsoon” and land ITCZ over West Africa. Clim Dyn Núñez L et al (2002) Human Occupations and Climate Change 32:1155–1171 in the Puna de Atacama. Chile Sci 298:821–824 Nicholson SE (2011) Non-linearities in the environmental sys- Nunn PD (1997) Late Quaternary environmental changes on Pa- tem over West Africa and implications for abrupt change. cific islands: controversy, certainty and conjecture. J Quat Sci Northern Africa – past, present, and future climate changes. 12:443–450 706 Literatur

Nyberg J et al (2007) Low Atlantic hurricane activity in the Olson C (2007) The soil record of quaternary climate change. 1970s and 1980s compared to the past 270 years. Nature Quat Int 162–163:1–2 447:698–701 Olson SL, Hearty PJ (2009) A sustained +21 m sea level high- O’Brien C et al (2010) High sea surface temperatures in tropical stand during MIS 11 (400 ka): direct fossil and sedimentary warm pools during the Pliocene. Nat Geosci 7:606–611 evidence from Bermuda. Quat Sci Rev 28:271–285 Ochsenius C (1982) Biogeographie und Ökologie der Land- Ono Y et al (2004) Timings and causes of glacial advances megafauna Südamerikas und ihre korrelativen Landschaften across the PEP-II transect (East-Asia to Antarctica) during im Jung-Quartär. Unveröffentlichte Habilitationsschrift. Phil. the last glaciation cycle. Quat Int 118–119:55–68 Fak. Universität des Saarlandes. 387 S Oppo DW et al (2009) 2,000-year-long temperature and hydro- Ochsenius C (1983) Aridity and Biogeography in Northernmost logy reconstructions from the Indo-Pacific warm pool. Nature South America During the Late Pleistocene (Peri-Caribbean 460:1113–1116 ı ı Arid Belt, 62 –74 W). Zentralblatt Geol Paläontologie Teil I Ortega-Ramírez J et al (1998) Paleoclimatic changes during the 1983(3–4):264–278 Late Pleistocene – Holocene in Laguna Babícaro, near the Ochsenius C (1998) About the geological age and in situ evoluti- Chihuahuan Desert. Can J Earth Sci 35:1168–1179 on of the Amazon rain forest of South America. The Amazon Ortlieb L (2000) The documentary historical record of El Niño vertebrate fauna as indicator of savannah landscapes during events in Peru: An update of the Quinn record (sixteenth the Neogene and Pleistocene postglacial age of the hylaea. through nineteenth centuries). In: Diaz H, Markgraf V (Hrsg) A revisited hypothesis. Geowissenschaftliche Beiträge. Carl El Niño and the southern oscillation: variability, global and Christian Ochsenius-Stiftung, Singen a. Hohentwiel regional impacts. Cambridge University Press, Cambridge, S O’Connell M (2001) Neolithic impact in Atlantic Europe: tim- 207–295 ing, intensity, and environmental contexts. Monsoon 3:78–82 Ortlieb L et al (2002) ENSO Reconstruction Based on Docu- Odada EO, Olago DO (Hrsg) (2006) The East African great mentary Data From Ecuador, Peru and Chile. PAGES News lakes: Limnology, Palaeolimnology and Biodiversity. Advan- 10(3):14–17 ces in Global Change Research, Bd. 12. Springer Science & Oschmann W (Hrsg) (2009) Sclerochronology and Paleoclima- Business Media te. Int J Earth Sci 98:1–133 Oerlemans J (2009) Freezes, floes and the future. Nature Oslisly R et al (2013) Climatic and cultural changes in the west 462:572–573 Congo Basin forests over the past 5000 years. Philos Trans Oestreich K (1904) Über die Eiszeit im nordwestlichen Himala- Royal Soc B 368:120304. https://doi.org/10.1098/rstb.2012. ya. Verhandlungen Ges Dtsch Naturforscher Ärzte 76(II):225 0304 (Versamml. zu Breslau 1904) Osmaston H (1989a) Glaciers, glaciations and equilibrium line O’Gorman PA (2012) Sensitivity of tropical precipitation ex- altitudes on Kilimanjaro. In: Mahaney WC (Hrsg) Quaternary tremes to climate change. Nat Geosci 5:697–700 and environmental research on East African mountains. Bal- kema, Rotterdam, S 7–30 O’Hara SL (1993) Historical evidence of fluctuations in the le- vel of Lake Pátzcuaro, Michoacán, Mexico over the last 600 Osmaston H (1989b) Glaciers, glaciations and equilibrium line years. Geogr J 159:51–62 altitudes on the Ruwenzori. In: Mahaney WC (Hrsg) Quater- nary and environmental research on East African mountains. O’Hara SL et al (1993) Accelerated soil erosion around a Mexi- Balkema, Rotterdam, S 31–104 can highland lake caused by prehispanic agriculture. Nature 362:48–51 Osmaston HA (2006) Should Quaternary sea-level changes be used to correct glacier ELAs, vegetation belt altitudes and sea O’Hara SL, Metcalfe SE (1995) Reconstructing the climate of level temperatures for inferring climate changes? Quat Res Mexico from historical records. Holocene 5:485–490 65:244–251 Ohlendorf C et al (2013) Mechanisms of lake-level change at Osmaston HA, Harrison SP (2005) The Late Quaternary glacia- Laguna Potrok Aike (Argentina) – insights from hydrological tion of Africa: A regional synthesis. Quat Int 138–139:32–54 balance calculations. Quat Sci Rev 71:27–45 Osmond JK, Dabous AA (2004) Timing and intensity of ground- Ohngemach D (1973) Análisis polínico de los sedimentos del water movement during Egyptian Sahara pluvial periods by Pleistoceno Reciente y del Holoceno en la región Puebla- U-series analysis of secondary U in ores and carbonates. Quat Tlaxcala. Comunicaciones (Projecto Puebla-Tlaxcala), Bd. 7, Res 61:85–94 S 47–49 Oster JL et al (2015) Steering of westerly over west- Ollier CD (1977) Outline geological and geomorphic history of ern North America at the Last Glacial Maximum. Nat Geosci the central Namib Desert. Madoqua 10:207–212 8:201–205 Olsen J et al (2012) Variability of the North Atlantic Oscillation Osterkamp TE (2005) The recent warming of permafrost in over the past 5,200 years. Nat Geosci 5:808–812 Alaska. Glob Planet Change 49:187–202 Literatur 707

Otterø OH et al (2010) External forcing as a metronome for At- E, Thorweihe U (Hrsg) (1999) Deutsche Forschungsgemein- lantic multidecadal variability. Nat Geosci 3:688–694 schaft. Nordost-Afrika: Strukturen und Ressourcen. Ergeb- nisse aus dem Sonderforschungsbereich „Geowissenschaft- Overeem A et al (2013) Crowdsourcing urban air temperatu- liche Probleme in ariden und semiariden Gebieten“. Wiley, res from smartphone battery temperatures. Geophys Res Lett Weinheim, S 366–445 40:4081–4085 Pachur H-J, Altmann N (2006) Die Ostsahara im Spätquartär. Overpeck JT (2000) The hole record. Nature 403:714–715 Ökosystemwandel im größten hyperariden Raum der Erde. Owen LA (1988) Wet-sediment deformation of Quaternary and Springer, Berlin recent sediments in the Skardu Basin, Karakoram Mountains, . In: Croots D (Hrsg) Glaciotectonics. Balkema, Rot- Pachur H-J, Braun G (1980) The palaeoclimate of the Cen- terdam, S 123–147 tral Sahara, Libya and the Libyan Desert. Palaeoecol Africa 12:351–363 Owen LA (2008) How Tibet might keep its edge. Nature 455:748–749 Pachur H-J, Wünnemann B (1996) Reconstruction of the pa- laeoclimate along 30ıE in the eastern Sahara during the Owen LA (2009) Latest Pleistocene and Holocene glacier fluc- Pleistocene/Holocene transition. Palaeoecol Africa 24:1–32 tuations in the Himalaya and Tibet. Quat Sci Rev 28:2150– 2164 Paduano GM et al (2003) A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum. Palaeogeogr Pa- Owen LA (2011) Quaternary Glaciation of Northern India. laeoclimatol Palaeoecol 194:259–279 In: Ehlers J et al (Hrsg) Quaternary Glaciations – extent and chronology, A closer look. Developments in Quaternary Paeth H (2015) Insights from large ensembles with pertubates Science, S 929–942 physics. Erdkunde 69:201–216 Owen LA, Dortch JM (2014) Nature and timing of Quaterna- Pagani M (2014) Broken tropical thermostats. Nat Geosci ry glaciation in the Himalayan-Tibetan orogen. Quat Sci Rev 7:555–556 88:14–54 Page K et al (1994) Late Quaternary evolution of Lake Urana, Owen LA et al (2002) Timing of multiple Late Quaternary gla- New South Wales, Australia. J Quat Sci9:47–57 ciations in the Hunza Valley, Karakoram Mountains, northern PAGES 2k Network (2013) Continental-scale temperature var- Pakistan: defined by cosmogenic radionuclide dating of mo- iability during the past two millennia. Nat Geosci 6:339–346 raines. Geol Soc Am Bull 114:593–604 PALAEOSENS Project Members (2012) Making sense of pa- Owen LA et al (2005) Climatic and topographic controls on laeoclimate sensitivity. Nature 491:683–691 the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radio- Palmer J et al (2006) Extension of New Zealand kauri (Agathis nuclide surface exposure dating. Quat Sci Rev 24:1391–1411 australis) tree-ring chronologies into Oxygen Isotope Stage Owen LA et al (2006) Terrestrial cosmogenic nuclide surface (OIS) 3. J Quat Sci 21:779–787 exposure dating of the oldest glacial successions in the Hima- Palmer T (2014) Build high-resolution global climate models. layan orogen: Ladakh Range, northern India. Geol Soc Am Nature 515:338–339 Bull 118:383–392 Palmer T (2015) Build imprecise supercomputers. Nature Owen LA et al (2008a) Quaternary glaciation of the Himalayan- 526:32–33 Tibetan orogeny. J Quat Sci 23:513–531 Pangani M et al (2010) High Earth-system climate sensitivity Owen LA et al (2008b) Landslides triggered by the October 8, determined from Pliocene carbon dioxide concentrations. Nat 2005, Kashmir Earthquake. Geomorphology 94:1–9 Geosci 3:27–30 Owen LA et al (2009) Quaternary glaciation of Mount Everest. Pant RK et al (2005) A 20-ka climate record from Central Hi- Quat Sci Rev 28:1412–1433 malayan loess deposits. J Quat Sci 20:485–492 Owen LA et al (2010) Quaternary glaciation of Gurla Mandata Parker EJ, Bloemendal J (2005) Aeolian process and pedo- (Naimon’anyi). Quat Sci Rev 29:1817–1830 genesis under the influence of the East Asian monsoon: A Owen-Smith N (1982) Factors influencing the consumption of statistical approach to particle-size distribution variability. plant products by large herbivores. In: Huntley BJ, Walker Sediment Geol 181:195–206 BH (Hrsg) Ecology of tropical savannas. Ecological Studies, Parkinson B et al (1987) Tropical Landshells of the World. Bd. 42. Springer, Berlin, S 359–403 Christa Hemmen, Wiesbaden Pachur H-J (1997) Der Ptolemäus-See in Westnubien als Paläo- Parolin M, Stevaux JC (2006) Dry climate and eolian dune for- klimaindikator. Petermanns Geogr Mitt 141:227–250 mation in the Middle Holocene in Mato Grosso do Sul State, Pachur H-J (1999) Paläo-Environment und Drainagesysteme Central West Brazil. Zeitschrift Geomorphol Suppl 145:177– der Ostsahara im Spätpleistozän und Holozän. In: Klitzsch 190 708 Literatur

Partin JW et al (2007) Millennial-scale trends in Warm Pool Pearce NJG et al (2007) Correlation and characterisation of in- hydrology since the Last Glacial Maximum. Nature 449:452– dividual glass shards from tephra deposits using trace element 455 laser ablation ICP-MS analyses: current status and future po- tential. J Quat Sci 22:721–736 Partin JW et al (2008) Climate variability recorded in tropical and sub-tropical speleothems. PAGES News 16(3):9–10 Pearce NJG et al (2014) Individual glass shard trace element analyses confirm that all known Toba tephra reported from Partin W et al (2013) Multidecadal rainfall variability in South India is from the c. 75-la Youngest Toba eruption. J Quat Sci Pacific Convergence Zone as revealed by stalagmite geo- 29:729–734 chemistry. Geology 41:1143–1146 Pearson A (2008) Who lives on the sea floor? Nature 454:952– Partridge TC (2002) Were Heinrich Events forced from the 953 southern hemisphere? S Afr J Sci 98:43–46 Peck JA et al (2004) A magnetic mineral record of Late Quater- Partridge TC, Maud RR (1987) Geomorphic evolution of nary tropical climate variability from Lake Bosumtwi, Ghana. southern Africa since the Mesozoic. South African J Geol Palaeogeogr Palaeoclimatol Palaeoecol 215:37–57 90:179–208 Pedersen K, Egholm DL (2013) Glaciations in response to Partridge TC, Maud RR (1989) The end-Cretaceous event: new climate variations preconditioned by evolving topography. evidence from the southern hemisphere. S Afr J Sci 85:428– Nature 493:206–210 430 Pedro JB et al (2016) The spatial extent and dynamics of the Partridge TC et al (1991) Our feature: the pretoria Saltpan – the Antarctic Cold Reversal. (And Supplementary Information). scientific aspects. Geobulletin 34:16–22 Nat Geosci 9:51–55 Partridge TC et al (1993) The Pretoria Saltpan: a 200,000 year Peel DA (1995) Ice cores. Profiles of the past. Nature 378:234– Southern African lacustrine sequence. Palaeogeogr Palaeocli- 235 matol Palaeoecol 101:317–337 Peeters L (1968) Orígen y Evolución de la Cuenca del Lago de Partridge TC et al (1997) Orbital forcing of climate over South Valencia, Venezuela. ODA (Oficina de Divulgación Agrico- Africa: A 200,000-year rainfall record from the Pretoria Salt- la), Caracas, Venezuela pan. Quat Sci Rev 16:1125–1133 Peeters L (1971) Nuevos datos acerca de la evolución de la cuen- Partridge TC et al (1999) Synthetic reconstructions of southern ca del Lago de Valencia (Venezuela) durante el Pleistoceno African environments during the Last Glacial Maximum (21– Superior y el Holoceno. Instituto para la conservación del La- 18 kyr) and the Holocene Altithermal (8–6 kyr). Quat Int go de Valencia, Caracas. 57/58:207–214 Pekel J-F et al (2016) High-resolution mapping of global surface Pasachoff JM (2009) Solar eclipses as an astrophysical labora- water and its long-term changes. Nature 540:418–422 tory. Nature 459:789–795 Pelto MS (1992) Equilibrium line altitude variations with la- titude, today and during the Late Wisconsin. Palaeogeogr Passarge S (1904) Die Kalahari. Versuch einer physisch- Palaeoclimatol Palaeoecol 95:41–46 geographischen Darstellung der Sandfelder des südafrikani- schen Beckens. Reimer, Berlin Peña-Ramírez V et al (2015) Rates of pedogenic processes in volcanic landscapes of late Pleistocene to Holocene age Past Interglacials Working Group of PAGES (2016) Intergla- in Central Mexico. Quat Int. https://doi.org/10.1016/j.quaint. cials of the last 800,000 years. First published: 5 March 2014.11.032 2016. Full publication history. http://onlinelibrary.wiley.com/ doi/10.1002/2015RG000482/full Penck A (1913) Die Formen der Landoberfläche und Verschie- bungen der Klimagürtel. Sitzungsberichte der preußischen Patnaik R et al (2012) Indian Monsoon Variability at Different Akademie der Wissenschaften, Physikalisch-mathematische Time Scales: Marine and Terrestrial Proxy Records. Procee- Klasse, Bd. I, S 77–97 dings of the Indian national Science Academy, Bd. 78, S 535–547 Pennisi E (2007) Spawning for a better Life. Science 318:1712– 1717 Patton PC et al (1993) Holocene paleofloods of the Ross River, Central Australia. Quat Res 40:201–212 Penny D (2012) China and Southeast Asia. In: Metcalfe SE, Nash DJ (Hrsg) Quaternary environmental change in the tro- Pätzold J et al (2004) Coral Climate History of the Subtropical pics. Wiley, Chichester, S 207–235 North Atlantic (CorClim). PAGES News 12(2):31–32 Penny D (2014) Social upheaval in ancient Angkor resulting Pauluis O et al (2008) The global atmospheric circulation on from fluvial response to land use and climate variability. moist Isentropes. Science 321:1075–1078 PAGES Mag 22(1):32–33 Payet R, Agricole W (2006) Climate Change in the Seychelles: Pepin NC et al (2014) Measuring and modelling the retreat of Implications for Water and Coral Reefs. Ambio 35(4):182– the summit ice fields on Kilimanjaro, East Africa. Arct An- 189 tarct Alp Res 46:905–917 Literatur 709

Peerdeman FM et al (1993) The stable oxygen isotope signal Pickering et al (2007) Stratigraphy, U-Th chronology, and pa- in shallow-water, upperslope sediments off the Great Barri- leoenvironments at Gladysvale Cave: insights into the clima- er Reef (Hole 820A). Proc Ocean Drill Program Sci Results tic control of South African hominin-bearing cave deposits. 133:163–173 J Hum Evol 53:602–619 Peteet D (1995) Preface. J Quat Sci 14:811 Pickup G et al (2002) Paleoflood reconstruction on floodplains using geophysical survey data and hydraulic modeling. In: Peterson GM et al (1979) The continental record of environmen- House PK et al (Hrsg) Ancient floods, modern hazards: tal conditions at 18,000 yr B.P.: An initial evaluation. Quat principles and applications of Paleoflood hydrology. Water Res 12:47–82 Science and Application, Bd. 5, S 47–60 Peterson J et al (2002) Mountain Environments in New Guinea Pienitz R et al (Hrsg) (2009) Advances in Paleolimnology. and the Last Glacial Maximum. ‘Warm /Cold Moun- PAGES News 17(3):136 tains’ Enigma in the West Pacific Warm Pool Region. Adv Geoecology 34:173–187 Piguet E (2013) From „primitive migration“ to „climate refu- gees“: the curious fate of the natural environment in migrati- Peterson LC et al (2000) Rapid changes in the hydrologic cy- on studies. Ann Assoc Am Geogr 103(1):148–162 cle of the tropical Atlantic during the last glacial. Science 290:1947–1951 Pilewskie P (2007) Aerosol heat up. Nature 448:541–542 Pinker RT et al (2005) Do satellites detect trends in surface solar Petit JR et al (1999) Climate and atmospheric history of the past radiation? Science 308:850–854 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436 Piotrowski J (1997) Palaeohydrology and global continental changes – panta rhei? Boreas 26:157–158 Petit-Maire N (1999) Variabilité naturelle des environnements terrestres: les deux derniers extrêmes climatiques (18 000 ˙ 2 Placzek C et al (2001) Holocene lakelevel fluctuations of Lake 000 et 8 000 ˙ 1 000 ans BP). C. R. Acad. Sci. Paris, Sciences Aricota, southern Peru. Quat Res 56:181–190 de la terre et des plantes. Earth Planet Sci 328(4):273–279 Placzek C et al (2006) Geochronology and stratigraphy of late Petoukhov V et al (2000) CLIMBER-2: a climate system mo- Pleistocene lake cycles on the southern Bolivian Altiplano: del of intermediate complexity. Part I: model description and implications for causes of tropical climate change. Geol Soc performance for present climate. Clim Dyn 16:1–17 Am Bull 118:515–532 Péwé TL (Hrsg) (1981) Desert dust: origin, characteristics, and Polashenski CM et al (2015) Neither dust nor black carbon effect on man. The Geological Society of America, Special causing apparent albedo decline in Greenland’s dry snow zo- Paper, Bd. 186 ne; implications for MODIS C5 surface reflectance. Geophys Res Lett 42. https://doi.org/10.1002/2015GL065912 Pfaffl FA, Dullo W-C (2014) The first ascent to the volcano Co- topaxi in Ecuador by Wilhelm Reiss (1838–1908). Int J Earth Po-Chedley S et al (2018) Climate constraint reflects forced si- Sci 103:1175–1179 gnal. Nature 563:E6–E9 Polhaupessy AA (2002) Quaternary Flora and vegetation of ja- Pfister C et al (2002) Reconstructing past climate and natural di- va. Adv Geoecology 34:83–96 sasters in europe using documentary evidence. PAGES News 10(3):6–8 Polissar PJ et al (2006) Solar modulation of Little Ice Age climate in the tropical Andes. Proc Natl Acad Sci 103:8937– Philipona R et al (2009) How declining aerosols and rising 8942 greenhouse gases forced rapid warming in Europe since the 1980s. Geophys Res Lett 36:L2860. https://doi.org/10.1029/ Polk JS et al (2007) Late Holocene environmental reconstructi- 2008GL036350 on using cave sediments from Belize. Quat Res 68:53–63 Phillips T et al (2010) Cryo-hydrologic warming: A potential Pollack HN et al (2006) Five centuries of climate change in Aus- mechanism for rapid thermal response of ice sheets. Geophys tralia: the view from underground. J Quat Sci 21:701–706 Res Lett 37(20). https://doi.org/10.1029/2010GL044397 Porter SC (1975) Late Quaternary Glaciation and Tephrochro- Phillips WM et al (2000) Asynchronous glaciation at Nanga nology of Mauna Kea, Hawaii. Bull Royal Soc N Z 13:247– Parbat, northwestern Himalaya Mountains, Pakistan. Geolo- 251 gy 28:431–434 Porter SC (1979a) Quaternary stratigraphy and chronology of Piccardi L, Masse WB (Hrsg) (2007) Myth and Geology. Geo- Mauna Kea, Hawaii: a 380,000-yr record of mid-Pacific vol- logical Society of London Spec. Publ., Bd. 273 canism and ice-cap glaciation. Geological Society of America Bulletin 90, Part I: 609–611; Part II: 980–1093 Pichevin L et al (2005) A 190 kyr record of lithogenic grain- Porter SC (1979b) Hawaiian glacial ages. Quat Res 12:161–187 size on the Namibian slope: forcing a tight link between past wind-strength and coastal upwelling dynamics. Mar Geol Porter SC (2001) Snowline depression in the tropics during the 218:81–96 last glaciation. Quat Sci Rev 20:1067–1091 710 Literatur

Porter SC (2005) Pleistocene snowlines and glaciation of the del Prieto MR, del Rojas F (2013) Climate anomalies and epi- Hawaiian Islands. Quat Int 138/139:118–128 demics in South America at the end of the Colonial Period. Clim Change 118:641–658 Porter SC (2011) Pleistocene Glaciation of Hawaii. In: Ehlers J et al (Hrsg) Quaternary Glaciations – extent and chronology, Pringle H (2010) Using old insects to sleuth out new clues to A closer look. Developments in Quaternary Science, Bd. 15, ancient cultures. Science 330:752–753 S 463–465 Prospero JM et al (2002) Environmental Characterization of Poser H (1948) Boden- und Klimaverhältnisse in Mittel- und Global Sources of Atmospheric Soil Dust Identified with the Westeuropa während der Würmeiszeit. Erdkunde 2:53–68 Nimbus 7 Total Ozone Mapping Spectrometer (Toms) Absor- bing Aerosol Product. Rev Geophys 40(1). https://doi.org/10. Possehl G (2001) Distinctive differences: the Indus civilization. 1029/2000RG000095 Monsoon 3:85 Prum RO et al (2015) A comprehensive phylogeny of birds Post E (2013) Tropical diversity countdown. Nature 502:174– (Aves) using targeted next-generation DNA sequencing. Na- 175 ture 526:569–573 Poulter B et al (2014) Contribution of semi-arid ecosystems Pugach I et al (2013) Genome-wide data substantiate Holo- to interannual variability of the global carbon cycle. Nature cene gene flow drom India to Australia. Proc Natl Acad Sci 509:600–603 110:1803–1808 Poussart PF et al (2006) Tropical dendrochemistry: a nov- Purdy EG, Winterer EL (2006) Contradicting Barrier Reef rela- el approach to estimate age and growth from ringless tionships for Darwin’s Evolution of reef types. Geol Rundsch trees. Geophys Res Lett 33:L17711. https://doi.org/10.1029/ 95:143–167 2006GL026929 Purugganan MD, Fuller DQ (2009) The nature of selection dur- Power MJ et al (2012) Climatic control of the biomass-burning ing plant domestication. Nature 457:843–848 decline in the Americas after ad 1500. Holocene 23:3–13 Putnam AE et al (2010) Glacier advance in southern middle- Powers LA et al (2005) Large temperature variability in latitudes during the Antarctic Cold Reversal. Nat Geosci the southern African tropics since the Last Glacial Maxi- 3:700–704 mum. Geophys Res Lett 32:L8706. https://doi.org/10.1029/ Qingdao JQI (2014) Coastal havoc boosts jellies. Nature 2004GL022014 514:545 Prem HJ (1978) Milpa y Hacienda: tenencia de la tierra indígena Qiu J (2012) Glaciologista to target third pole. Nature 484:19 y española en la Cuenca del Alto Atoyac, Puebla, México (1520–1650). Das Mexiko-Projekt der DFG XIII. Wiesbaden Qiu J (2016) The forgotten continent. Nature 535:218–220 Prem HJ (1979) Condiciones y posibilidades de la reconstruc- Quaas J (2011) The soot factor. Nature 471:413 ción demografíca en el México Central. Comunicaciones Quan X-W et al (2013) How fast are the tropics expanding? Proyecto Puebla-Tlaxcala 16:183–190 J Clim. https://doi.org/10.1175/JCLI-D-13-00287.1 Prentice ML et al (2005) An evaluation of snowline data across Quick LJ et al (2011) A 19.5 kyr vegetation history from the New Guinea during the last major glaciation, and area-based central Cederberg Mountains, South Africa: palynological glacier snowlines in the Mt. Jaya region of Papua, Indonesia, evidence from rock hyrax middens. Palaeogeogr Palaeocli- during the Last Glacial Maximum. Quat Int 138/139:93–117 matol Palaeoecol 309:253–270 Prentice ML et al (2011) The Glaciation of the South-East Quigley MC et al (2010) Holocene climate change in arid Asian Equatorial Region. In: Ehlers J et al (Hrsg) Quaternary Australia from speleothem and alluvial records. Holocene Glaciations – extent and chronology, A closer look. Develop- 20:1093–1104 ments in Quaternary Science, Bd. 15, S 1023–1036 Quinn WH (1993) The large-scale ENSO event, the El Niño, Preuss J (1986) Jungpleistozäne Klimaänderungen im Kongo- and other important features. Bull De L’institut Française Zaire-Becken. Geowissenschaften in unserer Zeit 4(6):177– D’études Andines 22(1):13–34 187 Quinn WH, Neal VT (1992) The historical record of El Niño Preusser F et al (2002) A 160,000-year record of dune develop- events. In: Bradley RS, Jones PD (Hrsg) Climate since A. D, ment and atmospheric circulation in southern Arabia. Science Bd. 1500. Routledge, London., S 623–648 296:2018–2020 Quinn WH, Neal WT (1995) The historical record of El Niño Price WA (1944) Greater American deserts. Texas Academy of events. In: Bradley RS, Jones PD (Hrsg) Climate Since A.D. Science Proceedings and Transactions, Bd. 27, S 163–170 1500. Routledge, London., S 623–648 (Revised edition) Priest ER et al (1998) Nature of the heating mechanism for the Quinn WH et al (1987) El Niño occurrences over the past four diffuse solar corona. Nature 393:545–547 and a half centuries. J Geophys Res 92(C13):14449–14461 Literatur 711

Rabatel A (2005) Chronologie et interprétation paléoclimatique Ramana MV et al (2010) Warming influenced by the ratio of des fluctuations des glaciers dans les Andes de Bolivie (16ıS) black carbon to sulphate and the black carbon source. Nat depuis le maximum du Petit Age Glaciaire (17ème siècle). Geosci 3:542–545 Ph. D. Thesis. IRD, CNRS, University Joseph Fourier, Gre- noble, 194 S Ramanathan V et al (2007) Warming trends in Asia amplified by brown cloud solar absorption. Nature 448:575–578 Rabatel A et al (2005) External Geophysics, Climate and En- vironment (Glaciology) Dating of Little Ice Age glacier Ramanathan V, Carmichael G (2008) Global and regional cli- fluctuations in the tropical Andes: Charquini glaciers, Boli- mate changes due to black carbon. Nat Geosci 1:221–227 via. Comptes Rendus Geosci 337:1311–1322 Ramankutty N, Foley JA (1999) Estimating historical changes Rabatel A et al (2006) Glacier recession on Cerro Charquini in global land cover: Croplands from 1700 to 1992. Global (16ı S), Bolivia, since the maximum of the Little Ice Age Biogeochem Cycles 13:997–1027 (17th century). J Glaciol 52(176):110–118 Ramaswamy V (1992) Explosive start to last ice age. Nature Rabatel A et al (2008) A chronology of the Little Ice Age in 359:14 the tropical Andes of Bolivia (16ıS) and its implications for Rampino MR, Self S (1992) Volcanic winter and accelerated climate reconstruction. Quat Res 70:198–212 glaciation following the Toba super-eruption. Nature 359:50– Rabineau M et al (2006) Paleo sea levels reconsidered from 52 direct observation of paleoshoreline position during Glaci- Ran ETH et al (1996) Evolution of climate and Andean al Maxima (for the last 500,000 yr). Earth Planet Sci Lett ecosystems in the Quaternary based on pollen analysis, 252:119–137 land-sea correlation and astronomical tuning. Volume of Rabosky DL, Sorhannus U (2009) Diversity dynamics of marine Abstracts, 9th Int. Palynological Congress, Houston. http:// planktonic diatoms across the Cenozoic. Nature 457:183–187 dare.uva.nl/personal/pure/en/publications/evolution-of- climate-and-andean-ecosystems-in-the-quaternary-based- Rach O et al (2014) Delayed hydrological response to Greenland on-pollen-analysis-landsea-correlation-and-astronomical- cooling at the onset oft he Younger Dryas in western Europe. tuning(e0c79863-f70a-446b-bc10-962aa4a8e589).html Nat Geosci 7:109–112 Randerson JT et al (2015) Multicentury changes in ocean Rädel G et al (2016) Amplification of El Niño by cloud long- and land contributions to the climate-carbon feedback. coupling to atmospheric circulation. Nat Geosci 9:106– Global Biogeochem Cycles 29. https://doi.org/10.1002/ 110 2014GB005079 Radies D et al (2004) Eustatic and climatic controls on the Rashid H et al (2011) Comments on ‘Does the Agulhas Cur- development of the Wahiba Sand Sea, Sultanate of Oman. Se- rent amplify global temperatures during super-interglacials’. dimentology 51:1359–1385 J Quat Sci 26:866–869 Rahmstorf S (1995) Bifurcations of the Atlantic thermohaline Rathmann J, Jacobeit J (2009) Solar signals in southern hemis- circulation in response to changes in the hydrological cycle. phere African climate since 1901. Adv Sci Lett 2:1–9 Nature 378:145–149 Ratzel F (1891) Anthropogeographie.Teil II: Die geographische Rahmstorf S et al (2004) Cosmic rays, carbon dioxide, and cli- Verbreitung des Menschen. Engelhorn, Stuttgart mate. Eos 85(4):38–41 Ravelo AC (2010) Warmth and glaciation. Nat Geosci 3:672– Rahn T (2007) Tropical rain recycling. Nature 445:495–496 674 Railsback LB et al (2016) A multi-proxy stalagmite record Rawlence NJ et al (2014) Using palaeoenvironmental DNA to from northwestern Namibia of regional drying with increa- reconstruct past environments: progress and prospects. J Quat sing global-scale warmth over the last 47 kyr: The interplay Sci 29:610–626 of a globally shifting ITCZ with regional currents, winds, and rainfall. Palaeogeogr Palaeoclimatol Palaeoecol 451:109–121 Raymo ME, Huybers P (2008) Unlocking the mysteries of the Raisbeck GM et al (2006) 10Be evidence for the Matuyama- ice ages. Nature 451:284–285 Brunhes geomagnetic reversal in the EPICA Dome C ice Raymo ME, Mitrovica JX (2012) Collapse of polar ice sheets core. Nature 444:82–84 during the stage 11 Interglacial. Nature 483:453–456 Raisbeck GM et al (2016) An improved North-South synchroni- Reager JT et al (2016) A decade of slowed by zation of ice core records around the 41 K beryllium 10 peak. climate-driven hydrology. Science 351:699–703 Clim Past Discuss. https://doi.org/10.5194/cp-2016-79 Reay D et al (2007) Spring-time for sinks. Nature 446:727–728 Ramage JM et al (2005) Comparing reconstructed Pleistocene equilibrium-line altitudes in the tropical Andes of central Pe- Reed KE et al (Hrsg) (2013) The Paleobiology of Australopi- ru. J Quat Sci 20:777–788 thecus. Springer, Dordrecht 712 Literatur

Reeves JM et al (2013) Climate variability over the last 35,000 Reynaud-Farrera I et al (1996) Végétation et climat dans les years recorded in marine and terrestrial archives in the Aus- forêts du sud-ouest Cameroun depuis 4770 ans BP. Ánaly- tralian region: an OZ-INTIMATE compilation. Quat Sci Rev se pollinique des sediments du lac Ossa. CR Acad Sci Paris, 74:21–34 Ser. 2a, 322:749–755 Reffet E et al (2010) Formation and stability of transverse and Rial JA et al (2013) Synchronization of the climate system to ec- longitudinal sand dunes. Geology 38:491–494 centricity forcing and the 100,000-year problem. Nat Geosci Reich D et al (2011) Denisova admixture and the first modern 6:289–293 human dispersals into Southeast Asia and Oceania. Am J von Richthofen F (1877) China. Ergebnisse eigener Reisen und Hum Genet 89:516–528 darauf gegründeter Studien. Bd. I: Einleitender Teil. Reimer, Reich D et al (2012) Reconstructing Native American Populati- Berlin on history. Nature 488:370–374 von Richthofen F (1886) Führer für Forschungsreisende. An- Reich ES (2011) Bear researcher frozen out. Nature 476:16–17 leitung zu Beobachtungen über Gegenstände der physischen Geographie und Geologie. Oppenheim, Berlin. Reineck H-E, Singh IB (1980) Depositional sedimentary envi- ronments. Springer, Berlin Ridley HE et al (2015) Aerosol forcing of the position of the intertropical convergence zone since AD 1550. Nat Geosci Reiss W (1873) Über eine Reise nach den Gebirgen des Illini- 8:195–200 za und Corazón und im Besonderen über die Besteigung des Cotopaxi. Zeitschrift Dtsch Geol Ges 27:71–95 Riedel F et al (2009) A fossil Potadoma (Gastropoda: Pachy- chilidae) from Pleistocene central Kalahari fluvio-lacustrine Reiss W (1875) Bericht über eine Reise nach dem Quilotoa sediments. Hydrobiologia 636:493–498 und dem Cerro Hermoso in den ecuadorianischen Cordille- ren. Zeitschrift Dtsch Geol Ges 25:274–294 Riedel F et al (2012) Evidence for a permanent lake in Reiss W, Stübel A (1886) Skizzen aus Ecuador. Asher & Co, (Kalahari, Botswana) during the early centuries of the last Berlin millennium indicated by distribution of Baobab trees (Adan- sonia digitata) on “Kubu Island”. Quat Int 253:67–73 Reiss W & Stübel A (1892–98) Reisen in Südamerika. Das Hochgebirge der Republik Ecuador. Petrographische Unter- Riedel F et al (2014) Dynamics of a Kalahari long-lived mega- suchungen, Band 1: West-Cordillere, Bd 2: Ost-Cordillere. lake system: hydromorphological and limnological changes Asher, Berlin. 358 + 356 S in the Makgadikgadi Basin (Botswana) during the terminal 50 ka. Hydrobiologia 739:25–53 Rendell HM et al (2003) The timing of climbing dune formati- on in southwestern Niger: fluvio-aeolian interactions and the Riemer H et al (2017) Climate, styles and archaeology: an inte- role of sand supply. Quat Sci Rev 22:1059–1065 gral approach towards an absolute chronology of the rock art in the Libyan Desert (Eastern Sahara). Antiquity 91(355):7– Renssen H et al (2003) Holocene climatic instability during the 23 termination of the African Humid Period. Geophys Res Lett 30(4):1184 Rietbroek R et al (2016) Revisiting the contemporary sea-level budget on global and regional scales. Proc Nat Acad Sci. Resing JA, Barrett PM (2014) Fingerprints of a trace nutrient. https://doi.org/10.1073/pnas.1519132113 Nature 511:164–165 Rignot E et al (2002) Rock glacier surface motion in Beacon Reuter J et al (2009) A new perspective on the hydroclimate Valley, Antarctica, from synthetic-aperture radar interferome- variability in northern South America during the Little Ice try. Geophys Res Lett 29(12):1607. https://doi.org/10.1029/ Age. Geophys Res Lett 36:L21706. https://doi.org/10.1029/ 2001GL013494 2009GL041051 Reuther AU et al (2004) Determining the glacial equilibri- Rincón-Martínez D et al (2010) More humid interglacials in um line altitude (ELA) for the northern Retezat Mountains, Ecuador during the past 500 kyr linked to latitudinal shifts of southern Carpathians and resulting paleoclimatic implica- the equatorial front and the Intertropical Convergence Zone tions for the last glacial cycle. Analele Universitatii de Vest in the eastern tropical Pacific. Paleoceanography 25:PA2210. din Timisoara, Geografie, Bd. XIV, S 11–34 https://doi.org/10.1029/2009PA001868 Reuther AU et al (2006) Application of surface exposure dating Rind D (1998) Latitudinal temperature gradients and climate in glacial geomorphology and the interpretation of moraine change. J Geophys Res 103:5943–5971 ages. Zeitschrift Geomorphol Suppl 142:335–359 Rind D (2000) Relating paleoclimate data and past temperature Revesz RL et al (2014) Improve economic models of climate gradients: Some suggestive rules. Quat Sci Rev 19:381–390 change. Nature 508:173–175 Rind D, Peteet D (1985) Terrestrial Conditions at the Last Reyes AV et al (2014) South Greenland ice-sheet collapse dur- Glacial Maximum and CLIMAP Sea-Surface Temperature ing Marine Isotope Stage 11. Nature 510:525–528 Estimates: Are They Consistent? Quat Res 24:1–22 Literatur 713

Ringrose S et al (2008) Diagenesis in Okavango fan and adja- Rodbell DT et al (2012) Development of unusual rock weath- cent dune deposits with implications for the record of palaeo- ering features in the Cordillera Blanca, Peru. Quat Res environmental change in Makgadikgadi– Okavango– Zambe- 77(1):149–158 zi basin, northern Botswana. Geomorphology 101:544–557 Rodríguez-Sanz L, Mortyn PG (2015) Widespread salinification Ringrose S et al (2014) Aspects of floodplain deposition in semi- of the North Pacific Ocean during the last glacial termination. arid ephemeral rivers, examples from the Kuiseb river valley, PAGES Mag 23(1):6–7 central Namibia. Trans Royal Soc South Africa 69(3):187– 193 Roe G (2009) On the interpretation of Chinese loess as a paleo- climate indicator. Quat Res 71:150–161 Rippeth TP et al (2008) Impact of sea-level rise over the last deglacial transition on the strength of the continental shelf Roeland J-C et al (1988) Pollen et reconstruction quantitative du CO2 pump. Geophys Res Lett 35:L24604. https://doi.org/10. climat. Validation des données d’Afrique orientale. Comptes 1029/2008GL035880 Rendus De L’Académie De Sci Paris 307(II):1735–1740 Risbey J (2015) Free and forced climate variations. Nature Rohdenburg H (1971) Einführung in die Klimagenetische Geo- 517:562–563 morphologie anhand eines Systems von Modellvorstellungen Roa P (1979) Génesis y evolución de los médanos en los lla- am Beispiel des fluvialen Abtragungsreliefs. Lenz, Giessen. nos centrales de Venezuela. Testimonio de un clima desertico. Rohdenburg H (1989) Landschaftsökologie – Geomorphologie. Acta Biol Venezuelica 10:19–49 Catena, Cremlingen. Robbins LH et al (1996) Paleoenvironment and archaeology of Rohling EJ et al (2014) Sea-level and deep-sea-temperature var- Drotsky’s Cave: Western Kalahari Desert, Botswana. J Ar- iability over the past 5.3 million years. Nature 508:477–482 chaeol Sci 23:7–22 Roberts DL et al (2012) Melting ice sheets 400,000 yr ago raised Rohling EJ et al (2015) Mediterranean climate and oceanogra- sea level by 13 m: Past analogue for future trends. Earth Pla- phy, and the periodic development of anoxic events (sapro- net Sci Lett 357–358:226–237 pels). Earth Sci Rev 143:62–97 Roberts GC et al (2008) Simultaneous observations of aerosol– Rohwer F, Thurber RV (2009) Viruses manipulate the marine cloud–albedo interactions with three stacked unmanned aerial environment. Nature 459:207–212 vehicles. Proc Nat Acad Sci 105:7370–7375 Romanovsky VE et al (2007) Past and recent changes in air Roberts RG, Bird MI (2012) Homo ‘incendius’. Nature and permafrost temperatures in eastern Siberia. Glob Planet 485:586–587 Change 56:399–413 Robinson A (2015) Cracking the Indus script. Nature 526:499– Rommerskirchen R et al (2006) Glacial/interglacial changes in 501 Southern Africa: compound-specific •13C land plant biomar- Robson J et al (2014) Atlantic overturning in decline? Nat Geo- ker and pollen records from Southeast Atlantic continen- sci 7:2–3 tal margin sediments. Geochemistry Geophys Geosystems 7(8):1–21 Roche DM et al (2015) Freshwater release and volcanic erupti- ons as drivers of abrupt changes during interglacial climate. Rose KC et al (2013) Early East Antarctic Ice Sheet growth PAGES Mag 23(1):8–9 recorded in the landscape of the Gamburtsev Subglacial Mountains. Earth Planet Sci Lett 375:1–12 Rockström J et al (2009) A safe operating space for humanity. Nature 461:472–475 Rose K et al (2014) Major Subglacial Meltwater Channels Rodbell DT (1992) Lichenometric and radiocarbon dating Reveal Former Dynamic Ice Sheet In West Antarctica. Geo- of Holocene glaciation, Cordillera Blanca, Peru. Holocene physical Research Abstracts 16. EGU 2014:7128 2:19–29 Rosetti DF et al (2014) Late Quaternary fluvial terrace evolution Rodbell DT, Seltzer GO (2000) Rapid Ice Margin Fluctuations in the main southern Amazonian tributary. Catena 116:19–37 during the Younger Dryas in the Tropical Andes. Quat Res Rosell-Melé A et al (2011) Alkenones and coccoliths in ice- 54:328–338 rafted debris during the Last Glacial Maximum in the North K Rodbell DT et al (1999) An ~15,000-year record of El Atlantic: implications for the use of U 370 as a sea surface Niño-driven alluviation in Southwestern Ecuador. Science temperature proxy. J Quat Sci 26:657–664 283:516–520 Rosen J (2016) A forest of hypotheses. Nature 536:239–241 Rodbell DT et al (2008) Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion. Quat Sci Rev Rosenfeld D et al (2008) Flood or Drought: How Do Aerosols 27:1612–1626 Affect Precipitation? Science 321:1309–1313 Rodbell DT et al (2009) Glaciation in the Andes during the La- Rossignol-Strick M (1983) African monsoons, an immediate teglacial and Holocene. Quat Sci Rev 28:2165–2212 climate response to orbital insolation. Nature 304:46-49 714 Literatur

Rossignol-Strick M, Paterne M (1999) A synthetic pollen record Rull V (1996) Late Pleistocene and Holocene Climates of Vene- of the eastern Mediterranean sapropels of the last 1 Ma: im- zuela. Quat Int 31:85–94 plications for the time-scale and formation of sapropels. Mar Geol 153:221-237 Rull V (1998) Palaeoecology of pleniglacial sediments from the Venezuelan Andes. Palynological record of El Caballo sta- Rothe P (2008) Die Erde. Primus, Darmstadt dial, sedimentation rates and glacier retreat. Rev Palaeobot Palynol 99:95–114 Röthlisberger F (1986) 10.000 Jahre Gletschergeschichte der Er- de. Sauerländer, Aarau Rull V (2009) Microrefugia. J Biogeogr 36:481–484 Röthlisberger F, Geyh M (1985) Glacier variations in Himalayas Runge F (1999) The opal phytolith inventory of soils in central and Karakorum. Zeitschrift Gletscherkd Glazialgeol 21:237– Africa. – Quantities, shapes, classification, and spectra. Rev 249 Palaeobot Palynol 107:23–53 Rousseau D-D, Kukla G (2000) Abrupt retreat of summer mon- Runge F, Fimbel RA (2001) Opal phytoliths as evidence for the soon at the S1/L1 boundary in China. Glob Planet Change formation of savanna islands in the rain forest of Southeast 26:189–198 Cameroon. Palaeoecol Africa 27:171–185 Rovere A et al (2016) The analysis of Last Interglacial (MIS Runge F, Runge J (1997) Opal phytoliths in East African plants 5e) relative sea-level indicators: Reconstructing sea-level in a and soils. Monografías 4:71–82 warmer world. Earth Sci Rev 159:404–427 Runge J (2001a) Landschaftsgenese und Paläoklima in Rowe HD, Dunbar RB (2004) Hydrologic-energy balance con- Zentralafrika. Physiogeographische Untersuchungen zur straints on the Holocene lake-level history of lake Titicaca, Landschaftsentwicklung und klimagesteuerten quartären South America. Clim Dyn 23:439–454 Vegetations- und Geomorphodynamik in Kongo/Zaire und Rowe HD et al (2002) Insolation, moisture balance and climate der Zentralafrikanischen Republik. Relief – Boden – Paläo- change on the South American Altiplano since the Last Gla- klima 17:1–312 cial Maximum. Clim Change 52:175–199 Runge J (2001b) Quaternary sedimentary records in Central Af- Rowlands DJ et al (2012) Broad range of 2050 warming from rica and their paläoenvironmental interpretation. Palaeoecol an observationally constrained large climate model ensemble. Africa 27:1–327 Nat Geosci 5:256–260 Runge J (2001c) On the age of stone-lines and hillwash se- Roy AJ, Lachniet MS (2010) Late Quaternary glaciation and diments in the eastern Congo basin – palaeoenvironmental equilibrium-line altitudes of the Mayan Ice Cap, Guatemala, implications. Palaeoecol Africa 27:19–36 Central America. Quat Res 74:1–7 Runge J (2015) Vom Kongobecken zum zentralafrikanischen

Royer DL et al (2004) CO2 as a primary driver of Phanerozoic Rift. Geogr Rundsch 67(6):32–40 climate. Geol Soc Am (gsa) Today 14(3):4–10 Runge J, Runge F (1995) Late Quaternary pelaeoenvironmen- Rubin DM, Hesp PA (2009) Multiple origins of linear dunes on tal conditions in eastern Zaire (Kivu) deduced from remote Earth and Titan. Nat Geosci 2:653–658 sensing, morpho-pedological and sedimentological studies (Phytoliths, Pollen, 14C-data). 2e Symposium de Palynologie Ruddiman WF (2003) Orbital insolation, ice volume, and green- Africaine 31. Publ. Ocass. CIFEG, Tervuren, S 109–122 house gases. Quat Sci Rev 22:1597–1629 Runge J et al (2014) Late Quaternary valley and slope depo- Ruddiman WF, Ellis E (2009) Effect of per-capita land-use sits and their palaeoenvironmental significance in the Upper changes on Holocene forest cover and CO2 emissions. Quat Congo Basin, Central Africa. Palaeoecol Africa 32:53–90 Sci Rev 28:3011–3015 Russel IC (1889) Quaternary History of the Mono Valley, Ca- Ruddiman WF et al (2014) Does pre-industrial warming double lifornia. Reprint 8th Annual Report of the United Geological the anthropogenic total? Anthropocene Rev 1:147–153 Survey, 1889. Artemisia Press, Lee Vining, S 267–394 Ruddiman WF et al (2016) Late Holocene climate: Natural or Russell JM et al (2003) An 11,000-year lithostratigraphic and anthropogenic? Rev Geophys 54:93–118 paleohydrologic record from equatorial Africa: Lake Ed- Ruesch A, Gibbs HK (2008) New IPCC Tier-1 Global Biomass ward, Uganda-Congo. Palaeogeogr Palaeoclimatol Palaeo- Carbon Map for the Year 2000. Oak Ridge National Labora- ecol 193:25–49 tory, Oak Ridge (Available online from the Carbon Dioxide Russell JM et al (2014) SynTraCE-21 Workshop. PAGES Mag Information Analysis Center [http://cdiac.ornl.gov]) 22(1):55 Ruhe RV (1959) Stone lines in soils. Soil Sci 87(4):223–231 Rust U (1984) Geomorphic evidence of Quaternary envi- Rule S et al (2012) The aftermath of megafaunal extinction: ronmental changes in Etosha, South West Africa/Namibia. ecosystem transformation in Pleistocene Australia. Science In: Vogel JC (Hrsg) Late Cainozoic Palaeoclimates of the 335:1483–1486 Southern Hemisphere. Balkema, Rotterdam, S 465–470 Literatur 715

Rust U (1985) Die Entwicklung der Etoschapfanne im Rah- Sanders WT et al (1979) The basin of Mexico. Ecological men der Landschaftsentwicklung des Etoscha-Nationalparks processes in the evolution of a civilization. New York, San (nördliches Südwestafrika/Namibia). Modoqua 14:197–266 Francisco, London Rust U, Vogel JC (1988) Late Quaternary environmental chan- Sano M et al (2008) Tree-ring based hydroclimate reconstruc- ges in the Namib Desert as evidenced by fluvial Landforms. tion over northern Vietnam from Fokienia hodginsii: 18th Palaeoecol Africa 19:127–137 century mega-drought and tropical Pacific influence. Clim Dyn 33:331–340 Rustic GT et al (2015) Dynamical excitation of the tropical Pa- cific Ocean and ENSO variability by Little Ice Age cooling. Santamaria Tovar D et al (2008) Evidence for a origin Science 350:1537–1541 of New Zealand’s Waiho Loop moraine. Nat Geosci 8:524– 526 Ruth U (2006) Mineral dust records from Greenland ice cores. PAGES News 13(3):17–18 Santer BD et al (2007) Identification of human-induced chan- Ruter A et al (2004) Climate and environment of the subtropical ges in atmospheric moisture content. Proc Nat Acad Sci and tropical Americas (NH) in the mid-Holocene: compari- 104:15248–15253 son of observations with climate model simulations. Quat Sci Santos GM et al (2003) A revised chronology of the lowest Rev 23:663–679 occupation layer of Pedra Furada Rock Shelter, Piauí, Bra- Rutherford S, D’Hondt S (2000) Early onset and tropical forcing zil: the Pleistocene peopling of the Americas. Quat Sci Rev of 100,000-year Pleistocene glacial cycles. Nature 408:72–75 22:2303–2310 Rutter N et al (2012) Glaciations in North and South America Vecino SG et al (2015) Alteration of tropical forest vegetation from the Miocene to the Last Glacial Maximum. Compa- from the Pleistocene – Holocene transition and plant cultiva- risons, linkages and uncertainties. SpringerBriefs in Earth tion from the end of early Holocene through middle Holocene System Sciences. Springer, Dordrecht in Northwest Colombia. Quat Int 363:28–42 Rypdal M et al (2018) Emergent constraints for climate sesitivi- Santoso A et al (2013) Late-twentieth-century emergence of the ty. Nature 563:E3–E5 El Niño propagation asymmetry and future projections. Na- ture 504:126–130 Sagredo EA (2014) Sensitivity of the equilibrium line altitude across the Andes. Quat Res 81:355–366 Sardet C (2015) Plankton. Wonders of the drifting world. Uni- versity of Press, Chicago Sagredo EA (2017) Equilibrium line altitudes along the An- des during the Last millennium: Paleoclimatic implications. Sarjeant WAS et al (1987) The cysts and skeletal elements of Holocene 27:1019–1033 dinoflagellates: speculations on the ecological causes for their morphology and development. Micropaleontology 33:1–36 Saha S et al (2016) Geomorphology, sedimentology and mini- mum exposure ages of streamlined subglacial landforms in Sarnthein M (1978) Sand deserts during glacial maximum and the NW Himalaya, India. Boreas 45:284–303 climatic optimum. Nature 272:43–46 Said R (1993) The river Nile. Pergamon, Oxford Sarnthein M, Koopmann B (1980) Late Quaternary deep-sea re- cord on Northwest African dust supply and wind circulation. Salati E (1985) The climatology and hydrology of Amazonia. Palaeoecol Africa 12:239–253 In: Prance GT, Lovejoy TE (Hrsg) Key environments. Ama- zonia. Pergamon, Oxford, S 18–48 Satheesh SK, Moorthy KK (2005) Radiative effects of natural aerosols: a review. Atmos Environ 39:2089–2110 Salati E et al (1979) Recycling of water in the Amazon Basin. An isotope study. Water Resour Res 15:1250–1258 Sauer W (1971) Geologie von Ecuador. Borntraeger, Berlin Saleh R et al (2014) Brownness of organics in aerosols from bio- Schaefer H et al (2006) Ice record of •13C for atmospheric mass burning linked to their black carbon content. Nat Geosci CH4 across the Younger Dryas-Preboreal transition. Science 7:647–650 313:1109–1112 Salgado-Labouriau ML (1980) A pollen diagram of the Schaub M et al (2008) Environmental change during the Allerød pleistocene-holocene boundary of Lake Valencia, Venezuela. and Younger Dryas reconstructed from Swiss tree-ring data. Rev Palaeobot Palynol 30(C):297–312 Boreas 37:74–86 Salomons JB (1986) Paleoecology of volcanic soils in the Co- Schefuß E et al (2003) African vegetation controlled by trop- lombian Central Cordillera (Parque Nacionai Natural de los ical sea surface temperatures in the mid-Pleistocene period. Nevados). Quat Colombia 13:1–212 Nature 422:418–421 Salzer MW, Hughes MK (2007) Bristlecone pine tree rings and Schefuß E et al (2005) Climatic controls on central African hy- volcanic eruptions over tha last 5000 yr. Quat Res 67:57–68 drology during the past 20,000 years. Nature 437:1003–1006 Sancho J, Pérez-Gavilán D (1981) A perspective study of Schefuß E et al (2011) Forcing of wet phases in Southeast Africa droughts in Mexico. J Hydrol (Amst) 51:41–55 over the past 17,000 years. Nature 480:509–512 716 Literatur

Scheidegger AE (1990) Theoretical Geomorphology. Springer, Schmidt M et al (2017) Paleolimnological features of a mega- Berlin lake phase in the Makgadikgadi Basin (Kalahari, Botswana) during Marine Isotope Stage 5 inferred from diatoms. J Pa- Scheidegger Y et al (2008) Paleotemperature reconstruction leolimnol. https://doi.org/10.1007/s10933-017-9984-9 using noble gasconcentrations in speleothem fluid inclusions. PAGES News 16(3):10–12 Schmidt S et al (2011) A note of caution on the use of boulders for exposure dating of depositional surfaces. Earth Planet Sci Schepanski K et al (2014) Mineral dust: Meteorological controls Lett 302:60–70 and climate impacts. PAGES Mag 22(2):62–63 Schmincke H-U (2000) Vulkanismus. WBG, Darmstadt Scherler D et al (2011) Spatially variable response of Himala- yan glaciers to climate change affected by debris cover. Nat Schmitt et al (2012) Carbon Isotope Constraints on the Deglacial Geosci 4:156–159 CO2 Rise from Ice Cores. Science 336:711-714 Schieber J et al (2007) Accretion of mudstone beds from migra- Schneebeli W (1976) Untersuchungen von Gletscherschwan- ting floccule ripples. Science 318:1760–1763 kungen im Val de Bagnes. Die Alpen, Zeitschrift des Schwei- zer Alpen-Club 3/4:5–57 Schiermeier Q (2006a) Oceans cool off in hottest years. Nature 442:854–855 Schneider B (2010) Ozeanzirkulation. Geogr Rundsch 2010(5):8–14 Schiermeier Q (2006b) The methane mystery. Nature 442:730– 731 Schneider DP (2005) Antarctic climate of the past 200 years from an integration of instrumental, satellite, and ice core Schiermeier Q (2007) No solar hiding place for greenhouse proxy data. Ph. D. Thesis, University of Washington, Seatt- sceptics. Nature 448:8–9 le Schiermeier Q (2008) Climate anomaly is an artefact. Nature Schneider RR (2007) IMAGES – The hydrological cycle 453:569 and ocean temperatures: A paleo-perspective. PAGES News 15(1):6–7 Schiermeier Q (2011) Earth’s acid test. Nature 471:154–156 Schneider R (2014) Sea levels from ancient seashells. Nature Schiermeier Q (2013a) Oceans under surveillance. Nature 508:465–466 497:167–168 Schneider RR et al (1996) Late Quaternary Surface Tempera- Schiermeier Q (2013b) Quandary over Soviet croplands. Nature ture and Productivity in the East-Equatorial South Atlantic: 504:342 Response to Changes in Trade/Monsoon Wind Forcing and Schiermeier Q (2015) Hunting the Godzilla El Niño. Nature Surface Water Advection. In: Wefer G et al (Hrsg) The South 526:490–491 Atlantic, Present and Past Circulation. Springer, Berlin, Hei- delberg, S 527-551 Schiermeier Q (2016) The ice historians. Nature 535:480–483 Schneider RR et al (2004) GHOST (global holocene spatial Schiller A et al (1997) The stability of the North Atlantic ther- and temporal climate variability): combination of Paleo- mohaline circulation in a coupled ocean-atmosphere general temperature records, statistics and modeling. PAGES News circulation model. Clim Dyn 13:325–347 12(2):25–26 Schlosser P, Pfirman S (2012) Earth science for sustainability. Schneider T et al (2014) Migrations and dynamics of the inter- Nat Geosci 5:587–588 tropical convergence zone. Nature 513:45–53 Schlüter T (1997) Geology of East Africa. Borntraeger, Berlin Schollaen K et al (2013) Multiple tree-ring chronologies (ring •13 •18 Schmidt F et al (2014) Biocoenosis response to hydrological width, Cand O) reveal dry and rainy season signals of variability in Southern Africa during the last 84 ka BP: A stu- rainfall in Indonesia. Quat Sci Rev 73:170–181 dy of lipid biomarkers and compound-specific stable carbon Scholz C (1997) Fieldwork, a ’s memoir of the Kala- and hydrogen isotopes from the hypersaline Lake Tswaing. hari. Princeton University Press, Princeton NJ Glob Planet Change 112:92–104 Scholz CA, Rosendahl BR (1988) Low lake stands in lakes Ma- Schmidt GA et al (2014) Reconciling warming trends. Nat Geo- lawi and Tanganyika, East Africa, delineated with multifold sci 7:158–160 seismic data. Science 240:1645–1648 Schmidt MW et al (2006) Rapid subtropical North Atlantic sa- Scholz CA et al (2011) Scientific drilling in the Great Rift Val- linity oscillations across Dansgaard-Oeschger cycles. Nature ley: The 2005 Lake Malawi Scientific Drilling Project — An 443:561–564 overview of the past 145,000 years of climate variability in Southern Hemisphere East Africa. Palaeogeogr Palaeoclima- Schmidt M et al (2012) Diatom evidence for a MIS 5 megalake tol Palaeoecol 303:3–19 high stand in the Kalahari (Botswana). Abstracts 12th Inter- national Paleolimnology Symposium, Glasgow SECC, 21–24 Schöne BR & Surge D (Hrsg) (2005) Looking back over Skele- August, 2012 (S13-P-07) tal Diaries – High-resolution Environmental Reconstructions Literatur 717

from Accretionary Hard Parts of Aquatic Organisms. Palaeo- Schumm SA (1965) Quaternary palaeohydrology. In: Wright geogr, Palaeoclimatol, Palaeoecol 228(Special Issue):1–191 HE, Frey DG (Hrsg) The Quaternary of the . Princetown University Press, Princetown, S 783–794 Schöne BR, Surge D (2014) Bivalve shells: ultra high-resolution paleoclimate archives. PAGES Mag 22(1):20–21 Schüpbach S et al (2016) Ice cores: High-resolution archive of rapid climate changes. PAGES Mag 24(1):12–13 Schöngart J et al (2004) Teleconnections between tree growth in the Amazonian floodplains and the El Niño-Southern Oscil- Schuur EAG et al (2009) The effect of permafrost thaw on old lation effect. Glob Chang Biol 10:683–692 carbon release and net carbon exchange from tundra. Nature 459:556–559 Schönwiese C-D (1994) Klima. Grundlagen, Änderungen, menschliche Eingriffe. BI, Mannheim Schuur EAG et al (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179 Schøtt Hvidberg C (2000) When Greenland ice melts. Nature 404:551–552 Schwander J (2006) Dating ice cores. PAGES News 14(1):21– Schouten S et al (2002) Distributional variation in marine 22 crenarchaeotal membrane lipids: a new tool for reconstruc- Schwartz D (1988) Histoire d’une paysage: le Louséké. ting ancient sea water temperatures? Earth Planet Sci Lett Paléoenvironments Quaternaires et podsolization sur sables 204:265–274 Batéké. ORSTOM Collection Études et Thèses Schrag DP (2000) Of ice and elephants. Nature 404:23–24 Schwarzacher W (1994) Cyclostratigraphy and the Milanko- Schrenk F (2015) Wie wurde der Mensch zum Menschen? zur vitch Theory. Dev Sedimentol 52:546 debatte (Kath. Akad. Bayern), Bd. 6, S 20–22 Schwarzbach M (1968) Neuere Eiszeithypothesen. Eiszeitalt Schrenk F, Bromage TG (2002) Adams Eltern. Expeditionen in Gegenwart 19:250–261 die Welt der Frühmenschen. Beck, München Schwarzbach M (1974) Das Klima der Vorzeit. Eine Einführung Schrope M (2012) Trees and temperature. Nat Geosci 5:589 in die Paläoklimatologie. Enke, Stuttgart Schubert C, Rinaldi M (1987) Nuevos Datos Sobre la Cro- Schweingruber FH (1983) Der Jahrring: Standort, Methoden, nología del Estadio Tárdio de la Glaciación Mérida, Andes Zeit und Klima in der Dendrochronologie. Paul Haupt, Bern Venezolanos. Acta Científica 38:135–136 Schweingruber FH (2000) Jahrringforschung und Klimawandel Schubert C, Huber O (1990) The Gran Sabana. Panorama of a in den borealen Wäldern. Geogr Rundsch 52(12):50–55 region. Lagoven (Public Relation Department), Caracas. Scott L (1987) Pollen analysis of hyaena coprolites and sedi- Schubert C, Clapperton CM (1990) Quaternary glaciations in ments from Equus Cave, Taung, southern Kalahari (South the northern Andes (Venezuela, Colombia and Ecuador). Africa). Quat Res 28:144–156 Quat Sci Rev 9:123–135 Scott L (1999) Vegetation history and climate in the Savanna Schubert C, Vivas L (1993) El Cuaternario de la Cordillera de biome South Africa since 190,000 ka: a comparison of pol- Mérida, Andes Venezolanos. Universidad de los Andes, Fun- len data from the Tswaing Crater (the Pretoria Saltpan) and dación POLAR, Mérida, Venezuela Wonderkrater. Quat Int 57(58):215–223 Schuh H (2004) Erdrotation und globale dynamische Prozesse. Scott L, Woodborne S (2006) Pollen analysis and dating of Promet 30(3):153–160 Late Quaternary faecal deposits (hyraceum) in the Ceder- berg, western Cape, South Africa. Rev Palaeobot Palynol Schüle W (1992) Anthropogenic trigger effects on Pleistocene 144(3):123–134 climate? Glob Ecol Biogeogr Lett 2:33–36 Scott L, Woodborne S (2007) Vegetation history inferred from Schulte P et al (2014) How well does end-member modelling pollen in Late Quaternary faecal deposits (hyraceaum) in the analysis of grain size data work? EGU General Assembly Cape winter-rain region and its bearing on past climates in 2014. Geophysical Research Abstracts, Bd. 16, EGU2014- South Africa. Quat Sci Rev 26:941–953 1903 Scott L et al (1995) Palaeoenvironmental conditions in South Schulz H et al (2002) The Toba volcanic event and Interstadial/- Africa at the Pleistocene-Holocene transition. Quat Sci Rev Stadial climates at the marine isotopic stage 5 to 4 transition 14:937–947 in the northern Indian Ocean. Quat Res 57:22–31 Scott L et al (2004) Fossil hyrax dung and evidence of Late Plei- Schulz W (1960) Aimé Bonpland. Alexander von Humboldts stocene and Holocene vegetation types in the Namib Desert. Begleiter auf der Amerikareise 1799–1804. Sein Leben und J Quat Sci 19:829–832 Wirken, besonders nach 1817 in Argentinien. Akademie der Wissenschaften und der Literatur in Mainz, Abhandlungen Scott L et al (2008) Reconciliation of vegetation and climatic der Mathematisch-Naturwissenschaftlichen Klasse Jg. 1960, interpretations of pollen profiles and other regional records Bd. 9. Steiner, Wiesbaden, S 1–53 from the last 60 thousand years in the Savanna Biome 718 Literatur

of Southern Africa. Palaeogeogr Palaeoclimatol Palaeoecol Semmel A (1977) Grundzüge der Bodengeographie. Teubner, 257:198–206 Stuttgart Scott L et al (2012) Terrestrial fossil-pollen evidence of climate Seneviratne SI et al (2006) Land-atmosphere coupling and cli- change during the last 26 thousand years in Southern Africa. mate change in Europe. Nature 443:205–209 Quat Sci Rev 32:100–118 Seong YB et al (2007) Quaternary glacial history of the Central Scott PA, Kettleborough JA (2002) Origins and estimates of un- Karakoram. Quat Sci Rev 26:3384–3405 certainty in predictions of twenty-first century temperature Seong YB et al (2009) Quaternary glaciation of Muztag Ata and rise. Nature 416:723–726 Kongur Shan: evidence for glacier response to rapid climate Scott PA, Walton P (2013) Attribution of climate-related events: changes throughout the Late-glacial and Holocene in wes- understanding stakeholder needs. Weather (Royal Meteorolo- ternmost Tibet. Geol Soc Am Bull 121:348–365 gical Society) 68:274–279 Servant M, Fontes J-C (1978) Les lacs quaternaires des hauts Scurla H (1977) Alexander von Humboldt, Ansichten der Na- plateaux des Andes Boliviennes, premières interprétations tur. Ein Blick in Humboldts Lebenswerk, 3. Aufl. Verlag der paléoclimatiques. Cahier ORSTOM Série Géologie, Bd. 10, Nation, Berlin S 9–23 Seddon AWR et al (2016) Sensitivity of global terrestrial eco- Servant M, Servant-Vildary S (1980) L’environnement qua- systems to climate variability. Nature 531:229–232 ternaire du bassin du Tchad. In: Williams MAJ, Faure H (Hrsg) The Sahara and the Nile. Balkema, Rotterdam, S 133– Sedov S et al (2009) The Tlaxcala basin paleosol sequence: a 162 multiscale proxy of middle to late Quaternary environmen- tal change in central Mexico. Revista Mexicana De Ciencias Servant M, Servant S (1983) The lacustrine environment and its Geológicas 26:448–465 evolution. In: Carmouze JP et al (Hrsg) Lake Chad: ecology and productivity of a shallow tropical ecosystem. Dr. Junk, Sedov S et al (2010) Tepexpan revisited: A multiple proxy of The Hague, S 11–26 local environmental changes in relation to human occupation from a paleolake shore section in Central Mexico. Holocene Servant M et al (1976) Paléolimnologie des lacs du Quaternaire 122:309–322 récent du Bassin du Tchad. Interprétation paléoclimatiques. 2nd Int. Symp. Paleolimnology, Mikolaijki, Poland, 1976 Seely M, Pallett J (2008) Namib. Secrets of a desert uncovered. Venture, Windhoek Servant M et al (1993) Tropical forest changes during the late Quaternary in African and South American lowlands. Glob Seely M und Sandelowsky BH (1974) Dating the regression of Planet Change 7:25–40 a river’s end point. South African Archaeological Bulletin Goodwin Series 2, Claremont/Cape, S 61-64 Severinghaus JP (2009) Monsoons and meltdowns. Science 326:240–241 Seiner F (1909) Ergebnisse einer Bereisung des Gebiets zwi- schen Okawango und Sambesi (Caprivi-Zipfel) in den Jahren Severinghaus JP (2013) Deglacial decoupling. Nat Geosci 1905 und 1906. Mitteilungen Aus Den Dtsch Schutzgebieten 6:994–995 22:1–107 Sha L et al (2015) Sea-ice variability off West Greenland over Selby MJ et al (1979) A late Quaternary lake in the central the last five millennia derived from diatom assemblages. Namib Desert, southern Africa, and some implications. Pa- PAGES Mag 23(1):24–25 laeogeogr Palaeoclimatol Palaeoecol 26:37–41 Shackleton NJ et al (Hrsg) (1988) The past three million years: Seltzer GO (1990) Recent glacial history and paleoclimate of evolution of climatic variability in the North Atlantic region. the Peruvian-Bolivian Andes. Quat Sci Rev 9:137–152 Proceedings of a royal society discussion meeting held on 25 and 26 february 1987. Philosophical Transactions of the Roy- Seltzer GO (1991) La regressión del hielo en Peru y en Bolivia al Society London B, Bd. 318, S 411–688 desde el Pleistoceno tardió. Boletín De La Sociedad Geológi- Shackleton NJ et al (1990) An alternative astronomical calibra- ca Boliv 26:13–32 tion of the lower Pleistocene timescale based on ODP site Seltzer GO (1992) Late Quaternary glaciation of the Cordillera 677. Transactions of the Royal Society of Edinburgh. Earth Real, Bolivia. J Quat Sci 7:87–98 Sci 81:251–261 Seltzer GO (2001) Late Quaternary glaciation in the tropics: fu- Shackley M (1980) An Archeulean industry with Elephas recki ture research directions. Quat Sci Rev 20:1063–1066 fauna from Namib IV, South West Africa. Nature 284:340– Seltzer GO et al (2002) Early warming of tropical South 341 America at the last glacial-interglacial transition. Science Shackley M (1985) Palaeolithic archaeology of the central Na- 296:1685–1686 mib Desert. Cimbebasia B, Memoir 6. Windhoek Seltzer GO et al (Hrsg) (2003) Late-quaternary palaeoclimates Shakun JD, Carlson AE (2010) A global perspective on Last of the southern tropical Andes and adjacent regions. Palaeo- Glacial Maximum to Holocene climate change. Quat Sci Rev geogr, Palaeoclimatol, Palaeoecol 194:1–338 29:1801–1816 Literatur 719

Shakun JD et al (2012) Global warming preceded by increasing Shi N et al (2000) Correlation between vegetation in southwes- carbon dioxide concentrations during the last deglaciation. tern Africa and oceanic upwelling in the past 21,000 years. Nature 484:49–52 Quat Res 54:72–80 Shakun JD et al (2015) Cosmogenic dating of Late Pleistocene Shi N et al (2001) Southeast trade wind variations during the glaciation, southern tropical Andes, Peru. J Quat Sci 30:841– last 135 kyr: evidence from pollen spectra in eastern South 847 Atlantic sediments. Earth Planet Sci Lett 187:311–321 Shanahan TM, Zreda M (2000) Chronology of Quaternary gla- Shi Y (1992) Glaciers and glacial geomorphology in China. ciations in East Africa. Earth Planet Sci Lett 177:23–42 Z Geomorphol 86:19–35 Shanahan TM et al (2006) Paleoclimatic variations in West Af- Shinde V et al (2001) Climatic fluctuations and the rise and fall rica from a record of late Pleistocene and Holocene lake level of the Harappan civilization of South Asia. Monsoon 3:92–94 stands of Lake Bosumtwi, Ghana. Palaeogeogr Palaeoclima- tol Palaeoecol 242:287–302 Shindell DT et al (2009) Improved Attribution of Climate Forc- ing to Emissions. Science 326:716–718 Shanahan TM et al (2015) The time-transgressive termination of the African Humid Period. Nat Geosci 8:140–144 Showers WJ, Bevis M (1988) Amazon Cone isotopic stratigra- phy: Evidence for the source of the tropical freshwater spike. Shanahan TM et al (2016) CO2 and fire influence tropical Palaeogeogr Palaeoclimatol Palaeoecol 64:189–199 ecosystem stability in response to climate change. Sci Rep 6:29587. https://doi.org/10.1038/srep29587 Shreeve J (2015) Mystery man. Natl Gegraphic 228(10):30–57 Shannon LV et al (1986) On the existence of an El Niño-type Shulmeister J et al (2005) Cosmogenic nuclide chronology of phenomenon in the Benguela System. J Mar Res 44:495–520 the last glacial transition in North-West Nelson, New Zealand – new insights in Southern Hemisphere climate forcing dur- Shapiro A et al (2011) A new approach to the long-term recon- ing the last deglaciation. Earth Planet Sci Lett 233:455–466 struction of the solar irradiance leads to large historical solar forcing. Astron Astrophys 529:A67 Siebe C et al (1996) Repeated volcanic in Prehispanic time at Popocatépetl, central Mexico: past key to the future? Sharma MC, Owen LA (1996) Quaternary glacial history of NW Geology 24:399–402 Garhwal Himalayas. Quat Sci Rev 15:335–365 Siegel DA, Franz BA (2010) Century of phytoplankton change. Shaviv NJ, Veizer J (2003) Celestial driver of Phanerozoic cli- Nature 466:569–571 mate? Geol Soc Am Today 13(7):4–10 Siegenthaler U et al (2005) Stable carbon cycle – Climate rela- Shaviv NJ, Veizer J (2004) Detailed Response to “Cosmic Rays, tionship during the Late Pleistocene. Science 310:1313–1317 Carbon Dioxide and Climate” by Rahmstorf et al. http:// www.sciencebits.com/ClimateDebate Sievers W (1886) Über Schneeverhältnisse in der Cordillere Venezuelas. Mitteilungen der Geographischen Gesellschaft Shaw PA, Cooke HJ (1986) Geomorphic evidence for the late München, Bd. 1885, S 54–57 Quaternary paleoclimates of the Middle Kalahari of northern Botswana. Catena 13:349–359 Sievers W (1887) Reise in die Sierra Nevada de Santa Marta. Gressner & Schramm, Leipzig Shaw PA, Thomas DSG (1989) Playas, pans, salt lakes. In: Tho- mas DSG (Hrsg) Arid-zone geomorphology. Belhaven Press, Sievers W (1908) Vergletscherung der Cordilleren des tropi- London, S 184–205 schen Südamerika. Zeitschrift Gletscherkd 2:271–284 Shaw PA, Thomas DSG (1996) The Quaternary palaeoenvi- Sievers W (1911) Die heutige und frühere Vergletscherung romental history of the Kalahari, southern Africa. J Arid Südamerikas. Verhandlungen der Gesellschaft deutscher Na- Environ 32:9–22 turforscher und Ärzte. Karlsruhe. Vogel, Leipzig. Shaw PA et al (1992) Late Quaternary fluvial activity in the Sifeddine A et al (2003) A 21 000 cal years paleoclimatic record dry valleys (mekgacha) of the Middle and Southern Kalahari, from Caçó Lake, northern Brazil: evidence from sedimentary southern Africa. J Quat Sci 7:273–281 and pollen analyses. Palaeogeogr Palaeoclimatol Palaeoecol 189:25–34 Shaw PA et al (1997) Palaeoecology and age of Quaternary high lake level in the Makgadikgadi basin of the Middle Kalahari, Sigl M et al (2014) Insights from Antarctica on volcanic forcing Botswana. S Afr J Sci 93:273–276 during the Common Era. Nat Clim Chang 4:693–697 Shepherd TG (2014) Atmospheric circulation as a source of Sigl M et al (2015a) Timing and climate forcing of volcanic uncertainty in climate change projections. Nat Geosci 7:703– eruptions for the past 2,500 years. Nature 523:543–549 708 Sigl M et al (2015b) The history of volcanic eruptions since Sherwood S (2015) The sun and the rain. Nat Geosci 8:200–201 Roman times. PAGES Mag 23(2):48–49 Sherwood SC et al (2014) Spread in model climate sensitivity Sigman DM et al (2010) The Polar Ocean and glacial cycles in traced to atmospheric convective mixing. Nature 505:37–42 atmospheric CO2 concentration. Nature 466:47–55 720 Literatur

Sikes EL, Keigwin LD (1994) Equatorial Atlantic sea surface Sirocko F et al (2000) Processes controlling trace element geo- k0 18 temperature for the last 30 kyr: a comparison of U37 , • O chemistry of Arabian Sea sediments during the last 25,000 and foraminiferal assemblage temperature estimates. Paleo- years. Glob Planet Change 26:217–303 ceanography 9:31–45 Sirocko F et al (Hrsg) (2006) The climate of past interglacials. Silberzahn R, Uhlmann EL (2015) Many hands make tight Developments in Quaternary Science, Bd. 7. Elsevier, Ams- work. Nature 526:189–191 terdam. Silenzi S et al (2005) Isotopic and elemental records in a non- Sirocko F et al (2009) Ursachen von Klimavariabilität in der tropical coral (Cladocora caespitosa): Discovery of a new Vergangenheit. In: Sirocko F (Hrsg) Wetter, Klima, Mensch- high-resolution climate archive for the . heitsentwicklung von der Eiszeit bis ins 21. Jahrhundert. Glob Planet Change 49:94–120 WBG, Darmstadt, S 53–64 Sinclair G et al (2015) Quantifying global sea level during warm Skilbeck CG, Fink D (2006) Radiocarbon dating and sedi- periods. PAGES Mag 23(2):73 mentation rates for Holocene – upper Pleistocene sediments, eastern equatorial Pacific and Peru . In: Singarayer JS, Burrough SL (2015) Interhemispheric dynamics Jørgensen BB et al (Hrsg) Data report ODP Leg-181. Proc. of the African rainbelt during the late Quaternary. Quat Sci ODP, Science results, 201 Rev 124:48–67 Skonieczny C et al (2015) African humid periods triggered Singer C et al (1998) Evidence against a significant Younger the reactivation of a large river system in Western Saha- Dryas cooling event in New Zealand. Science 281:812–814 ra. Nat Commun 6:Article number: 8751. https://doi.org/10. 1038/ncomms9751 Singhvi AK, Porat N (2008) Impact of luminescence dating on geomorphological and paleoclimate research in drylands. Bo- Sletten HR et al (2013) A petrographic and geochemical record reas 37:536–558 of climate change over the last 4600 years from a northern Namibia stalagmite, with evidence of abruptly wetter climate Singhvi AK et al (2010) A ~200 ka record of climatic change at the beginning of southern Africa’s Iron Age. Palaeogeogr and dune activity in the Thar Desert, India. Quat Sci Rev Palaeoclimatol Palaeoecol 376:149–162 29:3095–3105 Smith BT et al (2014) The drivers of tropical speciation. Nature Singhvi AK et al (2012) India, Arabia and adjacent regions. 515:406–409 In: Metcalfe SE, Nash DJ (Hrsg) Quaternary Environmental Change in the Tropics. Wiley, Chichester, S 151–206 Smith CA et al (2009) Lateglacial and Holocene cosmogenic surface exposure age glacial chronology and geomorphologi- Sinha A et al (2005) Variability of southwest Indian summer cal evidence for the presence of cold-based glaciers at Nevado monsoon precipitation during the Bølling-Ållerød. Geology Sajama, Bolivia. J Quat Sci 24:360–372 33:813–816 Smith CA et al (2011) Late Quaternary glacial chronology on Sinha A et al (2007) A 900-year (600 to 1500 AD) record of Nevado Illimani, Bolivia, and the implications for paleocli- the Indian summer monsoon precipitation from the core mon- matic reconstructions across the Andes. Quat Res 75:1–10 soon zone of India. Geophys Res Lett 34:L16707. https://doi. org/10.1029/2007GL030431 Smith JA, Rodbell DT (2010) Cross-cutting moraines reveal evi- dence for North Atlantic influence on glaciers in the tropical Sinha R et al (2007) Late Cenozoic fluvial successions in north- Andes. J Quat Sci 25:243–248 ern and western India: an overview and synthesis. Quat Sci Rev 26:2801–2822 Smith JA et al (2001) Cosmogenic dating of glaciation in the Peruvian Andes: > 400 10Be ka to Last Glacial Maximum. Sinha R et al (Hrsg) (2012) The Quaternary of tropical and GSA Annual Meeting, November 5–8, 2001 (Paper No. 181– subtropical rivers. Palaeogeogr, Palaeoclimatol, Palaeoecol 0) 356–357:108 S Smith JA et al (2002) Chronology of tropical glaciation from Sirocko F (1996) The evolution of the monsoon climate over the cosmogenic dating. American geophysical union, fall mee- Arabian Sea during the last 24,000 years. Palaeoecol Africa ting 2002, abstract #PP11A-0301 24:53–69 Smith JA et al (2005a) Early Local Last Glacial Maximum in Sirocko F (Hrsg) (2009) Wetter, Klima, Menschheitsentwick- the Tropical Andes. Science 308:678–681 lung von der Eiszeit bis ins 21. Jahrhundert. WBG, Darmstadt Smith JA et al (2005b) Regional synthesis of the last glacial Sirocko F et al (1993) Century-scale events in monsoonal cli- maximum snowlines in the tropical Andes, South America. mate over the past 24,000 years. Nature 364:322–324 Quat Int 138–139:145–167 Sirocko F et al (1996) Teleconnections Between the Subtropi- Smith JA et al (2005c) Moraine preservation and boulder ero- cal Monsoons and High-Latitude Climates During the Last sion in the tropical Andes: interpreting old surface exposure Deglaciation. Science 272:526–529 ages in glaciated valleys. J Quat Sci 20:735–758 Literatur 721

Smith JA et al (2008) The timing and magnitude of mountain Sponholz B et al (1993) Fulgurites in the southern central glaciation in the tropical Andes. J Quat Sci 23:609–634 Sahara, Republic of Niger, and their paleoenvironmental si- gnificance. Holocene 3:97–104 Smith LC et al (2004) Siberian Peatlands a net carbon sink and global methane source since the early holocene. Science Spoor F et al (2015) Reconstructed Homo habilis type OH 7 303:353–356 suggests deep-rooted species diversity in early Homo. Nature 519:83–86 Smith RMH et al (1993) Flashflood sediments and ichnofacies of the Late Pleistocene Homeb Silts, Kuiseb River. Namibia Spratt RM, Lisiecki LE (2016) A Late Pleistocene sea level Sediment Geol 85:579–599 stack. Clim Past 12:1079–1092 Snyder CW (2016) Evolution of global temperature over the past Sprintall J et al (2014) The Indonesian seas and their role in the two million yeras. Nature 538:226–228 coupled ocean-climate system. Nat Geosci 7:487492 Solanki SK et al (2004) Unusual activity of the Sun during re- Sridhar A (2007a) A mid–late Holocene flood record from cent decades compared to the previous 11,000 years. Nature the alluvial reach of the Mahi River, Western India. Catena 431:1084–1087 70:330–339 Solleiro-Rebolledo E et al (2006) Spatial variability of environ- Sridhar A (2007b) Mid-late Holocene hydrological changes in ment change in the Teotihuacan Valley during the Late Qua- the Mahi River, arid western India. Geomorphology 88:285– ternary: Paleopedological inferences. Quat Int 156/157:13– 297 31 Sridhar A et al (2015) Late Holocene flooding history of a trop- Solomina O et al (2007) Lichenometry in the Cordillera Blan- ical river in western India in response to southwest monsoon ca, Peru : “Little Ice Age” moraine chronology. Glob Planet fluctuations: A multi proxy study from lower Narmada valley. Change 59:225–235 Quat Int 371:181–190 Solomina O et al (2008) Historical and Holocene glacier- Srivastava P et al (2004) A record of fluvial aggradation in climate variations: General concepts and overview. Glob the northern Namib Desert during the Late Quaternary. Zeit- Planet Change 60:1–9 schrift Geomorphol Suppl 133:1–18 Solomon S et al (2007) Contributions of stratospheric water va- Srivastava P et al (2005) Depositional environment and lu- por to decadal changes in the rate of global warming. Science minescence chronology of the Hoarusib River Clay Castles 327:1219–1223 sediments, northern Namib Desert, Namibia. Catena 59:187– 204 Sonntag C et al (1978) Paleoclimatic information from deute- rium and 18Oin14C-dated north Daharian groundwaters. In: Srivastava P et al (2006) Depositional environment and OSL IAEA (Hrsg) Isotope Hydrology 1978: Proceedings of the In- chronology of the Homeb silt deposits, Kuiseb River, Nami- ternational Symposium on Isotope Hydrology. International bia. Quat Res 65:478–491 Atomic Energy Agency, Wien, S 569–580 Srivastava P et al (2013) Late Pleistocene-Holocene morpho- Sonntag C et al (1980) Isotopic identification of Saharian sedimentary architecture, Spiti River, arid higher Himalaya. groundwaters, groundwater formation in the past. Palaeoecol Geol Rundsch 102:1967–1984 Africa 12:159–171 Stabell B (1989) Initial diatom record of Sites 657 and 658: on Soergel W (1937) Die Vereisungskurve. Borntraeger, Berlin the history of upwelling and continental aridity. In: Ruddi- man W, Sarnthein M et al: Procedings of the Ocean Drilling Soergel W (1939) Das diluviale System. Borntraeger, Berlin Program, Scientific Results Vol. 108, S 149–156 Sommerhoff G, Weber C (1999) Mexiko. Darmstadt Stager JC et al (2002) Cooling cycles, Heinrich event 1, and Sorrel P et al (2012) Persistent non-solar forcing of Holocene the desiccation of Lake Victoria. Palaeogeogr Palaeoclimatol storm dynamics in coastal sedimentary archives. Nat Geosci Palaeoecol 183:169–178 5:892–896 Stager JC et al (2003) A 10,000-year high-resolution diatom re- Sosdian S, Rosenthal Y (2009) Deep-sea temperature and ice cord from Pilkington Bay, Lake Victoria, East Africa. Quat volume changes across the Pliocene-Pleistocene climate tran- Res 59:172–181 sitions. Science 325:306–310 Stager JC et al (2005) Solar variability and the levels of Lake Spero et al (1997) Effect of carbonate concentration on Victoria, East Africa, during the last millennium. J Paleolim- foraminiferal carbon and oxygen isotopes. Nature 390:497– nol 33:243–251 500. Stager JC et al (2011) Catastrophic drought in the afro-asian Spielhagen R (2001) Enigmatic Arctic ice sheets. Nature monsoon region during Heinrich event 1. Science 331:1299– 410:427–428 1302 Spiske M et al (2013) Coastal chevron deposits – sedimento- Stansell ND et al (2007) Last glacial maximum equilibrium-line logy, methods and aeolian versus tsunamigenic origin, EGU altitude and paleo-temperature reconstructions for the Cordil- Meeting 2013, Vienna. Abstract 04/2013 lera de Mérida, Venezuelan Andes. Quat Res 67:115–127 722 Literatur

Stark CP et al (2010) The climatic signature of incised river me- Stocker TF (2007) Polare Eisbohrkerne – Eckpfeiler der Klima- anders. Science 327:1497–1501 rekonstruktion. Geogr Rundsch 59(4):40–48

Stauffer B (1999) Cornucopia of ice-core results. Nature Stocker TF, Schmittner A (1997) Influence of CO2 emission ra- 399:412–413 tes on the stability of the thermohaline circulation. Nature Steen-McIntyre V et al (1981) Geologic evidence for Age de- 388:362–365 posits at Hueyatlaco archaeological site Valsequillo Mexico. Stoermer EF, Smol JP (Hrsg) (2001) The Diatoms: Applications Quat Res 16:1–17 for the Environmental and Earth Sciences. Cambridge Uni- Steffen W (2008) Looking back to the future. Ambio Special versity Press, Cambridge Rep 14:507–513 Stokes CR et al (2016) Ice stream activity scaled to ice sheet Steig EJ (2016) Cooling in the Antarctic. Nature 535:358–358 volume during deglaciation. Nature 530:322–326 Steig EJ et al (1998) Synchronous climate changes in Antarctica and the North Atlantic. Science 282:92–95 Stokes S et al (1997) Multiple episodes of aridity in southern Africa since the last interglacial period. Nature 388:154–158 Steinmann P et al (2006) A peat core based estimate of Late- glacial and Holocene methane emissions from northern pea- Stollhofen H et al (2014) Pliocene–Pleistocene climate change, tlands. Glob Planet Change 53:233–239 sea level and uplift history recorded by the Horingbaai fan- delta, NW Namibia. Sediment Geol 309:15–32 Stenni B et al (2011) Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nat Stone AEC, Edmunds WM (2016) Unsaturated zone hydro- Geosci 4:46–49 stratigraphies: a novel archive of past climates in dryland continental regions. Earth Sci Rev 157:121–144 Stephens GL et al (2012) An update on Earth’s energy balance in light of the latest global observations. Nat Geosci 5:691– Stone AEC, Thomas DSG (2008) Linear dune accumulation 696 chronologies from the southwest Kalahari, Namibia: chal- Stern N (2009) A blueprint for a safer planet: how to manage cli- lenges of reconstructing late Quaternary palaeoenvironments mate change and create a new era of progress and prosperity. from Aeolian landforms. Quat Sci Rev 27:1667–1681 Bodley Head, London Stone AEC, Edmunds WM (2016) Unsaturated zone hydro- Sternberg HOR (1956) Radiocarbon dating as applied to a stratigraphies: A novel archive of past climates in dryland problem of Amazonian morphology. Comptes Rendus 18th continental regions. Earth Sci Rev 157:121–144 Congress UGI, Bd. 2, S 399–424 Stone AEC et al (2010a) Late Quaternary palaeohydrological Stevaux JC (2000) Climatic events during the Late Pleistocene changes in the northern Namib Sand Sea: New chronolo- and Holocene in the Upper Parana River: Correlation with NE gies using OSL dating of interdigitated aeolian and water-lain Argentina and South-Central Brazil. Quat Int 72:73–85 interdune deposits. Palaeogeogr Palaeoclimatol Palaeoecol 288:35–53 Stevenson J, Hope G (2005) A comparison of late Quaternary forest changes in New Caledonia and northeastern Australia. Stone AEC et al (2010b) Quaternary tufa deposition in the Quat Res 64:372–383 Naukluft Mountains, Namibia. J Quat Sci 25:1360–1372 Stine AR et al (2009) Changes in the phase of the annual cycle Stone EJ et al (2013) Insights into paleoclimate modeling. of surface temperature. Nature 457:435–441 PAGES News 21(1):10–11 Stingl H, Garleff K (1985) Spätglaziale und holozäne Gletscher- Stone JO (2000) Air pressure and cosmogenic isotope producti- und Klimaschwankungen in den argentinischen Anden. Zen- on. J Geophys Res 105:23753–23759 tralblatt Für Geol Paläontologie Teil I 1984:1667–1677 Storelvmo T et al (2016) Disentangling greenhouse warming Stocker TF (2000) Past and future reorganizations in the climate and aerosol cooling to reveal Earth’s climate sensitivity. Nat systems. Quat Sci Rev 19:301–319 Geosci 9:286–289 Stocker TF (2001) Polares Eis: der Eckpfeiler der Klimafor- Strahler AH, Strahler AN (1999) Physische Geographie. Ulmer, schung. In: Schweizerische Kommission für Polarforschung Stuttgart SKP (Hrsg) Die Polarforschung als Schlüssel zum Verständ- nis der globalen Veränderungen. Eidgenössisches Departe- Straka H, Ohngemach D (1989) Late Quaternary vegetation his- ment für auswärtige Angelegenheiten EDA, Bern, S 17–29 tory oft he Mexican highland. Plant Syst Evol 162:115–132 Stocker TF (2002/2003) Einführung in die Klimamodellie- Straub M et al (2013) Changes in the North Atlantic nitrogen rung. Skript. Physikalisches Institut Universität Bern. WS fixation controlled by ocean circulation. Nature 501:200–203 2002/2003, 2. Aufl Street FA, Grove AT (1976) Environmental and climatic im- Stocker TF (2004) Models change their tune. Nature 430:737– plication of late Quaternary lake-level fluctuations in Africa. 738 Nature 261:385–389 Literatur 723

Street-Perrott FA et al (1997) Impact of Lower Atmospheric Stuut JBW et al (2004) Relationship between Antarctic sea ice Carbon Dioxide on Tropical Mountain Ecosystems. Science and southwest African climate during the Late Quaternary. 278:1422–1426 Geology 32:909–912 Stringer C (2000) Palaeoanthropology – Coasting out of Africa. Stuut JBW et al (2009) Aeolian dust in Europe: African sources Nature 405:24–27 and European deposits. Quat Int 198:234–245 Stroup JS et al (2014) Late Holocene fluctuations of the Qo- Stuut J-BW et al (2011) Late Quaternary aridity changes in ri Kalis outlet glacier, Quelccaya Ice Cap, Peruvian Andes. the winter-rain areas on the southern hemisphere: inferences Geology. https://doi.org/10.1130/G35245.1 from the marine sediment archive. ADOM-MARUM Dust Workshop 2011, Abstract, Short Presentations and Posters: Struck U, Altenbach A (2006) Palaeoclimatological investigati- 52 ons in upwelling sediments off Namibia. In: Leser H (Hrsg) The changing culture and nature of Namibia: case studies. Sublette Mosblech NA et al (2012) Anthropogenic control of Basler Afrika Bibliographien, Basel/Windhoek, S 165–169 late-Holocene landscapes in the Cuzco region. Holocene 22:1361–1372 Strunk H (1995) Dendrogeomorphologische Methoden zur Er- Subramaniam A et al (2008) Amazon River enhances diazotro- mittlung der Murfrequenz und Beispiele ihrer Anwendung. phy and carbon sequestration in the tropical North Atlantic Roderer, Regensburg Ocean. Proc Natl Acad Sci 105:10460–10465 Stübel A (1897) Die Vulkangebirge von Ecuador. Asher, Berlin. Sugden DE et al (2009) Influence of Patagonian glaciers on Stuart C (2006) The dark side of the sun. Nature 441:402–404 Antarctic dust deposition during the last glacial period. Nat Geosci 2:281–285 Stuart-Smith RD et al (2013) Integrating abundance and functio- nal traits reveals new global hotspots of fish diversity. Nature Svendsen J et al (2003) Mass and hyperconcentrated flow de- 501:539–542 posits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast erg, Namibia. Sediment Stuart-Williams V (1992) Etosha: third largest lake in the world. Geol 160:7–31 In: Marsh A, Seely M (Hrsg) Oshanas – sustaining people, Svensson A et al (2008) A 60000 year Greenland stratigraphic environment and development in central Ovambo, Namibia. ice core chronology. Clim Past 4:47–57 Typoprint, Windhoek, S 13 Swain AM et al (1983) Estimates of Holocene precipitation for Stuijts ILM (1993) Late pleistocene and holocene vegetation of Rajasthan, India, based on pollen and lake-level data. Quat West Java, Indonesia. Modern Quaternary research in Sou- Res 19:1–17 theast Asia, Bd. 12. Balkema, Rotterdam Swetnam TW (2002) Fire and climate history in the Western 18 Stuiver M et al (1995) The DISP 2 • O Record of the Past Americas from tree rings. PAGES News 10(1):6–8 16,500 years and the Role of Sun, Ocean, and Volcanoes. Quat Res 44:341–354 Sylvestre F et al (1999) Lake-level chronology on the southern Bolivian Altiplano (18ı–23ı S) during late-glacial time and Stute M, Schlosser P (1993) Principles and applications of the early Holocene. Quat Res 51:54–66 the noble gas paleothermometers. In: Swart PK et al (Hrsg) Sylvestre F (2009) Moisture pattern during the last glacial ma- Climate change in continental isotopic records. American ximum in South America. Past climate variability in South Geophysical Union, Washington D.C., S 89–100 America and surrounding regions. Dev Paleoenviron Res Stute M, Talma AS (1998) Glacial temperatures and moisture 14:3–27 •18 transport regimes reconstructed from noble gases and O, Szabo BJ et al (1995) Ages of Quaternary pluvial episodes Stampriet aquifer, Namibia. In: IAEA (Hrsg) Isotope Techni- determined by uranium-series and radiocarbon dating of ques in the Study of Past and Current Environmental Changes lacustrine deposits of Eastern Sahara. Palaeogeogr Palaeocli- in the Hydrosphere and the Atmosphere. International Ato- matol Palaeoecol 113:227–242 mic Energy Agency, Wien, S 307–328 ı Tafforeau P et al (2007) Nature of laminations and mine- Stute M et al (1995) Cooling of tropical Brazil (5 C) during the ralization in rhinoceros enamel using histology and X-ray Last Glacial Maximum. Science 269:379–383 synchrotron microtomography: Potential implications for pa- Stuut JBW, Lamy F (2004) Climate variability at the southern laeoenvironmental isotopic studies. Palaeogeogr Palaeocli- boundaries of the Namib (southwestern Africa) and Atacama matol Palaeoecol 246:206–227 (northern Chile) coastal deserts during the last 120,000 yr. Talbot MR (1980) Environmental responses to climate change Quat Res 62:301–309 in the West African Sahel over the past 20000 years. In: Wil- liams M, Faure H (Hrsg) The Sahara and the Nile. Balkema, Stuut JBW et al (2002) A 300-kyr record of aridity and wind Rotterdam, S 37–62 strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Mar Talbot MR, Delibrias G (1977) Holocene variations in the level Geol 180:221–233 of Lake Bosumtwi, Ghana. Nature 268:722–724 724 Literatur

Talbot MR, Delibrias G (1980) A new late-Holocene water- Telfer MW et al (2010) Understanding linear dune chronologies: level curve for Lake Bosumtwi, Ghana. Earth Planet Sci Lett Insights from a simple accumulation model. Geomorphology 47:336–344 120:195–208 Talbot MR, Johannessen T (1992) A high resolution paleocli- Telford RJ et al (2004) Lacustrine responses to tephra depositi- matic record for the last 27,000 years in tropical West Africa on: examples from Mexico. Quat Sci Rev 23:2337–2353 from the carbon and nitrogen isotopic composition of la- custrine organic matter. Earth Planet Sci Lett 110:23–37 Teller JT et al (1990) Sedimentology and palaeohydrology of late Quaternary lake deposits in the northern Namib Sand Talbot MR et al (1984) Preliminary results from sediment cores Sea, Namibia. Quat Sci Rev 9:343–364 from lake Bosumtwi, Ghana. Palaeoecol Africa 16:173–192 Temmerman S et al (2013) Ecosystem-based coastal defence in Talling PJ et al (2007) Onset of submarine debris flow depositi- the face of global change. Nature 504:79–83 on far from original giant landslide. Nature 450:541–544 Tennant RK et al (2013) A new flow cytometry method enabling Talma AS und Vogel JC (1992) Late Quaternary Paleotempe- rapid purification of fossil pollen from terrestrial sediments ratures Derived from a Speleothem from Cango Caves, Cape for AMS radiocarbon dating. J Quat Sci 28:229–236 Province, South Africa. Quat Res 37:203–213 Tetzlaff G et al (1988) Wasserhaushalt im Sahel. Die Erde Tamura T (1989) Landform Development on the Eastern Margin 119:163–170 of the Kalahari Sands of Northwest Zambia. In: Kadomura H (Hrsg) Savannization Processes in Tropical Africa I. TAGE- Therrell MD et al (2004) Aztec drought and the “Curse of One LAQP/SAPITA No. 1 Zambia Geogr. Ass. Lusaka. Univ. & Rabbit”. Bull Am Meteorol Soc 85:1263–1272 Occasional Study No., Bd. 17. Metropol, Tokyo, S 55–75 Therrell MD et al (2006a) Tree-ring reconstructed maize yield Tan J et al (2015) Increases in tropical rainfall driven by changes in central Mexico: 1474-2001. Clim Change 74:493–504 in frequency of organized deep convection. Nature 519:451– Therrell MD et al (2006b) Tree-ring reconstructed rainfall var- 454 iability in Zimbabwe. Clim Dyn 26:677–685 Tan L et al (2014) Annually laminated speleothems in paleocli- Thevenon F et al (2002) A 22-kyr BP sedimentological re- mate studies. PAGES Mag 22(1):22–23 cord of Lake Rukwa (8ı S, SW Tanzania): environmental, Tang Q et al (2014) Extreme summer weather in northern mid- chronostratigraphic and climatic implications. Palaeogeogr latitudes linked to a vanishing cryosphere. Nat Clim Chang Palaeoclimatol Palaeoecol 187:285–294 4:45–50 Thiede J et al (2004) Das Golfstrom-Problem. In: Thiede J Tapia PM et al (2003) A Late Quaternary diatom record of trop- et al (Hrsg) Geowissenschaften und die Zukunft. Abhand- ical climatic history from Lake Titicaca (Peru and Bolivia). lungen der Mathematisch-Naturwissenschaftlichen Klasse, Palaeogeogr Palaeoclimatol Palaeoecol 194:139–164 Akademie der Wissenschaften und der Literatur Mainz. Franz Steiner, Stuttgart, S 168–174 Tapper N (2002) Climate, climatic variability and atmosphe- ric circulation patterns in the maritime continent region. Adv Thiedig F et al (2000) Evidence of a large Quaternary lacustri- Geoecology 34:5–28 ne palaeo-lake in Libya and their importance for climate change in North Africa. In: Sola MA, Worsley D (Hrsg) Tarhule A, Hughes MK (2002) Tree-ring research in semi-arid Proc. Regional Aquifer Systems in Arid Zones — Managing West Africa: need and potential. Tree-Ring Res 58:31–46 Non-Renewable Resources. Geological Exploration in Mur- zuq Basin. Chapter, Bd. 5. Elsevier, Amsterdam, S 89–116 Taylor KC et al (1993) The ‘flickering switch’ of late Pleistoce- ne climate change. Nature 361:432–436 Thomas DSG (2010) Grove AT (1969) Landforms and climate change in the Kalahari and Ngamiland. Geographical Journal Taylor RG et al (2006a) Recent glacial recession in the Ru- 135: 191–212. Prog Phys Geogr 35:263–266 wenzori Mountains of East Africa due to rising air tempera- ture. Geophys Res Lett 33:L10402. https://doi.org/10.1029/ Thomas DSG (2013) Reconstructing paleoenvironments and 2006GL025962 palaeoclimates in drylands: what can landform analysis con- tribute? Earth Surf Process Landf 38:3–16 Taylor RG et al (2006b) Recent glacial recession in the Ruwen- zori Mountains of East Africa due to rising air temperature: Thomas DSG, Burrough SL (2012) Interpreting geo-proxies of Reply. Geophys Res Lett 33:L20405. https://doi.org/10.1029/ late Quaternary climate change in African drylands: impli- 2006GL027606 cations for understanding environmental and early human behaviour. Quat Int 253:5–17 Telfer MW, Thomas DSG (2007) Late Quaternary linear du- ne accumulation and chronostratigraphy of the southwestern Thomas DSG, Burrough SL (2016) Luminescence-based dune Kalahari: implications for aeolian palaeoclimatic reconstruc- chronologies in southern Africa: Analysis and interpretation tions and predictions of future dynamics. Quat Sci Rev of dune database records across the subcontinent. Quat Int 26:2617–2630 410(B):30–45 Literatur 725

Thomas DSG, Shaw PA (1991) The Kalahari Environment. Thompson LG et al (1985) A 1500-year record of tropical pre- Cambridge University Press, Cambridge cipitation in ice cores from the Quelccaya ice cap, Peru. Science 229:971–973 Thomas DSG, Shaw PA (2002) Late Quaternary environmental change in central southern Africa: new data, synthesis, issues Thompson LG et al (1986) The Little Ice Age as recorded in and prospects. Quat Sci Rev 21:783–797 the stratigraphy of the Tropical Quelccaya ice cap. Science 234:361–364 Thomas DSG et al (2003) Late Pleistocene wetting and drying in the NW Kalahari: an integrated study from the Tsodilo Hills, Thompson LG et al (1988) Pre-Incan agricultural activity recor- Botswana. Quat Int 104:53–67 ded in dust layers in two tropical ice cores. Nature 336:763– 765 Thomas MF (1974) Tropical Geomorphology. A Study of Weathering and Denudation in Warm Climates. Macmillan, Thompson LG et al (1993) “Recent warming”: ice core evidence London. from tropical ice cores with emphasis on Central Asia. Glob Planet Change 7:145–156 Thomas MF (1994) Geomorphology in the Tropics. A Study of Thompson LG et al (1995) Late glacial stage and Holocene Weathering and Denudation in Low Latitudes. Wiley, Chiche- tropical ice core records from Huascaran, Peru. Science ster 269:46–50 Thomas MF (2000) Late Quaternary environmental changes and Thompson LG et al (1997) Tropical climate instability: The the alluvial record in humid tropical environments. Quat Int last glacial cycle from a Qinghai-Tibetan ice core. Science 72:23–36 276:1821–1825 Thomas MF (2008) Understanding the impacts of Late Qua- Thompson LG et al (1998) A 25,000-year tropical climate his- ternary climate change in tropical and sub-tropical regions. tory from Bolivian ice cores. Science 282:1858–1864 Geomorphology 101:146–158 Thompson LG et al (2000) Ice-core palaeoclimate records in Thomas MF, Thorp MB (1995) Geomorphic response to rapid tropical South America since the Last Glacial Maximum. climatic and hydrologic change during the Late Pleistocene J Quat Sci 15:377–394 and Early Holocene in the humid and subhumid tropics. Quat Thompson LG et al (2002) Kilimanjaro ice core records: evi- Sci Rev 14:193–207 dence of Holocene climate change in tropical Africa. Science Thomas MF et al (2001) Late Quaternary stream sedimentation 298:589–593 in the humid tropics: a review with new data from NE Queen- Thompson LG et al (2006) Abrupt tropical climate change: land, Australia. Geomorphology 39:53–68 Past and present. Proceedings of the National Academy of Thompson AM (1992) The oxidizing capacity of the earth’s Sciences of the USA, Bd. 103, S 10536–10543 atmosphere: probable past and future changes. Science Thompson LG et al (2009) Glacier loss on Kilimanjaro conti- 256:1157–1165 nues unabated. National Academy of Sciences Proceedings, Thompson DM et al (2015) Early twentieth-century warming Bd. 106, S 19770–19775 linked to tropical Pacific wind strength. Nat Geosci 8:117– Thompson WG, Goldstein SL (2006) A radiometric calibration 121 of the SPECMAP timescale. Quat Sci Rev 25:3207–3215 Thompson DWJ et al (2008) A large discontinuity in the Thomson DJ (2009) Shifts in season. Nature 457:391–392 mid-twentieth century in observed global-mean surface tem- Thorbecke F (1927) Klima und Oberflächenformen: Die Stel- perature. Nature 453:646–649 lung des Problems. Düsseldorfer Geographische Vorträge und Thompson LG (1996) Climatic changes for the last 2000 years Erörterungen, 3. Teil: Morphologie der Klimazonen. Hirt, inferred from ice-core evidence in tropical ice cores. In: Jones Breslau, S 1–3 PD et al (Hrsg) Climatic Variations and Forcing Mechanisms Thouret J-C et al (2007) Geochronologic and stratigraphic con- of the Last 2000 Years. NATO ASI Series Global Environ- straints on canyon incision and Miocene uplift of the Central mental Change, Berlin, Bd. 141, S 281–295 Andes in Peru. Earth Planet Sci Lett 263:151–166 Thompson LG (2000) Ice core evidence for climate change in Tian H et al (2016) The terrestrial biosphere as a net source of the Tropics: implications for our future. Quat Sci Rev 19:19– greenhouse gases to the atmosphere. Nature 531:225–228 35 Tiedemann R (1995) Meeressedimente – Zeugen der Ozean- Thompson LG et al (1984a) Tropical Glaciers: potential und Klimageschichte. Geogr Rundsch 47(2):97–104 for ice core Paleoclimatic reconstructions. J Geophys Res 89(D3):4638–4646 Tiedemann R et al (1989) Climatic changes in the western Sa- hara: aeolo-marine sediment record of the last 8 million years Thompson LG et al (1984b) El Niño-Southern Oscillation (Sites 657–661). In: Ruddiman W, Sarnthein M et al: Proce- Events Recorded in the Stratigraphy of the Tropical Quelc- dings of the Ocean Drilling Program, Scientific Results Vol. caya Ice Cap, Peru. Science 226:50–53 108, S 241–277 726 Literatur

Tiercelin J-J, Lezzar K-E (2002) A 300 million years history Trauth MH et al (2006) A better climate for human evolution. of rift lakes in Central and East Africa: an updated broad re- PAGES News 14(2):32–34 view. In: Odada EO et al (Hrsg) The East African : Limnology, Palaeolimnology and Biodiversity. Dordrecht, Trauth MH et al (2009) Trends, rhythms and events in Plio- Kluwer, S 3–62 Pleistocene African climate. Quat Sci Rev 28:399–411 Tierney JE, deMenocal PB (2013) Abrupt shifts in horn of Af- Tricart J (1974) Existence de périodes sèches au Quaternaire en rica Hydroclimate since the Last Glacial Maximum. Science Amazonie et dans les régions voisines. Revue De Géomor- 342:843–846 phologie Dynamique 23(4):145–158 Tierney JE et al (2008) Northern Hemisphere controls on trop- Tripati AK et al (2014) Modern and glacial tropical snowlines ical Southeast African climate during the last 60,000 years. controlled by sea surface temperature and atmospheric mi- Science 322:252–255 xing. Nat Geosci 7:205–209 Tierney JE et al (2015) Tropical sea-surface temperatures for the Troll C (1927) Forschungen in den zentralen Anden von Bolivi- past four centuries reconstructed from coral archives. Paleo- en und Peru. Petermanns Geogr Mitt 73:41–43 ceanography 30:226–252 Troll C (1929) Die Cordillera Real. Zeitschrift Ges Für Erdkd Tilho J (1925) Sur l’aire probable d’extension maxima de la mer Zu Berl 1929(7):279–312 paléotchadienne. Comtes Rendus de l’Académie de Sciences Troll C (1942) Neue Gletscherforschungen in den Subtropen der Paris 181:643–646 Alten und der Neuen Welt (Karakorum und argentinische An- Timmermann A, Friedrich T (2016) Late Pleistocene climate den). Zeitschrift Ges Für Erdkd Zu Berl 1942:54–65 drivers of early human migration. Nature 538:92–95 Troll C (1943) Thermische Klimatypen der Erde. Petermanns Tiwari M et al (2005) Solar control of southwest monsoon on Geogr Mitt XX:81–89 centennial timescales. Curr Sci 89:1583–1588 Troll C (1968) The cordilleras of the tropical Americas. Aspects Tiwari M et al (2006) Is there a persistent control of monsoon of climatic, phytogeographical and agrarian ecology. Collo- winds by recipitation during the late Holocene? Geochem- quium Geogr 9:15–56 istry Geophys Geosystems 7:Q3001 Troll C (1985) Tagebücher der Reisen in Bolivien 1926/1927. Toggweiler JR, Russel J (2008) Ocean circulation in a warming Erdwissenschaftliche Forschung, Bd. 29. Steiner, Stuttgart climate. Nature 451:286–288 Troll C, Finsterwalder R (1935) Die Karten der Cordillera Real Tollefson J (2008) Save the trees. Nature 452:8–9 und des Talkessels von La Paz (Bolivien) und die Diluvi- Tollefson J (2012) A break in the clouds. Nature 485:164–166 algeschichte der zentralen Anden. Petermanns Geogr Mitt 81:393–399 Tollefson J (2014a) The case of the missing heat. Nature 505:276–278 Troll C, Paffen KH (1964) Karte der Jahreszeitenklimate der Erde. Erdkunde 18:5–28 Tollefson J (2014b) Blue energy. Nature 508:302–304 Troll C, Wien K (1949) Der Lewisgletscher am Mount Kenya. Tollefson J (2015) Climate modellers take tropical approach. Geografiska Ann 31:257–274 Nature 519:398–399 Toohey M et al (2016) How did climate and humans respond Tröstl J et al (2016) The role of low-volatility organic com- to past volcanic eruptions? Eos (Washington DC) 97. https:// pounds in initial particle growth in the atmosphere. Nature doi.org/10.1029/2016EO062599 533:527–531 Torres Acosta V et al (2015) Effect of vegetation cover on Tucci S, Akey JM (2016) A map of human wanderlust. Nature millennial-scale landscape denudation rates in East Africa. 538:179–180 Lithosphere 7:408–420 Turner J et al (2016) Absence of 21st century warming on An- Toth LT et al (2015) Climatic and biotic thresholds of coral-reef tarctic Peninsula consistent with natural variability. Nature shutdown. Nat Clim Chang 5:369–374 535:411–415 Touzeau A et al (2013) Egyptian mummies record increasing Turner KJ et al (2005) Deglaciation of the eastern flank of the aridity in the Nile valley from 5500 to 1500 yr before present. North Patagonian Icefield and associated continental-scale Earth Planet Sci Lett 375:92–100 lake diversions. Geografisca Ann 87A:363–374 Toya H et al (1973) Geomorphological Studies in Southeastern Turney CSM et al (2006) Geochemical changes recorded in Kenya. Geogr Reports Tokyo Metrop Univ 8:51–137 Lynch’s Crater, Northeastern Australia, over the past 50 ka. Palaeogeogr Palaeoclimatol Palaeoecol 233:187–203 Trauth MH et al (2003) East African climate change and orbi- tal forcing during the last 175 kyr BP. Earth Planet Sci Lett Tyson PD, Lindesay JA (1992) The climate of the last 2000 206:297–313 years in southern Africa. Holocene 2:271–278 Literatur 727

Tyson PD et al (2000) The Little Ice Age and medieval warming Vallelonga P (2014) The enigma of dust provenance: where else in South Africa. S Afr J Sci 96:121–126 does Antarctic dust come from? PAGES Mag 22(2):74–75 Tyson PD et al (2002) Regional-global change linkages: Valsecchi V et al (2013) A high resolution 15,600-year pol- Southern Africa. In: Tyson PD et al (Hrsg) Global-regional len and microcharcoal record from the Cederberg mountains, linkages in earth systems. Springer, Berlin, S 3–73 South Africa. Palaeogeogr Palaeoclimatol Palaeoecol 387:6- 16 Tzedakis PC et al (2009) Interglacial diversity. Nat Geosci 2:751–755 Vanacker V et al (2007) Restoring dense vegetation can slow mountain erosion to near natural benchmark levels. Geology Tziperman E (1997) Inherently unstable climate behaviour due 35:303–306 to weak thermohaline ocean circulation. Nature 386:592–595 Van de Berg WJ et al (2011) Significant contribation of insolati- Tziperman E et al (2006) Consequences of pacing the Pleisto- on to Eemian melting of the . Nat Geosci cene 100 kyr ice ages by nonlinear phase locking to Milan- 4:679–683 kovitch forcing. Paleoceanography 21(4):PA4206. https://doi. org/10.1029/2005PA001241 Van den Bergh GD et al (2001) The Late Quaternary Palaeogeo- graphy of mammal evolution in the Indonesian . Uberoi C (2012) Little Ice Age in Mughal India: Solar mi- Palaeogeogr Palaeoclimatol Palaeoecol 171:385–408 nima linked to droughts? Eos Trans Am Geophys Union 93(44):437–438 Van den Bergh GD et al (2016) Earliest hominin occupation of Sulawesi, Indonesia. Nature 529:208–2011 Uno I et al (2009) Asian dust transported one full circuit around the globe. Nat Geosci 2:557–560 Vandenberghe J et al (2014) The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent Urrego DH et al (2010) A long history of cloud and forest mi- and mean annual air temperatures, 25–17 ka BP. Boreeas, Bd. gration from Lake Consuelo, Peru. Quat Res 73:364–373 43, S 652–666 Urrego DH et al (2014) Millennial-scale climate variability in Van den Broeke M (2008) Depth and density of the Antarctic the American tropics and subtropics. PAGES Mag 22(2):94– firn layer. Arct Antarct Alp Res 40:432–438 95 Van der Hammen T (1974) The Pleistocene changes of vegetati- Urrutia R, Vuille M (2009) Climate change projections for the on and climate in tropical South America. J Biogeogr 1:3–26 tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. Van der Hammen T, Absy ML (1994) Amazonia during the last J Geophys Res 114:D2108 glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109:247–261 Usoskin IG et al (2006) Solar activity reconstructed over the Van der Hammen T, Hooghiemstra H (2000) Neogene and Qua- last 7000 years: The influence of geomagnetic field chan- ternary history of vegetation, climate, and plant diversity in ges. Geophys Res Lett 33:L8103. https://doi.org/10.1029/ Amazonia. Quat Sci Rev 19:725–742 2006GL025921 Van der Hammen T et al (1980) Glacial and environmental his- Vaks A et al (2010) Middle-Late Quaternary paleoclimate of tory in the Sierra Nevada del Cocuy (Colombia). Palaeogeogr northern margins of the Saharan-Arabian Desert: reconstruc- Palaeoclimatol Palaeoecol 32:247–340 (1981) tion from speleothems of Negev Desert, Israel. Quat Sci Rev Van der Leeuw SE (2008) Climate and society; lessons from the 29:2647–2662 past 10 000 years. Ambio Special Rep 14:476–482 Valencia BG et al (2010) From ice age to modern: A record Van der Leeuw S (2013) Aimes 2.0: towards a global earth sys- of landscape change in an Andean cloud forest. J Biogeogr tem science. Glob Chang 81:10–13 37:1637–1647 van der Plas G et al (2012) Mauritius since the last glacial: envi- Valente C, Latrubesse E (2012) Fluvial archive of peculiar ronmental and climatic reconstruction of the last 38 000 years avulsive fluvial patterns in the largest intracratonic basin of from Kanaka Crater. J Quat Sci 27:159–168 tropical South America: the Bananal basin, Central Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 356–357:62–74 Van der Wateren FM, Dunai TJ (2001) Late Neogene denudation history — cosmogenic isotope measure- Valero-Garcés BL et al (1996) Limnogeology of Laguna Mis- ments from the central Namib Desert. Glob Planet Change canti: evidence for mid to late Holocene moisture changes in 30:271–307 the Atacama Altiplano (northern Chile). J Paleolimnol 16:1– 21 Van Geel B et al (1998) The sharp rise of <5 14C ca. 800 cal BC: possible causes, related climatic teleconnections and the Valero-Garcés BL et al (2003) Patterns of regional hydrologi- impact of human environments. Radiocarbon 40:535–550 cal variability in central-southern Altiplano (18ı–26ı S) lakes during the last 500 years. Palaeogeogr Palaeoclimatol Palaeo- Van Geel B et al (1999) The role of solar forcing upon climate ecol 194:319–338 change. Quat Sci Rev 18:331–338 728 Literatur

van Hengstum P et al (2009) Foraminifera in elevated Bermudi- Vázquez-Selem L, Phillips FM (1998) Glacial chronology of an caves provide further evidence for ~ 21 m eustatic sea level Iztaccíhuatl volcano, central Mexico, based on cosmogenic during Marine Isotope Stage 11. Quat Sci Rev 28:1850–1860 36Cl exposure ages and tephrochronology. American Quater- nary Association. Program and Abstracts of the 15th Biennial van Kreveld S et al (2000) Potential links between surging Meeting, Puerto Vallarta, Mexico, 5–7 September 1998. Bd. ice sheets, circulation changes, and the Dansgaard–Oeschger 174 cycles in the Irminger Sea, 60–18 kyr. Paleoceanography 15:425–442 Vermeesch P et al (2010) Sand residence times of one million Vannière B et al (2014) Multi-Scale Analyses of Fire-Climate- years in the Namib Sand Sea from cosmogenic nuclides. Nat Vegetation Interactions on Millennial Scales. PAGES Mag Geosci 3:862–865 22(1):40 Verosub KL et al (1993) Pedogenesis and paleoclimate: inter- Van Oosterzee P, Morrison R (1991) The Centre. The Natural pretation of the magnetic susceptibility record of Chinese History of Australia’s Desert Regions. National Library of loess–paleosol sequences. Geology 21:1011–1014 Australia Verpoorter C et al (2014) A global inventory of lakes based on Van Steijn H et al (1995) Models for the Genetic and Environ- high-resolution satellite imagery. Geophys Res Lett 41:6396– mental Interpretation of Stratified Slope Deposits: Review. 6402 Permafr Periglac Process 6:125–146 Verschuren D (2001) Reconstructing fluctuations of a shallow Van Steijn H et al (2002) Recent research on the nature, origin East African lake during the past 1800 years from sedi- and climatic relations of blocky and stratified slope deposits. ment stratigraphy in a submerged crater basin. J Paleolimnol Prog Phys Geogr 26:551–575 25:297–311 Van ’t Veer R et al (1995) Multivariate analysis of the Middle Verschuren D, Russell JM (2009) Paleolimnology of Afri- and Late Pleistocene Funza pollen records of Colombia. Me- can lakes: Beyond the exploration phase. PAGES News dedelingen Rijks Geol Dienst 52:195–212 17(3):112–114 Van Valkenburgh B et al (2016) The impact of large terrestri- Verschuren D et al (1996) Utilisation de cladocères et chirono- al carnivores on Pleistocene ecosystems. Proc Nat Acad Sci mides fossiles pour réconstruire l’évolution hydrologique de 113:862–867 leur habitat marécageux dans la tourbière de Kashiru (Burun- Van Zinderen Bakker EM (1966) A re-issue of Palynology in di) depuis 40.000 ans BP. Palaeoecol Africa 24:133–145 Africa Reports 1–8 (1950–1963). Palaeoecol Africa 1:1–270 Verschuren D et al (2000) Rainfall and drought in equatorial Van Zinderen Bakker EM (1972) Late Quaternary lacustrine East Africa during the past 1100 years. Nature 403:410–414 phases in the southern Sahara and East Africa. Palaeoecol Af- Verschuren D et al (2009) Half-precessional dynamics of mon- rica 6:15–27 soon rainfall near the East African Equator. Nature 462:637– Van Zinderen Bakker EM, Coetzee JA (1972) A re-appraisal of 641 late-Quaternary climatic evidence from tropical Africa. Pa- Veth P et al (2009) Excavations at Parnkupirti, Lake Gregory, laeoecol Africa 7:151–198 Great Sandy Desert: OSL ages for occupation before the Last Varma V et al (2012) Impact of solar-induced stratospheric Glacial Maximum. Australian Archaeology 69:1–10 ozone decline on Southern Hemisphere westerlies during Vetter RE, Wimmer R (1999) Remarks on the current situati- the Late Maunder Minimum. Geophys Res Lett 39:L20704. on of tree-ring research in the tropics. In: Wimmer R, Vetter https://doi.org/10.1029/2012GL053403 RE (Hrsg) Tree-ring analysis: biological, methodological, Vaz JE, García-Miragaya J (1989) Thermoluminescence dating and environmental aspects. CABI Publishing, Wallingford, S of fossil sand dunes in Apure, Venezuela. Acta Cient Venez 131–137 40:1 (Avances de investigación) Villa P et al (2012) Border Cave and the beginning of the Later Vaz JE, García-Miragaya J (1992) Thermoluminescence dating Stone Age in South Africa. Proc Natl Acad Sci 109:13208– and chemistry of Quaternary sodic alluvial soils in the Vene- 13213 zuelan savanna. Catena 19:209–220 Villacís M et al (2008) Étude des paramètres climatiques con- Vázquez-Selem L (2000) Glacial chronology of Iztaccíhuatl trôlant la variabilité de la composition isotopique (•18O) des volcano, central México. A record of environmental change précipitations à Nuevo Rocafuerte, 74,5ı O, 0,9ı S, 250 m, on the border of the tropics. Unpublished Ph. D. Thesis, Ari- Équateur. Comptes Rendus Geosci 340:1–9 zona State University, 257 S Villarroel C, Graf K (1979) Zur Entstehung des Talkessels von Vázquez-Selem L, Heine K (2011) Late Quaternary Glaciation La Paz/Bolivien und Umgebung. Geogr Helv 1979:43–48 of Mexico. In: Ehlers J et al (Hrsg) Quaternary Glaciations – Extent and Chronology, A Closer Look. Developments in Villavicencio M (1858) Geografía de la Republica del Ecuador. Quaternary Science, Bd. 15, S 849–861 Craighead, New York Literatur 729

Vimeux F, Ginot P (2006) South American Andes: A unique zu Fragen ihrer Terminologie. Petermanns Geogr Mitt area for ice core-based tropical paleoclimate reconstruction. 146:50–59 PAGES News 14(1):19–20 Volkov I et al (2007) Patterns of relative species abundance in Vimeux F et al (2005) What are the climate controls on •D rainforests and coral reefs. Nature 450:45–49 in precipitation in the Zongo Valley (Bolivia)? Implications von Klebelsberg R (1949) Handbuch der Gletscherkunde und for the Illimani ice core interpretation. Earth Planet Sci Lett Glazialgeologie Bd. 2. Springer, Wien 240:205–220 Vonmoos M et al (2006) Large variations in Holocene solar Vimeux F et al (2009) Climate variability during the last 1000 activity: Constraints from 10Be in the Greenland Ice Core years inferred from Andean ice cores: A review of me- Project ice core. J Geophys Res 111:A10105. https://doi.org/ thodology and recent results. Palaeogeogr Palaeoclimatol 10.1029/2005JA011500 Palaeoecol 281:229–241 von Rad U et al (1999) A 5000-yr record of climate change in Vincens A et al (1993) Pollen-derived rainfall and temperature varved sediments from the Oxygen Minimum Zone off Pakis- estimates from Lake Tanganyika and their implication for late tan, northeastern Arabian Sea. Quat Res 51:39–53 pleistocene water levels. Quat Res 40:343–350 von Storch et al (2004) Reconstructing Past Climate from Noisy Vincens A et al (1994) Changement majeur de la végétation Data. Science 306:679–682 du lac Sinnda (Vallée du Niari, Sud-Congo) consecutive a l’assèchement climatique Holocène supérieur: apport de la Werner G (1988) Die Böden des Staates Tlaxcala im zentralen palynologie. CR Acad Sci Paris, ser. 2, 318:1521–1526 Hochland von Mexiko. Das Mexiko-Projekt der DFG XX, Wiesbaden Vincens A et al (1998) Late Holocene climatic changes in West- ern Equatorial Africa inferred from pollen from lake Sinnda, von Wissmann H (1959) Die heutige Vergletscherung und Southern Congo. Quat Res 50:34–45 Schneegrenze in Hochasien mit Hinweisen auf die Verglet- scherung der letzten Eiszeit. Akademie der Wissenschaften Vincent L et al (2007) Tree-rings and the climate of New Ca- und der Literatur in Mainz, Abhandlungen der Mathematisch- ledonia (SW Pacific). Preliminary results from Araucariacae. Naturwissenschaftlichen Klasse, Bd. 14, S 121–123 Palaeogeogr Palaeoclimatol Palaeoecol 253:477–489 Wacker L (2014) Neuste Entwicklungen der Radiokohlen- Vinoj V et al (2014) Short-term modulation of Indian summer stoffmethode zur Datierung in der Paläoklimatologie. Geogr monsoon rainfall by West Asian dust. Nat Geosci 7:308–313 Rundsch 66(7/8):55–57 Visbeck M (2014) Bumpy path to a warmer world. Nat Geosci Wadham JL et al (2010) Biogeochemical weathering under ice: 7:160–161 Size matters. Global Biogeochem Cycles 24(3). https://doi. org/10.1029/2009GB003688 Vitousek PM et al (1997) Human domination of Earth’s ecosys- tems. Science 277:494–499 Wagener T et al (2008) Revisiting atmospheric dust export to the Southern Hemisphere Ocean: Biogeochemical implica- Vogel JC (1982) The age of the Kuiseb River silt terrace at Ho- tions. Global Biogeochem Cycles 22(2):GB2006. https://doi. meb. Palaeoecol Africa 15:201–209 org/10.1029/2007GB002984 Vogel JC (1989) Evidence of past climatic change in the Namib Wagner GA (1995) Altersbestimmung von jungen Gesteinen Desert. Palaeogeogr Palaeoclimatol Palaeoecol 70:355–366 und Artefakten. Enke, Stuttgart Vogel JC (2003) The age of dead trees at Sossusvlei and Tson- Wagner M (1870) Naturwissenschaftliche Reisen im tropischen dabvlei, Namib Desert, Namibia. Cimbebasia 18:247–251 Südamerika. Cotta, Stuttgart Vogel JC, Rust U (1987) Environmental changes in the Kaoko- Wahl D et al (2006) Holocene vegetation change in the north- land Namib Desert during the present millennium. Madoqua ern Peten and its implications for Maya prehistory. Quat Res 15(1):5–16 65:380–389 Vogel JC, Rust U (1990) Ein in der kleinen Eiszeit (Little Ice Waibel L (1922) Winterregen in Deutsch-Südwest-Afrika. Ab- Age) begrabener Wald in der nördlichen Namib. Berl Geogr handlungen aus dem Gebiet der Auslandskunde Bd. 9, Reihe Stud 30:15–34 C (Naturwissenschaften), Band 4, 112 S. + Fotos und Karten Vogel JC, Visser E (1981) Pretoria radiocarbon dates II. Radio- WAIS Divide Project Members (2015) Precise interpolar pha- carbon 23:43–80 sing of abrupt climate change during the last ice age. Nature Völkel J (1989) Geomorphologische und pedologische Unter- 520:661-665. https://doi.org/10.1038/nature14401 suchungen zum jungquartären Klimawandel in den Dünen- Walker D, Flenley J (1979) Late Quaternary vegetational history gebieten Ost-Nigers (Südsahara und Sahel). Bonn Geogr of the Enga Province of upland Papua New Guinea. Philos Abhandlungen 79:1–258 Trans Royal Soc Lond B 286:265–344 Völkel J et al (2002) Zur Bedeutung kaltzeitlicher Hangsedi- Walker G (2007) A world melting from the top down. Nature mente in zentraleuropäischen Mittelgebirgslandschaften und 446:718–721 730 Literatur

Walker MJC (2005) Quaternary dating methods. Wiley, Chiche- Wanner H et al (2008) Mid- to Late Holocene climate change: ster an overview. Quat Sci Rev 27:1791–1828 Walker MJC et al (1999) Isotopic ‘events’ in the GRIP ice core: Wanner H et al (2011) Structure and origin of Holocene cold a stratotype for the Late Pleistocene. Quat Sci Rev 18:1143– events. Quat Sci Rev 30:3109–3123 1150 Ward DJ et al (2015) Late pleistocene glaciations of the arid sub- Walker MJC et al (2009) Formal definition and dating of the GS- tropical Andes and new results from the Chajnantor Plateau, SP (Global Stratotype Section and Point) for the base of the northern Chile. Quat Sci Rev 128:98–116 Holocene using the Greenland NGRIP ice core, and selected auxiliary records. J Quat Sci 24:3–17 Ward JD (1987) The Cenozoic succession in the Kuiseb Val- ley, central Namib Desert. Memoir, Bd. 9. Geological Survey Walker MJC et al (2012) Formal subdivision of the Holocene SWA/Namibia, Windhoek series/epoch: a discussion paper by a working group of INTI- MATE (integration of ice-core, marine and terrestrial records) Ward JD et al (1983) On the antiquity of the Namib. S Afr J Sci and the subcommission on quaternary stratigraphy (interna- 79:175–183 tional commission on stratigraphy). J Quat Sci 27:649–659 Warnecke G (1991) Meteorologie und Umwelt. Springer, Berlin Walker TR (1979) Red color in dune sand. In: McKee ED (Hrsg) Washburn AL (1979) Geocryology. A survey of periglacial pro- A Study of Global Sand Seas. Geological Society Professio- cesses and environments. Arnold, London nal Paper 1052, Washington DC, S 61–81 Washburn AL (1980) Permafrost features as evidence of clima- Wang B et al (2016) Airborne soil organic particles generated tic change. Earth Sci Rev 15:327–392 by precipitation. Nat Geosci 9:433–437 Watson AJ et al (2000) Effect of iron supply on Southern Ocean Wang C et al (2012) Multidecadal covariability of North Atlan- CO2 uptake and implications for glacial atmospheric CO2. tic sea surface temperature, African dust, Sahel rainfall, and Nature 407:730–733 Atlantic hurricanes. J Clim 25:5404–5415 Watson AJ et al (2015) Southern Ocean buoyancy forcing of Wang J et al (2015) Fragility of reconstructed temperature ocean ventilation and glacial atmorpheric CO2. Nat Geosci patterns over the Common Era: Implications for model eva- 8:861–864 luation. Geophys Res Lett 42:7162–7170 Watson JE et al (2010) Chironomid-inferred late-glacial sum- Wang P et al (2011) Linking monsoon systems across timesca- mer air temperatures from Lough Nadourcan, Co. Donegal, les. PAGES News 19(2):86–87 Ireland. J Quat Sci 25:1200–1210 Wang YJ et al (2001) A high-resolution absolute-dated late Webb RS et al (1997) Influence of ocean heat transport on the pleistocene monsoon record from Hulu cave, China. Science climate of the Last Glacial Maximum. Nature 385:695–699 294:2345–2348 Webster D (2002) The fall of the ancient Maya: solving the mys- Wang YJ et al (2005) The Holocene Asian monsoon: links to tery of the Maya collapse. Thames & Hudson, London. solar changes and North Atlantic climate. Science 308:854– 857 Webster JW (2000) Speleothem Evidence of Late Holocene Climate Variation in the Maya Lowlands of Belize, Central Wang YJ et al (2008) Millennial-and orbital-scale changes in America and Archaeological Implications. Unpublished Doc- the East Asian monsoon over the past 224,000 years. Nature toral Dissertation. Department of Geography, University of 451:1090–1093 Georgia, Athens, GA. 233 S Wang X et al (2004) Wet periods in northeastern Brazil over Webster JW et al (2007) Stalagmite evidence from Belize the past 210 kyr linked to distant climate anomalies. Nature indicating significant droughts at the time of Preclassic Aban- 432:740–743 donment, the Maya Hiatus, and the Classic Maya collapse. Wang X et al (2007) Millennial-scale precipitation changes Palaeogeogr Palaeoclimatol Palaeoecol 250:1–17 in southern Brazil over the past 90,000 years. Geophy- Webster PJ, Streten NA (1978) Late Quaternary Ice Age Clima- sical Research Letters 34:L23701, https://doi.org/10.1029/ tes of Tropical Australasia: Interpretations and Reconstruc- 2007GL031149 tions. Quat Res 10:279–309 Wang X et al (2014) A two-fold increase of carbon cycle sensi- Wefer G, Berger WH (2007) Klimageschichte aus der Tiefsee. tivity to tropical temperature variations. Nature 506:212–215 Der Weg vom Treibhaus zum Eiszeitklima. Marum_ROMM Wang X et al (2017) Hydroclimate changes across the Amazon Bibliothek (Verständliche Geowissenschaften), Bremen, S lowlands over the past 45,000 years. Nature 541:204–207 206–217 Wanner H, Ritz S (2011) HOCLAT. A web-based Holocene Cli- Wefer G et al (Hrsg) (2004) The South Atlantic in the late mate Atlas. http://www.oeschger.unibe.ch/research/projects/ quaternary: reconstruction of material budgets and current holocene_atlas/ systems. Springer, Berlin Literatur 731

Wefer G et al (2015) Klimageschichte aus der Tiefsee. Der Weg Westaway KE et al (2007) Age and biostratigraphic significance vom Treibhaus zum Eiszeitklima. In: Wefer G, Schmieder F of the Punung Rainforest Fauna, East Java, Indonesia, and (Hrsg) Expedition Erde. MARUM, S 328–339 implications for Pongo and Homo. J Hum Evol 53:709–717 Wei G et al (2000) Mg/Ca, Sr/Ca and U/Ca ratios of a pori- Weyhenmeyer CE et al (2000) Cool glacial temperatures and tes coral from Sanya Bay, Hainan Island, South China Sea changes in moisture source recorded in Oman groundwaters. and their relationships to sea surface temperature. Palaeogeo- Science 287:842–845 gr Palaeoclimatol Palaeoecol 162:59–74 Weyl R (1956) Eiszeitliche Gletscherspuren in Costa Rica (Mit- Weiers S (1995) Zur Klimatologie des NW-Karakorum und an- telamerika). Zeitschrift Gletscherkd Glazialgeol 3:317–325 grenzender Gebiete. Bonner Geographische Abhandlungen, Bd. 92. Dümmler, Bonn Wheeler D et al (2009) Reconstructing the trajectory of the Au- gust 1680 hurricane from contemporary records. Bull Am Weijers JWH et al (2007) Coupled thermal and hydrological Meteorol Soc 90:971–978 evolution of tropical Africa over the last deglaciation. Science 315:1701–1704 Whiffin T (2002) Plant biogeography of the SE Asian- Australian Region. Adv Geoecology 34:61–82 Weischet W (1990) Das Klima Amazoniens und seine geoöko- logischen Konsequenzen. Berichte Naturforschende Gesell- White F (1983) The vegetation of Africa. A descriptive memoir schaft Freiburg i. Br., Bd. 80, S 59–91 to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. Natural Resources Research Bd. XX. UNESCO, Weischet W (1995) Einführung in die Allgemeine Klimatologie. Paris Teubner, Stuttgart White JWC, Steig EJ (1998) Timing is everything in the game Weischet W (1996) Regionale Klimatologie. Teil 1: Die Neue of the two hemispheres. Nature 394:717–718 Welt (Amerika, Neuseeland, Australien). Teubner, Stuttgart White JWC et al (1994) A high-resolution record of atmospheric Weischet W, Endlicher W (2000) Regionale Klimatologie. CO2 content from carbon isotopes in peat. Nature 367:153– Teil 2: Die Alte Welt (Europa, Afrika, Asien). Teubner, Stutt- 156 gart White SE (1962) Late Pleistocene glacial sequence for the west Weiss H (2001) Prehistoric and early historic West Asian re- side of Iztaccíhuatl, Mexico. Geol Soc Am Bull 7:935–958 sponses to abrupt climate change. Monsoon 3:108 Whitney BS et al (2011) A 45 kyr palaeoclimate record from Weiss H (2016) Global megadrought, societal collapse and re- the lowland interior of tropical South America. Palaeogeogr silience at 4.2–3.9 ka BP across the Mediterranean and west Palaeoclimatol Palaeoecol 307:177–192 Asia. PAGES Mag 24(2):62–63 Whymper E (1892) Travels amongst the great Andes of the Weiss H et al (1993) The genesis and collaps of third millennium Equator. New edition with introduction and photographs by north Mesopotamian civilization. Science 261:995–1004 Loren McIntyre. Gibbs M. Smith, Salt Lake City. Weldeab S et al (2005) Holocene African droughts relate to east- Wigley TML (1981) Climate and paleoclimate: What we can ern equatorial Atlantic cooling. Geology 33:981–984 learn about solar luminosity variations. Sol Phys 74:435–471 Weldeab S et al (2006) Deglacial sea surface temperature and Wikipedia (2016) Solar irradiance. https://en.wikipedia.org/ salinity increase in the western tropical Atlantic in synchrony wiki/Solar_irradiance. Zugegriffen: 2016 with high latitude climate instabilities. Earth Planet Sci Lett 241:699–706 Wikipedia (2018) Albedo. https://en.wikipedia.org/wiki/ Albedo. Zugegriffen: 10.12.2018 Weldeab S et al (2007) 155,000 years of West African monsoon and ocean thermal evolution. Science 316:1303–1307 (and Wikipedia (2018) Homo naledi. https://de.wikipedia.org/wiki/ supporting online material) Homo_naledi. Zugegriffen: 13.12.2018 Welsch W (2003) Die frühe Erschließung der Berge Ekua- Wild M (2012) Enlightening global dimming and brightening. dors und die alpinistischen Unternehmungen Hans Meyers im Bull Am Meteorol Soc 93:27–37 Jahre 1903. In: Brogiato HP (Hrsg) Die Anden. Geographi- Wild M et al (2005) From dimming to brightning: Decadal chan- sche Erforschung und künstlerische Darstellung. 100 Jahre ges in solar radiation at earth’s surface. Science 308:847–850 Andenexpedition von Hans Meyer und Rudolf Reschreiter 1903–2003. Wissenschaftliche Alpenvereinshefte, Bd. 37, S Wilhelm F (1975) Schnee- und Gletscherkunde. De Gruyter, 41–57 Berlin Wendorf F et al (1987) Early domestic cattle in the Eastern Sa- Wilhelmy H (1981) Welt und Umwelt der Maya. Aufstieg und hara. Palaeoecol Africa 18:441–448 Untrgang einer Hochkultur. Piper, München. Wentz FJ et al (2007) How much more rain will global warming Wilkes H et al (2014) Landschaftsentwicklung und Klimawan- bring? Science 317:233–235 del im südlichen Afrika. Syst Erde 4(2):38–45 732 Literatur

Wille M et al (2000) 50 kyr climatic change in the lower- Wolf T (1892) Geografía y geología del Ecuador. Brockhaus, montane vegetation belt: altitudinal vegetation distribution Leipzig (C3/C4 plant competition) and lapse rates in glacial ti- Wolff E (2007) An ice-core scientist wonders what makes the mes. PAGES Symposium, KNAW, Amsterdam, Niederlande, earth run hot and cold. Nature 447:235 03.11.2000 (Abstracts) Williams M (2012) The ~73 ka Toba super-eruption and its im- Wolff E, Brook E (2008) International Partnerships in Ice Core pact: History of a debate. Quat Int 258:19–29 Sciences (IPICS) Steering Committee meeting. PAGES News 16(3):35 Williams MAJ, Nottage J (2006) Impact of extreme rainfall in the central Sudan during 1999 as a partial analogue for re- Wolff E, EPICA Members (2006) European Project for Ice Co- constructing early Holocene prehistoric environments. Quat ring in Antarctica (EPICA). PAGES News 14(1):31–33 Int 150:82–94 Woltering M et al (2011) Late Pleistocene temperature history Williams MAJ et al (2003) New light on the age of the White of Southeast Africa: a TEX86 temperature record from Lake Nile. Geology 31:1001–1004 Malawi. Palaeogeogr Palaeoclimatol Palaeoecol 303:93–102 Williams MAJ et al (2009) Glacial and deglacial climatic pat- Wolff EW et al (2006) Southern Ocean sea-ice extent, produc- terns in Australia and surrounding regions from 35 000 to tivity and iron flux over the past eight glacial cycles. Nature 10 000 years ago reconstructed from terrestrial and near-shore 440:491–496 proxy data. Quat Sci Rev 28:2398–2419 Wood R et al (1999) Changing spatial structure of the thermo- Williams MAJ et al (2010) Late Quaternary floods and droughts haline circulation in response to atmospheric CO2 forcing in in the Nile valley, Sudan: new evidence from optically stimu- a climate model. Nature 399:572–575 lated luminescence and AMS radiocarbon dating. Quat Sci Rev 29:1116–1137 Woodborne S et al (2015) A 1000-year carbon isotope rain- fall proxy record from South Africa baobab trees (Adansonia Williamson CE et al (2009) Sentinels of change. Science diagata L). PLoS ONE. https://doi.org/10.1371/journal.pone. 323:887–888 0124202 Winckler G, Mahowald N (2014) DICE: Dust impact on climate Woodruff JD et al (2009) Exploring variability over the and environment. PAGES Mag 22(2):61 mid-to-late Holocene: evidence of extreme coastal flooding Winkler M et al (2010) Land-based marginal ice cliffs: Focus on from Kamikoshiki, Japan. Quat Sci Rev 28:1774–1785 Kilimanjaro. Erdkunde 64:179–193 Woodruff JD et al (2014) Depositional evidence for the Kami- Winkler S et al (2010) An introduction to mountain glaciers as kaze typhoons and links to changes in typhoon climatology. climate indicators with spatial and temporal diversity. Erd- Geology 43:91–94 kunde 64:97–118 Worden J et al (2007) Importance of rain evaporation and Winton M (2011) Do climate models underestimate the sensiti- continental convection in the tropical water cycle. Nature vity of Northern Hemisphere sea ice cover? J Clim 24:3924– 445:528–532 3934 Wörner G et al (1988) The Nevados de Payachata volcanic re- Wirrmann D, Mourguiart Ph (1995) Late Quaternary spatio- gion (18ıS/69ıW, N. Chile). I. Geological, geochemical and temporal limnological variations in the Altiplano of Bolivia isotopic observations. Bull Volcanol 50:287–303 and Peru. Quat Res 43:344–354 Wörner G et al (2000) Geochronology (40Ar/39Ar, K-Ar and He- Wirrmann D et al (1992) A 20,000 years paleohydrological re- exposure ages) of Cenozoic magmatic rocks from northern cord from Lake Titicaca. In: Dejoux C, Iltis A (Hrsg) Lake Chile (18–22ıS): implications for magmatism and tectonic Titicaca. A synthesis of Limnological knowledge. Kluwer evolution of the central Andes. Revista Geológica De Chile Academic, Dordrecht, S 40–48 27(2):205–240 Wirthmann A (1987) Geomorphologie der Tropen. WBG, Wright J (2001) Making loess-sized quartz silt: data from la- Darmstadt boratory simulation and implications for sediment transport Witze A, Kanipe J (2014) Island of fire: the extraordinary story pathways and the formation of ‘desert’ loess deposits asso- of Laki: the volcano that turned eigthteen’s-century Europe ciated with the Sahara. Quat Int 76/77:7–19 dark. Profile Books, London Wu Z et al (2009) An empirical seasonal prediction mo- Woldstedt P (1958) Das Eiszeitalter. Grundlinien einer Geologie del of the east Asian summer monsoon using ENSO and des Quartärs, Bd 2, 2. Aufl. Enke, Stuttgart NAO. J Geophys Res 114:D18120. https://doi.org/10.1029/ 2009JD011733 Woldstedt P (1961) Das Eiszeitalter. Grundlinien einer Geologie des Quartärs, Bd 1, 3. Aufl. Enke, Stuttgart Wunsch C (2000) Moon, and climate. Nature 405:743–744 Woldstedt P (1965) Das Eiszeitalter. Grundlinien einer Geologie Wunsch C (2006) Abrupt climate change: An alternative view. des Quartärs, Bd 3, 2. Aufl. Enke, Stuttgart Quat Res 65:191–203 Literatur 733

Wyrwoll KH, Miller GH (2001) Initiation of the Australian sum- Yoshida A, Takeuti S (2009) Quantitative reconstruction of pa- mer monsoon 14,000 years ago. Quat Int 83–85:119–128 laeoclimate from pollen profiles in northeastern Japan and the timing of a cold reversal event during the Last Termination. Xoplaki E et al (2011) Editorial: Medieval Climate Anomaly. J Quat Sci 24:1006–1015 PAGES News 19(1):4 Young NE et al (2012) Glacier extent during the Younger Dryas Xu L et al (2010) Timing and style of Late Pleistocene glacia- and 8.2-ka event on Baffin Island, Arctic Canada. Science tion in the Queer Shan, northern Hengduan Mountains in the 337:1330–1333 eastern Tibetan Plateau. J Quat Sci 25:957–966 Zachos JC et al (2008) An early Cenozoic perspective on green- Xu Q et al (2010) The effects of training set selection on the rela- house warming and carbon-cycle dynamics. Nature 451:279– tionship between pollen assemblages and climate parameters: 283 Implications for reconstructing past climate. Palaeogeogr Pa- laeoclimatol Palaeoecol 289:123–133 Zahn R (2009) Beyond the CO2 connection. Nature 460:335– 336 Xu Z et al (2017) Fifteen years of the Chinese Continental Scientific Drilling Program. Scientific Drilling 22:1–18 Zakaib GD (2011) Out of a limb. Nature 476:20–21 Yaalon DH (2000) Down to Earth. Why soil – and soil science Zalasiewicz J et al (2015) When did the Anthropocene begin? – matters. Nature 407:301 A mid-twentieth century boundary level is stratigraphically optimal. Quat Int 383:204–207 Yadava MG, Ramesh R (2005) Monsoon reconstruction from radiocarbon dated tropical Indian speleothems. Holocene Zastrow M (2014) Stalled El Niño poised to resurge. Nature 15:48–59 513:15 Yadava MG et al (2004) Past monsoon rainfall variations in pen- Zawada PK (2000) Slackwater sediments and paleofloods. Their insular India recorded in a 331-year-old speleothem. Holo- significance for Holocene paleoclimatic reconstruction and cene 14(4):517–524 flood prediction. In: Partridge T, Maud RR (Hrsg) The Ceno- coic of Southern Africa. Oxford University Press, New York, Yamaguchi S, Fujita K (2013) Modeling glacier behavior un- S 198–206 der different precipitation Seasonalities. Arct Antarct Alp Res 45:143–152 Zazula GD et al (2004) “Packrats” of Beringia: Paleoecology of small mammal middens in central Yukon. 34th Annual Inter- Yancheva G et al (2007) Influence of the intertropical conver- national Arctic Workshop 2004, Boulder, INSTAAR, 11–13 gence zone on the East Asian monsson. Nature 445:74–77 March 2004 (Abstracts) Yang B et al (2008) Late Holocene monsoonal temperate gla- Zech J et al (2009a) Heinrich I and Younger Dryas glaciation in cier fluctuations on the Tibetan Plateau. Glob Planet Change the Central Andes. AGU Fall Meeting 2009. Abstracts 60:126–140 Zech J et al (2009b) Glacier and climate reconstruction at Tres Yang X et al (2010) Recharge to the inter-dune lakes and Holo- Lagunas, NW Argentina, based on 10Be surface exposure dat- cene climatic changes in the Badain Jaran Desert, western ing and lake sediment analyses. Palaeogeogr Palaeoclimatol China. Quat Res 73:10–19 Palaeoecol 284:180–190 Yasuda Y (2008) Climate change and the origin and develop- Zech R (2012) A late Pleistocene glacial chronology from the ment of rice cultivation in the Yangtze river basin China. Kitschi-Kurumdu Valley, Tien Shan (Kyrgyzstan), based on Ambio Special Rep 14:502–506 10Be surface exposure dating. Quat Res 77:281–288 Yasuda Y et al (2004) Environmental archaeology at the Cheng- Zech R et al (2007a) LGM and Late Glacial glacier advances in toushan site, Hunan Province, China, and implications for the Cordillera Real and Cochabamba (Bolivia) deduced from environmental change and the rise and fall of the Yangtze 10Be surface exposure dating. Clim Past Discuss 3:839–869 River civilization. Quat Int 123–125:149–158 Zech R et al (2007b) Exposure dating of Late Glacial and Yeager SG et al (2015) Predicted slowdown in the rate of Atlan- pre-LGM moraines in the Cordon de Doña Rosa, Northern/- tic sea ice loss. Geophys Res Lett 42. https://doi.org/10.1002/ Central Chile (~ 31ı S). Clim Past 3:1–14 2015GL065364 Zech R et al (2008) Timing of the late Quaternary glaciation in Yeom D-I, Eggleton BJ (2007) Rogue waves surface in light. the Andes from ~ 15 to 40ı S. J Quat Sci 23:635–647 Nature 450:953–954 Zech R et al (2009) Chronologies of the last glacial maximum Yi C et al (2008) Review of Holocene glacial chronologies based and its termination in the Andes (10–55ıS) based on sur- on radiocarbon dating in Tibet and its surrounding mountains. face exposure dating. In: Vimeux F et al (Hrsg) Past climate J Quat Sci 23:533–543 variability in South America and surrounding regions. Devel- opments in Palaeoenvironmental Research, Bd. 14, S 61–87 Yokoyama Y et al (2001) Coupled climate and sea-level changes deduced from Huon Peninsula coral terraces of the last ice Zech W, Hintermaier-Erhard G (2002) Böden der Welt: ein Bild- age. Earth Planet Sci Lett 193:579–587 atlas. Spektrum Akademischer Verlag, Heidelberg 734 Literatur

Zeebe RE, Marchitto TM (2010) Atmospheric and ocean che- Zheng Benxing, Jiao Keqin (1991) Quaternary Glaciations and mistry. Nat Geosci 3:386–387 Periglaciations in the Qinghai-Xizhang (Tibetan) Plateau. IN- QUA Excursion Guidebook, Bd. XI. Chinese Academy of Zerefos CS et al (2014) Further evidence of important en- Science, Beijing vironmental information content in red-to-green ratios as depicted in paintings by great masters. Atmospheric Chem Zielinski GA et al (1996) Potential atmospheric impact of the Phys 14:2987–3015 Toba mega-eruption ~71,000 years ago. Geophys Res Lett 23:837–840 Zeuner F (1952) Dating the past. Methuen, London Zinke J et al (2008) Mayotte coral reveals hydrological changes Zeuske M (2013) Handbuch Geschichte der Sklaverei. Eine in the western Indian Ocean between 1881 and 1994. Geo- Globalgeschichte von den Anfängen bis zur Gegenwart. De phys Res Lett 35:L23707 Gruyter, Berlin Zinke J et al (2009) Western Indian Ocean marine and terrestri- Zhang B et al (2008) Contributions of sandy lands and stony al records of climate variability: a review and new concepts deserts to long-distance dust emission in China and Mongolia on land-ocean interactions since AD 1660. Int J Earth Sci during 2000–2006. Glob Planet Change 60:487–504 98:115–133 Zhang D (Hrsg) (2004) A compendium of Chinese meteorolo- Zöller L, Faust D (2009) Lower latitude loess – Dust transport gical records of the last 3000 years. Jiangsu Education Press, past and present. Quat Int 196:1–3 Nanjing (mit englischer Einführung) Zolitschka B, Pike J (2014) Maximizing the information Zhang D (2005) Sorting Chinese climate records from the 13th yield from annually resolving natural archives. PAGES Mag century BC to 1911 AD and their latest application. PAGES 22(1):4–5 News 13(2):22–23 Zolitschka B et al (Hrsg) (2014) Annual recorders of the past. Zhang D et al (2012) Morphology and dynamics of star dunes PAGES Magazine 22(1):1–29 from numerical modelling. Nat Geosci 5:463–467 Zolitschka B et al (2015) The online Varve Image Portal: A new Zhang P et al (2008) A test of climate, sun, and culture rela- tool for studying annually laminated sediments. PAGES Mag tionships from an 1810-year Chinese cave record. Science 23(1):35 322:940–942 Zonneveld KAF et al (1997) Mechanisms forcing abrupt fluc- Zhang W et al (2014) A detailed East Asian monsoon history tuations of the Indian Ocean summer monsoon during the last surrounding the ‘Mystery Interval’ derived from three Chine- deglaciation. Quat Sci Rev 16:187–201 se speleothem records. Quat Res 82:154–163 Zumbühl HJ (1980) Die Schwankungen des Grindelwaldglet- Zhang X et al (2014) Abrupt glacial climate shifts controlled by schers in den historischen Bild- und Schriftquellen des 12. ice sheet changes. Nature 512:290–294 bis 19. Jahrhunderts. Birkhäuser, Basel Zhao J et al (2009) High-precision U-series dating of very young Zumbühl HJ, Holzhauser H (1988) Alpengletscher in der Klei- cyclone-transported coral reef blocks from Heron and Wi- nen Eiszeit. Die Alp 64:129–322 stari reefs, southern Great Barrier Reef, Australia. Quat Int 195:122–127 Zyrkowski J (2008) It’s the sun, not your SUV. St Augustine’s Press, South Bend Zhao K et al (2015) An annually-resolved record of the Asian Summer Monsoon from Dongge Cave, China for the past 1,200 years. Quat Sci Rev. https://doi.org/10.1016/j. quascirev.2015.05.030 Sachverzeichnis

0 ıC-Isotherme, 267 Stalagmit, 46 Aerosole, 45, 46, 50, 51, 55, 56, 61, 82, 87, 202, 3,8 ka BP, 352 18O/16O-Verhältnis, 193 204–206, 636, 641 4kaBP,515 Sauerstoff-Isotopen-Analyse, 15 Arktis, 56, 57 4kaevent,495 •18O-Daten, 194, 267, 572 globale Konzentration, 51 4,2–4,0 ka-event, 542, 587 •18O-Kurve, 72, 130, 195, 214, 388, 558, 628 mineralische, 56, 130 4,2–4 ka BP-Episode, 528 •18O-record, 559 optische Eigenschaften, 50 4,2 ka, 624–626 Deglaziation, 30 Quartär, 47 4,2 ka BP, 195, 352 •18O-Werte, 190, 234, 258, 281, 293 Aerosolemissionen, 202 4,2 ka-Ereignis, 27, 651 der Arktis, 293 Aerosol-forcing, 59 4,2 ka-event, 43, 319, 627, 646 des Grundwassers, 490 Aerosolfracht 4,4–4,0 ka BP, 585 21Ne, 190 globale, 131 4,5–4 14Cka,496 26Al, 133, 190, 199 Aerosols and Climate, 56 4kaBP,518, 521 36Cl, 190 Aerosol-Wolken-Wechselwirkungen, 48 8,2 ka-Ereignis, 27, 28, 148, 161, 168, 335, 336, 36Cl-Alter, 413 African Humid Period (AHP), 45, 118, 381, 382, 339, 449, 506, 509, 518, 521, 542, 587, 137Cs-Daten, 146 403, 441, 496, 500, 508, 510, 515, 516, 624, 645 230Th/U-Daten, 393 527 8,2 ka-event, 30, 202, 237, 329, 331, 336, 353, African Pollen Database (APD), 156 403, 442, 495, 496, 515, 525, 526, 568, Afrika, 6, 78, 152, 623 570, 585 A Klima, 370 19.000–23.000-Jahr-Zyklus, 175, 642 AABR, 104, 265 Nordwestafrika, 520 19–23 ka-Zyklus, 71, 74 AABR-Methoden, 267 südliches, 98, 156, 165 22.000-Präzessionszyklus, 233 AAR, 104, 265 Agulhas Current, 481 23-ka-Präzessions-Sonnenzyklen, 253 AAR-Methoden, 267 Agulhas leakage, 306 40 ka-Zyklus, 642 Abfluss, 38 Agulhas-Strom, 66, 75 41.000-Jahr-Zyklus, 71, 73, 175 fluvialer, 58 Agung, 170, 318 41 ka-Zyklus, 130, 550, 557 Abflussgeschwindigkeiten Ägypten, 6 74KL, 566 Gletscher, 103 ägyptische Oasen-Depressionen, 449 100.000-Jahr-Zyklus, 175 Abflussraten, 590 AHP, 382, 450, 515, 516, 520, 526, 566, 624, 100 ka-Zyklus, 71, 73 Abgrenzung der Tropen, 92, 590 628, 654, siehe auch African Humid 100 ka-Eiszeit-Zyklus, 376 Abkühlung, 114 Period (AHP) 100 ka-Zyklus, 17, 130, 394, 396, 550, 642 neoglaziale, 306, 307 AHP-Isohyete, 521 400.000-Jahr-Rhythmen, 403 Abrocoma, 297 AHP-ITCZ, 518 400.000-Jahr-Signal abrupt paleoclimatic events, 495 Ajusco, 323, 341, 343 400 ka-Signal, 71 abrupte Klimaereignisse, 356 Akkadisches Reich, 625 404.000-Jahr-Zyklus, 73 Abschmelzen der tropischen Gletscher, 100, 108 Akkumulationsformen 3 He, 190 Absorption glaziäre, 106 10 Be, 51, 77, 78, 104, 106, 133, 190, 194 atmosphärische, 42 Akkumulationsratenmodell, 106 10 Be-Daten, 199, 293, 409, 415, 558, 564 Abtauen des Permafrosts, 113 Aktivitätszyklus 10 Be-Isotope Abtragung, 138 Sonne, 32 kosmogene, 77 Abtragungsfläche, 385, 386 Aktualitätsprinzip, 650 12 13 C/ C-Verhältnis, 36 Abtragungsprozesse, 437 Albedo, 45, 52, 66, 81, 130, 560, 645 •13 C, 187 Acari, 166 Definition, 69 •13 C-Daten, 163 Acheuléen, 134, 618 Albedo im holozänen Temperaturmaximum, 69 •13 C-Werte, 184, 438 Ackerbau, 131, 633 Albedobedingungen, 636 14 C, 77, 78, 104, 108, 190, 194, 294, 366 ACR (Antarctic Cold Reversal), 24, 25, 27, 236, Albedo-Messprogramme, 69 14 C-Alter, 193, 226, 287, 421 277, 286–288, 291, 293, 318, 443, 500, Albedo-Verhältnisse der Eiszeiten, 69 14 C-Altersbestimmung, 156, 197, 329 502, 503, 505, 506, 524, 580, 595, 596, Albert-See, 410 14 C-Daten, 146, 200, 293, 412, 416 599, 612, 645 Alcacocha-Tal, 248, 260, 266 aus der Namib-Wüste, 483 Südhemisphäre, 25 Alchornea sp., 155 14 C-Datierung, 567 ACR-Einfluss, 286 Algorithmus, 208 14 C-fingerprint, 51 active layer (Auftauboden), 112 Aljojuca, 144 14 C-Isotope Adansonia digitata, 377 Alkenone, 181, 350, 379 kosmogene, 77 aerosol optical thickness, 51 alkenone data, 345 14 U K C-Kalibrierung, 190 Aerosol-Abkühlungseffekt, 204 alkenone unsaturation index ( 370 ), 181 •18 O, 87, 148, 187, 194, 260, 345 Aerosolbelastung, 57, 58, 94, 150

735 736 Sachverzeichnis

allgemeine Zirkulation der Atmosphäre, 45, 318, Angola-Benguela-Front (ABF), 373, 383, 398, asiatischer Sommermonsun siehe auch Zirkulation der Atmosphäre 458, 481, 492, 494, 503, 540 ASM, 43 Alter Antarctic Cold Reversal, 191, 193, 196, 259, Asien, 7, 544, 620 glaziäre Ablagerung, 111 262, 496, 500, siehe ACR (Antarctic Cold Asteraceae, 378 zu alte und zu junge, 243 Reversal) asynchrone Temperaturänderungen, 500 Alter/Tiefe-Diagramm, 193 Antarktis, 20, 81, 101, 106, 152, 631 Asynchronität, 554 Altersangaben Antarktika, 450 Atacama-Wüste, 213, 627, 636 14C, AMS 14C, SED, 260 Eismitte, 102 Äthiopien, 370, 403, 449, 496, 498 Zuverlässigkeit, 245 Ostantarktis, 20 Atlantic Meridional Oscillation, siehe AMO Altersbestimmung, 110, 190, 196, 199, 503, 636 anthropogene Aerosole, 187 Atlantic Multidecadal Oscillation, 34 mittels 14C, AMS 14C, TL, OSL und SED, anthropogene Effekte, 88 atlantische meridionale overturning-Zirkulation, 242 anthropogene Einwirkungen siehe AMOC quartärer Klimaarchive, 190 Klima, 64 atmosperic brown clouds Revision, 466 anthropogener Einfluss, 157, 605 ABC, 60 Alterscluster, 479 anthropogener Einfluss auf die Umwelt, 349 Atmosphäre, 40 Altersermittlung anthropogenes forcing, 639, 651, 654 allgemeine Zirkulation, 43, 44 Datierung, 108 anthropogenic land cover change, 633 CO2-Gehalt, 75 Altersmittelwert, 197, 199 Anthropozän, 29, 650 Definition, 40 Altersmodell, 105, 194, 197, 199, 397, 508, 583 Definition, 17, 24 Staubgehalt, 34 Altersmodellierung, 195 Antillen, 346 Trübung, 52 Altes Königreich von Ägypten, 625 Antipassat, 370 Wechselwirkungen zwischen der Altiplano, 106, 217, 258, 271, 276, 313, 314, Antisana, 90, 240 Sonnenstrahlung und Atmosphäre, 43 316, 561 Antisana/Papallacta-Tal, 240 Zusammensetzung, 71, 81 Altiplano-Moränen, 245, 252 AOD, 48 Atmosphäre-Ozean-gekoppeltes globales Altiplano-Paläoseespiegel, 258 äolische Paläoklimaarchive, 474 Klimamodell, 202 Altiplano-Seespiegelstände, 251 äolische Prozesse, 120, 428, 475 atmosphärische Modelle, 39 Altithermal, 281 äolische Sedimente, 476 atmosphärische Zirkulation, 92, 93, 130, 131, Altos de Cuchumatanes, 339, 342 äolische Systeme, 124 204, 322, 381, 383, 517, 602, 627 Amazonas, 140, 178, 235 äolischer Formenschatz, 120 über Südamerika, 258 Amazonasbecken, 131, 241, 316, 433 äolischer Transport, 378 atmosphärischer Staub, 281 Amazonasgebiet, 210, 296 AOT, 51 Atmospheric General Circulation Model, 86 Amazonaskegel, 306 äquatoriale Tiefs, 370 Atoromachuma, 215, 308 Amazonasregenwald, 295, 651 Äquatorial-Ostafrika, 269 Atoromachuma-Gletscher, 309 Amazonas-Savannenwald-Biom, 283 Arabien, 118, 449 Auftriebswasser, 68 Amazonien, 35, 63, 106, 213, 220, 224, 231, Südarabien, 650 Auob, 427, 475 281, 294, 313, 633 Arabische Halbinsel, 389, 390, 449, 566 außertropische Westerlies, 332 eiszeitliche Aridität, 222 Arabische See, 47 außertropische Zyklonen, 322 Feuchtigkeit, 253 Arabisches Meer, 454, 497, 544, 560, 572, 573, Aussterben, 153, 165, 623 Niederschlagsverhältnisse während des 580 Australien, 8, 146, 152, 159, 165, 187, 590, 596, LGM, 221 Arafurasee, 545 620, 623 östliches, 218 Araguaia River, 233 menschliche Einwanderung, 579 westliches, 218 Araukarien-Wälder, 578 Werkzeugtechnologie, 622 amazonisches Regenwald-Ökosystem, 230 Arceuthobium-Pollen, 328 Australopithecinen, 166 Ameise, 133, 138 Archaea, 37, 176 Auswanderung, 618 amerikanische Kordilleren, 147, 148 Archiv Aminosäure-Racemisierungs-Datierung, 190 marin, glazial und terrestrisch, 71 B Ammonium des Eiskerns, 316 archivalische Daten, 172 Ba/Ca, 181 AMO, 34, 190, 307 archivalische Quellen, 532, 535, 541 Babuyan, 170 AMOC, 34, 35, 78, 106, 306, 336, 337, 347, Arctica islandica, 186 Bacteria, 176 585, 643 Argon, 40 Bahr el Ghazal, 496, 515 AMOC-Intensität, 350 Argon-Argon-Datierung, 190 Bakterien, 37 Amspoort, 537 Aricota-See, 297 Bali, 547 Analyse aride Diagonale, 102, 104, 108, 120, 242, 274, Bananal-Becken, 229 chemische, geochemische, 146 306 Bandasee, 544, 578 Anbauflächen Aridifizierung, 527, 532, 534 Bangladesch, 144 Ausweitung, 652 Aridisierungstrend, 639 Bantu question, 627 Anden, 146, 220, 354, 411, 569, 570, 636 Aridität, 98, 102, 175, 228, 282, 283, 306, 311, Bantu-Völkerwanderung, 510 Gletscher, 100, 210, 319 374, 376, 380, 383, 385, 394, 427, 431, Baobab, 534, 539 Südamerika, 106 435, 438, 439, 441, 509, 596, 605, 625 Bar el Ghazal, 519 südamerikanische, 102 im ausgehenden LGM, 443 Barchan-Dünen, 118, 519 Andenbergwald, 131 im LGM, 228, 259, 396, 406, 431, 434, 449 Barombi Mbo, 438, 441, 510 Änderungen der Seespiegel, 439 LGM-zeitliche, 446, 447 Barro-Boden, 323, 325 Andosol, 132, 325, 329 Ariditäts-Humiditäts-Wechsel, 383 Baumgrenze, 103, 157, 354, 439 Andosol-Bildung, 138, 349 Ariditätsindex, 98 Baumring, 77, 96, 98, 100, 159, 170, 316, 317 Andosol-Bodenbildung, 356 Arktis, 81 Baumringanalyse, 157, 540 Angkor-Dürre, 627 Artenreichtum, 227 Baumringchronologie, 157, 159, 161, 172, 175, Angola, 455 asiatischer Monsun, 78 314, siehe auch Dendrochronologie Angola Current, 481 Intensität, 293 Baumring-Daten, 194 Sachverzeichnis 737

Baumring-Temperatur-Rekonstruktion, 601 als Paläoklimaarchiv, 133 Burundi, 168 Baumring-Wachstums-Modell, 157 fossiler, 131 Büßerschnee, 105 des Nevado de Colima, 356 Mikrobiologie, 133 Byrd Station, 259 bedded slope deposits, 241, 244, 247, 250, 252, tropischer, 132 Byrd-Gletscher (Antarktis), 206 254, 262, 267, 409 Umweltbedingung, 131 Belize, 150 Boden/Lufttemperatur, 163 C Benguela, 126 Bodenabtrag, 280 C3/C4-Pflanzen, 157 Benguela Current, 398 Bodenbakterien, 439 C3/C4-Verhältnis, 153, 154 Benguela-SST, 539 Bodenbildung, 106, 131, 175, 325, 403, 422, C3-Pflanzen, 153, 154, 282 Benguela-Strom, 32, 66, 122, 398, 481, 527, 424, 426, 434, 526, 527, 550 C3-Vegetation, 436 538, 539 Bodenbildungsphasen, 431 C4-Grasland, 550 Benguela-Upwelling, 385 bodenbiologische Gesellschaften von C4-Pflanzen, 154, 282, 358, 384, 390, 481 Benthos, 176 Organismen, 140 C4-Vegetation, 381, 436, 440, 441 Bergsturz, 107, 108, 110, 111, 246, 297 Boden-Chronosequenzen, 325 CAB (Congo Air Boundary), 373, 527 Bergwind, 122, 126, 399 Bodenentwicklung, 300 Ca-Gehalt, 395 Beringia, 620, 621 Bodenerosion, 175 Calcalcocha, 248, 266 Besiedlung, 298, 602 Bodenerosionsprozesse, 360 Calcrete, 133, 134, 417, 421, 422, 433, 465, 550, Amerikas, 168 Bodenfeuchte, 131 592 Geschichte, 135 Boden-food web, 138 Caliche, 133, 325 Bevölkerungskollaps, 355, 361 Bodenfrostaktivität, 96 Cangaghua, 6, 218, 219, 323 Bevölkerungswachstum, 652 Bodentemperatur, 163 Caprivi, 464 Bewässerung, 534 Bodentiere, 140 Carajas, 224, 229 Bewölkung, 69, 107, 375 Bodenwasser, 39 Carbonatlösung, 376 Bewuchs, 300 Bogotá, 156 Cariaco, 46, 47, 49, 181, 272, 280, 281, 283, Bhar-el-Ghazal, 453 Bohrkern 285, 321, 324, 333, 343, 344, 348, 350, Bhutan, 107, 545 Auswahl der Bohrstellen, 181, 184 355, 358, 359, 365, 366, 628, 629 Biafo-Gletscher, 568 Bohrtechnik, 182 Sedimente, 335 Bibliothek Palafoxiana, 640 mariner, 122, 126, 492 Carnivore, 163 BIG DATA, 208 Bohrloch-Lokalitäten, 152 Cayambe, 170, 240 Big Island, 606 Bohrlochtemperatur, 151, 601 Ccarhuaraso, 273, 276 Biochronologie, 153 Bolivien, 85, 96, 101, 102, 108, 111, 115, 117, CCSM3 (Community Climate System model Biodiversität, 90, 231, 469, 620 199, 213, 215, 237, 242, 300, 311, 316, version 3), 203 Biogeographie, 94 353, 567 Cd/Ca, 181 biologische Diversität, 227 Glazialchronologie, 242 Verhältnis, 339 biologische Pumpe, 68 Gletscher, 5 Celebessee, 544 der Ozeane, 65 LGM-Klimarekonstruktion, 254 Cerrado, 229 Biomarker, 146, 147, 159, 163, 285, 379, 399, Bølling-Allerød, 251, 253, 559 Vegetation, 224 445 Deglaziation, 24 Cerro Aracar, 271, 273 als Klimaarchiv, 159 Termination I, 25 Cerro Azul, 170 Biomarkerproxy, 163, 441 bomb spike-Kalibrierung, 104 Cerro Hudson, 170 Biomasse, 138 Bonampak, 359 CH4, 102, 104, 196, 632 Produktion, 177 Bond-Zyklus, 32, 176, 285, 338 CH4-Daten, 23 Verbrennung, 55, 56, 58 Borneo, 7, 106, 151, 159, 178, 502, 546, 547, CH4-Schwankungen, 82 Biome 580 Chaco, 228, 295 6ka,68 Speläothem, 502 Chari-Flusssystem, 515 Biomrekonstruktion, 596 Stalagmiten-•18O-records, 585 Charquini-Süd-Gletscher, 308, 310, 311 Eiszeit, 68 Bortensander, 108, 110, 554 Chesapeake Bay-Impakt, 86 Biomineralisation, 186 Bosumtwi, 153, 453 Chevrons, 126, 127 Biomineralisationsforschung, 153 Boteti, 464 Formen, 188 Biosphäre, 60, 62 Botletle, 429, 467, 468 Chew Bahir, 500 Biostratigraphie, 153 Botletle-Schlucht, 467 Chichancanab-See, 363, 366 Bioturbation, 133, 148, 170, 425, 463 Botswana, 118 Chichén Itzá, 359, 365 bipolare Klimawippe, 21, 84, 191, 645 Botuverá, 280 Chicxulub-Impakt, 17, 86 Bismarck-See, 544 Botuverá-Höhle, 151, 234 Chile, 267 BIT-Index, 523, 536 Braamhoek, 528 Chimborazo, 105, 172, 235, 240, 241, 246 BJ8-03-31MCA, 601 Brahmaputra, 567 Ecuador, 12 Bjerknes-Feedback, 36 branched GDGT, 163 Chimborazo-Carihuarazo-Vulkanmassiv, 239 Black carbon, 205 Brasilien, 133, 140, 148, 151, 224, 520 China, 55, 60, 129, 151, 224, 259 Aerosole, 56 NE-Brasilien, 313 Chinampas-Anbau, 652 black/brown carbon (BC), 58 Nordostbrasilien, 223 chinesischer Kulturwandel, 632 Blattwachs (leaf wax), 159, 181, 441 Südbrasilien, 222 Chironomidae, 165 Blockgletscher, 114, 200, 237, 241, 271, 273, Brewer-Dobson-Zirkulation, 36 Chironomid-basierte 277, 332, 439 Bristlecone pine, 159, 161 Temperaturrekonstruktionen, 168 Glacier-derived rock glaciers, 103 brown clouds, 55 Chirripó, 339, 341 talus-derived rock glaciers, 103 browser, 166, 574 Chlorophyll, 66 Bodélé, 515 Brunhes/Matuyama (B/M)-Grenze, 130 Konzentrationen, 68 Bodélé-Depression, 60, 449 Brunhes-Epoche, 394 Chobe, 377, 429, 464, 529, 624 Boden, 94, 131, 169, 407 Burdekin, 600, 602 Choquelimpie, 274 738 Sachverzeichnis

Choqueyapu-Vergletscherung, 246 Coleoptera, 166 Moräne, 106 Chronologie, 252, 287, 331, 393, 457, 464, 466 Collpa-Tal, 261, 264 Permafrost, 113 der Altiplano-Paläoseen, 258 Common Era, CE, 51, 204 von Gletscherbewegungen, 218 der Dünenaktivitätsphasen, 426 Computermodelle, 80 Datierungsmethoden, 190, 191, 403 der Extinktion, 623 Computermodellierungen, 88 Datierungsprobleme der Moränen, 417 der quartären Entwicklung der Sahara, 402 Computersimulationen, 376 Dauerfrostboden, 112 des letzten glazialen Zyklus, 190 Congo Air Boundary, siehe CAB (Congo Air de Vries-Zyklus, 78 Chronostratigraphie, 242, 252, 261, 263, 264, Boundary) Dead Tree Vlei, 531 388, 407, 461 Conquista, 296 Dead Vlei, 418 der äolischen Bildungen, 596 Consuelo, 280 debris-flow-Prozesse, 510 der tropischen peruanischen Anden, 261 conveyor belt, 34, 43, 84 Deception Island, 170 der Vergletscherungen, 498 Ozean, 33 Deckschichten, 239 Chuquiananta, 273, 277 Cooper Creek, 590, 592 Deep Space Climate Observatory (DSCOVR), C-Isotopenverhältnisse Corbassièregletscher, 108 69 der n-Alkane des Wachses der Cordillera Apolobamba, 108 Deglacial Climate Reversal (DCR), 25 Pflanzenblätter, 436 Cordillera Blanca, 105, 245, 299, 307, 310 Deglaziation, 23, 29, 35, 36, 84, 106, 118, 259, Clay Castle Silts, 485 Cordillera de Cocuy, 288 261, 269, 276, 283, 292, 337, 344, 346, CLIMAP Project Members, 82, 85, 107, 212, Cordillera de Mérida, 265, 273 450 220, 234, 444 Cordillera de Talamanca, 338, 341 Antarktis, 21 CLIMAP-LGM-Rekonstruktion, 281 Cordillera Huayhuash, 291–293 CO2-Änderungen, 16 CLIMAP-Rekonstruktion, 85 Cordillera Neovolcánica, 321, 336 Pleistocene/Holocene Transition, CLIMAP-SST-Differenz, 345 Cordillera Quimsa Cruz, 101, 105, 108, 309 Termination I (T I), 17 CLIMAP-SSTs, 445 Cordillera Real, 220, 309 Termination I, 21 Climate Field Reconstructions (CFRs), 204 Glazialstratigraphie, 251 Deglaziationsdatierung, 200 climate forcing, 79, 87 Cordillera Real, Bolivien, 247 Deglaziationsphasen, 74 anthropogen, 24 Cordillera Vilcabamba, 286, 297 Deglaziationszeit, 21 Climatological Database for the World’s Oceans, Cordillera Vilcanota, 261, 262, 268 Dendrochronologie, 157, 567, siehe auch 172 Coropuna, 264, 269, 286 Baumringchronologie CLIMBER-Modell, 5 Coropuna-Vulkan, 291 dendrochronologische Daten, 316, 353, 569 CLOUD-Experiment, 641 Coseguina, 170 dendrochronologisches Prinzip, 159 clustered dendritic dunes, 424 Costa Rica, 267, 343 dendroklimatische Daten, 355 CMIP5-Modelle, 184, 201, 206–208 LGM-ELA-Depression, 340 dendroklimatische Forschung in den Tropen, CO2, 12, 24, 34, 36, 38, 40, 46, 49, 56, 60, 62, Cotopaxi, 235, 236, 240 159 86, 87, 102, 104, 106, 113, 131, 133, 179, coupled General Circulation Models (GCM), 38 Dendroklimatologie, 157 201, 632, 639, 641 Crescent Island Crater, 532, 535 Denisovan, 620, 622 Absenkung, 654 critical zone, 131 Depression der ELA, 85, 234, 242 Änderung, 81 Croûte calcaire, 133 Depression der oberen Waldgrenze, 85 Anstieg, 161 Cryptotephren, 170 Depression der SSTs, 584 Anstieg nach dem LGM, 82 Cuando, 429, 430 De-Rif-Daten, 506, 509 Daten, 23 Cuchumatanes, 341 De-Rif-hyrax-midden, 506, 527 Deglaziation, 23, 30 Cueva del Diamante, 218, 280 Desaguadero, 216, 217, 254 Düngung, 157 Curacoa-Insel, 603 Desert Series, 536, 537 Eisbohrkerne, 18 CWP (Climate Warm Period, Postindustrielle Deuterium, 39, 87 Emission, 160 Erwärmungsphase), 585 Diatomeen, 37, 156, 179, 321, 379, 395, 402, Freisetzung, 118 Cyanobakterium, 176 532 Gehalt, 179, 204 Cyperaceae, 378 Süßwasser-, 376, 379 Haushalt, 16, 36, 84, 87, 130, 181, 633 Dinocyst, 181, 379, 503 Klimasensitivität, 81 D Dinoflagellat, 37, 179, 181 Konzentration, 235, 398 •D von Blattwachs, 163 Diprotodon optatum, 592 Kreislauf, 38, 131, 140 D/O, 31, 32 Diversifikationsprozess, 228 Ozean, 65 Ereignisse, 18, 192, 216 Diversität der Pollen-Taxa, 349 Partialdruck, 85 Event, 20, 129, 176, 196, 285 Djebel Meidob, 497 Photosynthese, 68 Zyklus, 21, 47, 558, 646 DNA, 168 Quelle, 118 Dakhla-Becken, 449 aDNA-Forschung, 169 Senke, 118, 202 Dalton-Minimum, 48, 78 Daten, 622 Speicherung, 161, 218 Dammgletscher, 111 Forschung, 618 Zyklus, 576 Dante Cave, 511, 528 Dome C, Antarktis, 260 CO2atm, 106 Dark Ages Cold Period, 307 Dome Fuji-Eiskern, 79, 445 Gehalt, 441 Darling-Murray-Flusssystem, 594 Dongge-Höhle, 49, 151, 234, 559, 560, 572, Konzentrationen, 643 Darwin’sches Modell, 184 573, 585 Kurve, 396 data assimilation methods, 206 record, 445 Datenbank Ozean, 34 Reduzierung während der Glaziale, 131 Käfer, 168 Dromaius-Eierschalen, 595 Coccolithophoren, 179, 181 Datierung, 96, 113, 132, 197, 385, 458 Drotsky-Höhle, 148, 463, 464, 511 Cochabamba, 254 der Klimaschwankungen, 285 , 564 Cocoliztli-Epidemien, 361 der Moränen, 239 Düne, 98, 120, 137, 284, 411, 421, 457, 471, 479 Coipasa, 253, 276, 316 des LGM mit SED, 249 Alab, 120 Cold Air Cave, 151, 502, 527, 532 mariner Bohrkerne, 193 als Paläoklimaarchive, 424 Sachverzeichnis 739

Barchan, 121 Einfluss der Menschheit, 94, 142, 169, 296, 636 El Niño, VII, 35, 36, 43, 75, 80, 84, 142, 172, Draa, 120 Einfluss der nordatlantischen 175, 185, 188, 203, 213, 314, 362, 538, Längsdüne, 120 Klimaschwankungen, 542 550, 654 linear dune, 120 Einfluss der Sonne auf das irdische Klima El Niño-Ereignisse, 315 Lineardüne, 120 climate forcing, 78 historische, 314 Longitudinaldüne, 120, 121 Einstrahlung, 75 El Niño-Periodizität, 314 Namib, 122 Einwanderung, 621 ELA, 103, 104, 108, 115, 118, 237, 332, 338, OSL-Alter, 122 nach Australien, 622 343, 344, 409, 561, 580, 608, 609, 611 paläoklimatische Interpretation, 137 Einwanderungsgeschichte, 575 Absenkung, 439 Profil, 552 Einwanderungswellen der Hominini, 620 Sensivität, 104 Riesendüne, 121 Eisabfluss, 206 ELA-Depression, 264, 336, 339, 410, 584 seif dune, 120 Eisausdehnung, 106 ELA-Rekonstruktionen, 254, 264, 282, 339, Sterndüne, 121 Eisbergbildung, 150 411, 417 Transverse Düne, 121 Eisbergdrift, 175 für das LGM, 266 Wanderung, 422 Eisberge, 350 elevation-dependent warming (EDW), 45 dune over-washing, 426, 430 Eisbewegungsrichtung, 106 El’gygytgyn-Seesedimente, 644 Dünenaktivitätsindix, 479 Eisbohrkern, 18, 20, 29, 74, 77, 82, 87, 104, 110, Eltanin-Impakt, 86 Dünenalter, 536 160, 194, 196, 257, 316, 638 Eltanin-Megatsunami, 14 Dünenaufbau, 423, 425 •18O-Werte, 316 Emiliania huxleyi, 179, 181 Dünenbildung, 96, 389, 390, 458, 475, 478, 490, Anden, 104 Emu, 595 533 Antarktis, 20 Enamel, 625 Dünenbildungsphasen, 422, 424, 425, 431, 526, Byrd, 339 Enamelum/Zahnschmelz, 153 550, 594, 595 Daten, 150, 175, 194 End member modelling, 382 Dünengebiete des südlichen Afrika, 418 Datierung, 104 Endsee, 413 Dünengenerationen, 422, 427 des Sajama, 254 Energiehaushalt, 81 Dünengenese, 121 GRIP, 339 globaler, 40, 41, 45, 71 Lineardüne, 121 Grönland-, 348 Ennedi, 516 Dünenkörper, 124 ice core records, Eiskern-records, 18 ENSO Dünenmobilität, 401 Moräne, 237, 238 Aktivität, 307 Dünenmuster, 120, 121 Tropen, 29 Chronologien, 313 Dünensysteme, 280, 376 Eis-Chronologie, 106 Ereignisse, 172 als Paläoklimaarchiv, 124 Eisen, 335 Intensität, 315 Duricrust, 133, 134, 361, 403, 636 Düngung, 130 Oszillationen, 315 paläoklimatische Deutung, 133 Düngung der Meere, 68 Phänomen, 311 Duripan, 323 Kreislauf, 68 Signal, 314 Dürre, 41, 191, 356, 357, 359, 360, 366, 532, Eisflussmodell, 87, 104 Verhalten im LGM, 606 535, 536, 539, 628, 631 eisfreier Korridor, 621 ENSO (El Niño Southern Oscillation), 35, 43, Dürreepisoden, 354 Eiskeilbildung, 113 62, 78, 88, 105, 157, 175, 213, 218, 224, Dürreperiode, 157, 358, 360, 625 Eisschild, 84, 98 306, 352, 570, 598–600, 605, 646 Dürrezeiten, 365 antarktischer, 104 Entwaldung, 38 Dye 3, Grönland, 260 Eisstausee, 237, 336, 645 Entwicklung der Rohstoffe, 195 Eisvolumen Eozän E Antarktis, 101 Eiszeit, 70 Early-Mid-Holocene Dryness, 285 auf der Erde, 641 EPICA, 20, 27, 104, 126, 130, 131, 170, 442, Earth Observing System (EOS), 52 Gebirgsgletscher, 101 443, 511, 585, 645 Earth System Models, 131 Grönland, 101 Bohrkern, 216 Easterly Waves, 518 Eiszeit, 14, 40, 56, 71, 309, 317 Epidemien, 357 Ecuador, 85, 90, 105, 110, 117, 170, 172, 213, Energiehaushalt, 40 equilibrium climate state, 641 235, 237, 286, 291, 311, 585, 587 Kleine, siehe Kleine Eiszeit equilibrium line altitude, siehe ELA Glazialchronologie, 239 LGM, 47 Equus-Höhle, 491, 528, 529 Glazialstratigraphie, 240, 241 präquartär, 14 Erazo-Profil, 227 Gletscher, 5 Quartär, 14 Erdachse Kleine Eiszeit, 7 Eiszeit (Würm, Weichsel, Wisconsin), 17 Schiefe, 641 Edelgasanalysen, 281 Eiszeitalter, Ursache, 86 Erdbahnelemente, 71, 86, 306, 641 Edelgasbestimmung, 148 Eiszeitbereitschaft, 641 Erdbahngeometrie, 70 Edelgas-Paläotemperatur, 85 Eiszeitenende, 71 Erdbahnparameter, 81 Edelgas-Temperatur, 148 eiszeitliche Aridität Amazoniens, 222 Erdbeben, 106 Edelweiß-Moräne, 120, 219, 240, 243, 259, 271, Eiszeitzyklus, 75, 104 Erderwärmung 274, 277, 282 Ekliptik, 73 Reduzierung, 651 Edelweiß-Muster, 271 Ekliptikschiefe, 71, 72, 74, 75 Erdmagnetfeld, 104 Edelweiß-Vulkane, 276 Holozän, 75 Erdrutsche, 250 Edentaten, 283 Eksteenfontein, 500, 501, 503, 505, 506 Erdsystem, 205 Edeyen Ubari, 118 ektropischer Einfluss, 555 Erdsystemmodelle, 201, 208, siehe auch Modell Edward-See, 410 Ekuma, 471, 473 Erongo, 377 Eem, 20, 152, 204, 380, 427, 618 El Año del Hambre, 355 Erosion North Greenland Eemian (NEEM) ice El Chichón, 57, 170, 318 zoogene, 471, 473 drilling Projekt, 17 El Condor Cave, 218 Erosionsformen Temperatur, 18 glaziäre, 106 740 Sachverzeichnis

Erosionsmuster, 271 Fischfossilien, 534 gematched, 191, 559, siehe auch matching Erosionsphasen, 556 Fischgesellschaften, 538 General Circulation Model (GCM), 506, siehe Erosionsraten, 245, 271 Flach- und Schelfmeere, 84 auch Modell Eruptionen, 276 Flechten, 133, 289, 307 genetic bottleneck, 578 Erwärmung, 88, 114 flip-flop-Mechanismus, 202 Genyornis newtoni, 595 Antarktis, 496 floating chronology, 146 Geoarchive, 96 Arktis, 56, 58 floodout deposits, 536 geologisch-geomorphologische, 281 Erde, 46 Flora, 153 palynologische, 281 Europa, 56 Flores, 547, 573, 585, 587, 622 zeitlich hoch auflösende, 96 global warming, 117 Florisbad, 528 GeoB 1023, 458 Klimawandel, globaler Temperaturanstieg, Flowstone, 229, 385, 386, 399, 401, 463 GeoB1023, 456, 527 33 Flussablagerung als Geoarchiv, 140 GeoB1023-5, 501, 503 nach dem LGM, 455 Flusseinzugsgebiete, 232, 381 GeoB1025, 428 Etoscha, 418, 473, 511, 529 Flusspferd, 520 GeoB1711, 385, 503 als Erosionsform, 470 Flusssystem, 379 GeoB1711-4, 504 Entstehung, 471 Flussterrassen, 141, 230, 376, 427, 432, 550, 572 GeoB4501, 538, 539 Pfanne, 464, 470–472, 474 Flussterrassen-System, 140 GeoB4502, 538 Eukaryoten, 37 Flutereignisse, 602 GeoB6518, 433, 443 European Lake Drilling Programme, 143 fluviale Ablagerung, 142, 527 GeoB9307, 446, 450, 498, 527 eustatische Meeresspiegelschwankungen, 71, 84 fluviale Aktivität vor (und in) dem Geochemie stabiler Isotope, 159 Eutrophierung, 65 Mittelpleistozän, 590 geochemische Biomarker, 161 Evaluation der Methoden, 233 fluviale Bildungen, 224 geochemische Daten, 86 Evaporation, 222 fluviale Formen und Ablagerungen, 411 geochemische Indices, 572 Evapotranspiration, 39, 62 fluviale Paläoklimaarchive, 474 geochemische Prozesse, 178 Evolution, 228 fluviale Prozesse, 477, 512, 526 geochemische Signale, 179 Exhumierung, 199, 250 fluviale Sedimente, 453, 475, 476, 485, 598 geochronologische Methoden, 190 Expositionsalter, 200 fluviale Systeme, 178 Geocryology, 112 Expositionsgunst, 266 fluvialer Eintrag, 378 GeoForschungsZentrum, 187 Extinktion, 623 fluvialer Sedimenteintrag, 144 Geoindikator, 96 der Großsäuger, 624 fluvialer/äolischer Eintrag, 379 geoklimatische Grenze, 580 extreme Flutereignisse, 486 fluviales System, 96 geomagnetische Feldintensität, 532 Exzentrizität (Excentricity), 71, 73, 395, 397, fluvialgeomorphologische Prozesse, 510 geomagnetischer Schild, 528 441, 442, 499, 616, 642 food web, 37 GEOMAR, 187 Eyjafjöll-Eruption, 170 Foraminiferen, 85, 87, 177, 179, 443 Geomarker, 163 Eyre-See, 596 Forschungssatellit, 51, 52 Geomorphodynamik, 280 fossil feces, 168 Aktivität, 438 F fossile Böden, 434, siehe auch Boden Prozesse, 415, 446 falsche Interpretation der Befunde, 298 Fossilien, 152 Geomorphologie, 94, 427 Fauna, 165, 281 Frischwasser-Impuls, 337 (vergleichende) Beobachtungen, 299 Amazoniens, 227 früh- und mittelholozäne aride Phase, 297 Aktivität im Kalahari-Gebiet, 470 von Flores, 574 früh- und mittelholozäne Siedlungsplätze, 514 Befunde, 422 Faunenaustausch, 283 frühholozäne Gletschervorstöße, 298 Beobachtungen, 416, 457 Faunenelemente Fulgurite, 125 Forschungsergebnisse, 280 früh- und mittelholozäne, 516 Funza, 183, 214 gesamtmorphologische Situation, 269 Faustkeil, 134 Bohrkern, 220 Karte, 460 feedback, 33 Klimazyklus, 214 Kartierung, 253, 567 Klima, 71 Pollenprofil, 215, 233, 265 Kartierung des Zongo-Tals, 249 Mechanismen, 651 Fuquene, 147, 280 Klimaarchive, 376 Ozean-Atmosphäre, 33 Fußballspieler, 202 Paläoklimaarchive, 431 von solaren Einflüssen, 640 Fynbos, 506 pedologische Studien, 381 Fehleinschätzung, 142, 260 Pollen, 504 Prozesse, 649 fehlerhafte paläoklimatische Folgerungen, Prozesse für das LGM, 648 242 G records, 376 Fehlinterpretation, 108, 125, 157, 199 galactic cosmic rays, 69, 87, 649 relativ-stratigraphische Karte, 459 Felsbilder, 7, 165, 172, 176, 370, 521 Galapagosinseln, 314, 315, 585, 587, 605 Situation, 245, 248, 261, 407 Ferrasol, 132 Gambia, 403 Studien, 481, 496 Ferricrete, 133, 134, 550 Ganges, 545 Geomythologie, 172 feuchte Warmzeiten, 390 Ganges-Brahmaputra-Mündung, 144 Geoökologie, 94 Feuchtgebiet, 82 GCM (General Circulation Model), 38, 340, vernetztes System, 654 tropisches, 82 siehe auch Modell geophysikalisches Eiszeitmodell, 641 Feuchtigkeit im MIS 2, 489 Gcwihabe (Drotzky’s) Cave, 529 Georgetown, 229 Feuchtigkeitstransport, 560 Gebirgsvergletscherung, 106, 107 geowissenschaftliche Probleme in ariden und zum Altiplano, 253 Geländearbeit, 242 semiariden Gebieten, 402 Feuchttropen, 92, 510 Geländebeobachtungen, 247 getuned, 193, 285, 645, siehe auch tuning Feuer, 618 Geländestudien, 470 getunt, 629, siehe auch tuning Feuer-Wunde, 157 Geländeuntersuchung, 300 Gewitter, 45 Fichte, 326 Gelber Fluss, 174 Gezira-Bewässerungssystem, 66 Firnverdichtungsmodell, 106 Gelisolifluktionsprozesse, 250 Ghana, 438 Sachverzeichnis 741

Ghunsa-Tal, 117 Stände, 570 Golf von Guinea, 451, 497, 498, 511 Gidikwe Ridge (Strandwall), 463–466, 469 Struktur, 103 Golf von Mexiko, 336, 346 GISP, 18, 170, 259, 272, 285, 443, 446, 559 Vo l u m e n , 570 Golfstrom, 86, 202, 336 glacier-derived rock glacier, 114, 118 Vorfeld, 586 GPR (ground penetrating radar), 125 Gladysvale-Höhle, 399, 401 Vorfeldbereich, 289 Gramadulla, 418, 419 Glatthangbildung, 107 Zunge, 108 Gramineae, 378 Glazial, 15, 74, 383, 396, siehe auch Eiszeit Gletscherabschmelzen, 353 Gran Sabana, 283, 284 Kaltzeit, 12 Gletscherausdehnung grazer, 166, 574 Glazial- und Interglazialzeiten, 175 neoglaziale, 308 Great Barrier Reef, 185–188, 600, 602 glazial/interglaziale Klimaschwankungen, 431 Gletscherbewegung, 108 Great Selima Sand Sheet, 391 Glazial-/Interglazial-Zyklus, 392 Gletscherchronologie Greenhouse gases, siehe Treibhausgas Glazialchronologie, 170, 248, 254, 261, 274, frühholozäne, 297 Gregory Lake, 591 280, 285, 292, 298, 306, 329, 333, 336, Gletschereis, 101, 234, 370 Gregory-Lake-System, 594 343, 403, 411, 554–556 Genese, 102 Grenzen der irdischen Landschaftsgürtel, 91 des Himalaya, 561 Gletscherfluktuation, 96 grèzes-litées, 115 des Iztaccíhuatl-Massivs, 331 gletscherfreie Zeit, 300 Grönland, 18, 101, 102, 106, 152, 631 des Jungquartärs in den Tropen, 367 Gletschergleichgewichtslinie Arktis, 18 des Nevado de Toluca, 332 ELA, 106 Eiskern GISP2, 283 des oberen Hunza-Tals, 562 Firnlinie, 103 Eisschmelze, 58 des Spätglazials für Kolumbien, 286 Gletscherhaushalt, 111 Greenland Ice Core Project für das Khumbu Himal, 562 Gletscher-Klima-Modell, 254 GRIP, 18 für das südlichste Südamerika, 292 Gletscherschmelze Greenland Ice Sheet Project für Ecuador, 239 Tibet, 56 GISP, 18 für Himalaya, 567 Gletscherschwankung, 99, 101, 102, 106–108, Greenland Stadial 1 [GS-1], 25 für Karakorum, 561, 567 111, 235, 283, 285, 316, 339, 353, 578 Greenland Stadial Termination I, 25 für Ladakh und Zanskar, 565 des Neoglazials, 298 GRIP, 18, 131, 170, 645 holozäne, 567 holozäne, 101 GRIP-Eiskern, 192 in Bolivien, 242 Gletscherverhalten im Neoglazial, 349 GRIP-Kurve, 191 LGM-zeitliche, 561 Gletschervorstoß, 234, 288, 408, 557, 569, 610 Interstadiale, 194 Mexikos, 331 an der Wende YD/Holozän, 286 Zeitskala, 196 glazialer Zyklus, 38, 555 im MIS 3, 561 Großrechner, 70 Glazialerosion, 216, 546 im Spätglazial und Frühholozän, 237 Großsäuger, 165, 623 glaziales Klima, 38 in Bolivien, 336 Großsäugerfauna, 574 Glazialgeologie, 106 in Mexiko, 336 Ground-Penetrating-Radar (GPR), 125, 422 glazial-interglazialer Zyklus neoglazialer, 303, 304, 569 Grundwasser, 148 CO2, 37 Gliederung der Tropen nach Lauer, 92, 93 Alter, 148 Glazialmorphologie, 106 Global Change, 2 der Sahara, 197 Befunde, 254, 260, 288, 409 Global Charcoal Dataset, 65 fossil, 148 Höhenstufen, 582 global dimming, 101 Spiegel, 527 Interpretation, 413 global forcing, 642, 645 Guano, 168 Karte, 271, 292, 332, 333, 335, 583 Global Lake Status Data Base, 351 Guatemala, 142, 343 Karte eines Ausschnitts der Cordillera Real, Global Terrestrial Network for Permafrost Guliya, 79, 259, 557, 559 248 (GTN-P), 112 kühles Hochglazial (LGM), 557 Kartierung, 403 globale Erwärmung, 35, 36, 40, 49, 50, 60, 70, Guyana, 227 Situation, 286 78, 84, 86, 91, 93, 94, 100, 113, 163, 188, Gypcrete, 385, 417, 423, 592 Skizze, 416 201, 202, 204, 638, 652 Gypsisol, 132 Studien, 621 globale Klimamodelle, 641 Glazialstadien, 564 globaler biogeochemischer Kreislauf, 177 H Glazialzeiten, 74, 439 globaler Eishaushalt, 175 H1-Ereignis, 279, 280, 338, 455, 458, 502, 526, CO2, 68 globaler Stickstoffhaushalt, 82 559 glaziäre Ablagerungen und Formen, 106, 110 globaler Temperaturanstieg, 295 Habitatveränderung, 96 als Klimazeugen, 108 globaler Wasserkreislauf, 36 Haiti, 355 Gleissberg-Zyklus, 78 globales Eisvolumen, 72 Haleakala-Vulkan, 607 Gletscher, 294, 502 globales Förderband Hangformung, 274 Abschmelzen, 598 Ozean, Strömungen, 33 Hangschutt, 437 Anden, 192 globales Klima, 37 Hangschuttdecke, 96 der Antarktis, 102 für die präindustriale Zeit, 352 Hangsediment, 133, 301, 527 der tropischen Anden, 215 Globales Netzwerk der Baumringweiten-Daten, periglaziäres, 133 des Kilimandscharo, 195 161 stratfiziertes grobes, 238 im ACR, 292 Globalisierung, 654 Haplomastodon, 284 Massenbilanz, 103 Globigerinoides ruber, 179 Harappa, 626 Randtropen, 103 GLSL – green-light stimulated luminescence, Harmattan, 55 Rückzug, 105, 199 198 Hartwassereffekt, 358 Sauerstoffisotopenverhältnis, 15 Glyptodon, 284 Hauchab, 486 Schliffe, 564 Gobabeb, 636 Häufigkeitsdiagramme, 424 schuttbedeckt, 100 Gravels, 483 der Dünenalter (auf der Grundlage von 14C- Schwund, 107, 308 Golf von Aden, 455, 520 und Lumineszenzdaten), 122 Spuren, 580 Golf von Bengalen, 144, 544, 560 Hauptkomponentenanalyse, 161 742 Sachverzeichnis

Hawaii, 8, 85, 159, 606, 607, 610 holozäne Klimaschwankungen, 585 Indischer Ozean, 444, 449, 450, 456, 457, 489, LGM-zeitliche ELA-Depression, 609 in der SE-asiatischen Inselwelt, 585 544, 547, 560 Heinrich holozänes Klima, 356 indischer Subkontinent, 550 Ereignis, 31, 193, 343, 395, 397, 441, 445, holozänes Klimaoptimum, 43, 325, 335, 380, indisches Gangesgebiet, 55 557 508 indo-pazifischer warmer Pool, 106 Ereignis 1, 283, 469 Holzkohle-Konzentrationen, 349 Indus, 570 Ereignis I, 24 Holzkohle-records, 281 Indus-Kultur, 518, 626 Event, 25, 32, 35, 129, 176, 202, 344, 348, Homeb Silts, 482, 483, 485, 486, 492 Indus-Stadium, 554 349, 436, 524, 646 Hominid Corridor Research Project, HCRP, 392, Industrialisierung, 150 Event 1, 496, 499–501, 560, 585, 594 617 Industriezeitalter, 646 Heinrich 1, 253 Hominini, 49, 64, 163, 374, 390, 573, 574, 616, Inka, 628 Heinrich-1-Ereignis, 277 617, 620, 623 Inklination, 71 Heinrich-1-Event, 339, 350, 353 Einwanderungswellen, 620 Inlandeis, 84, 111 HS, 506 Hominini-Besiedlung, 622 Inlandeisbedeckung in Tibet, 110 HS1 (Heinrich-Stadial 1), 293 Hominini-Biodiversität, 620 INQUA Dunes Atlas Chronologic Database, 125 Lage, 196 Hominini-Evolution, 616 INQUA-Dünen-Datenbank, 418 Lage 1, 449 Homo erectus, 573, 574, 618 Insekten, 156, 165, 172 Stadial, 24, 47, 445 Homo floresiensis (,Hobbit‘), 622 als Klimaindikatoren, 167 Stadial 1, 516 Homo naledi, 617 Insolation, 45, 71, 72, 74, 75, 87, 101, 150, 151, Heraceum-Bildungen, 165 Homo sapiens, 573, 575, 595, 618, 620, 624 204, 285, 294, 296, 297, 356, 358, 374, Herbivore, 154, 163, 471, 481, 494 Ausbreitung, 620 376, 380, 382, 392, 395, 397, 398, 401, Aussterben, 579 Einfluss, 578 440–442, 450, 454, 455, 493, 496, 497, Heshang Cave, 151 Einwanderung nach Australien, 622 499, 511, 524–526, 530, 542, 555, hillwash, 434 Homo sapiens sapiens, 623 558–561, 567, 585, 587, 594, 641–643 Himalaya, 7, 102, 107, 545, 551 Horingbaai-Schwemmfächer, 430, 431, 434, 435 Änderung, 75 Himalaya-Flüsse, 556 Hoti-Höhle, 148, 388–390, 449, 453 Dominanz, 350 Himalaya-Tibet-Orogen, 558 Huascarán, 259, 260, 318 forcing, 294, 524, 527, 533 Himba, 626 Eiskern, 195, 558 Schwankung, 218, 229, 233 Histogramme der Altershäufigkeit, 505 Kordillere, 257 instrumentelle Aufzeichnung, 96 historische Aufzeichnung, 54, 98, 160, 172, 317, Huayna Potosí, 96, 105, 244, 248 interbreeding, 622 351, 353, 356, 357, 533, 540 Huayna-Potosí-Westgletscher, 309, 312 Interglazial, 15, 74, 87, 383, 389–392, 396, 402, Hoanib, 483, 537 Huguang-Maar, 146, 559 410 Tal, 488 Hulu- und Dongge-Höhlen, 524, 585 Warmzeit, 12 Hoarusib, 485 China, 27 interglaziale Feuchtphasen, 431 Hochbecken von Mexiko, 323 Hulu, 234, 292, 558–560, 572 interglaziale Perioden, 393 Hochdruckgürtel, 45 Humboldt, A. v., 8, 12, 201 Intensität, 74 Hochflächenmoränen, 245, 259, 261, siehe auch Humidität, 98, 175, 306, 374, 376 Interglazialzeiten, 74, 392, 439 Moräne abnehmende, 594 International Continental Scientific Drilling Hochglazial, 85 Huminsäuren, 358 Program (ICDP), 146 SST, 85 Hunza-Tal, 561 Interzeption, 225 Hockeyschläger-Kurve, 88, 159, 160 Hurrikan, 142, 188 IPCC, 2, 4, 33, 35, 52, 55, 61, 69, 75, 82, 85, 87, hohe zeitliche Auflösung, 157 Hydrographie, 94 88, 183, 184, 202, 203, 208, 234, 640, Höhengliederung der Vegetation, 214, 584 hydroklimatische records, 587 650 Höhengrenzen, 210, 652 hydrologische Klimaarchive, 529 Aerosol, 60 Höhenstufe der Andosol-Bild, 325 hydrologisches Gleichgewicht, 225 IPCC AR4 A1B-Szenarium für AD 2100, 362 Höhenstufung, 236 hygrische Klimakurve, 500 IPCC-Klimamodell-Simulationen, 201 Höhle, 148, 213 hygrische Schwankungen, 267 IPCC-Modelle, 69 Höhlensedimente, 148, 191, 358 hygrische Situation IPICS, 104 Borneo, 47 Veränderungen, 510 Irawadi, 573 Holozän, 74, 87, 93, 150, 260, 288, 294, 307, hyrax midden, 505, 511, 527, 532, 539 Irian Jaya, 582 317, 319, 329, 367, 380, 389, 397, 402, Hyrax-Kot-Daten, 504 Iris-Effekt, 39 416, 427, 436, 441, 447, 449, 456, 469, IRSL (Infrared Stimulated Luminescence), 198 508, 528, 540, 566, 599, 612, 643, 649 I Island, 170 Definition, 17 Ice rafted detritus, 350 Isotope frühes, 363 Ice rafted material, 175 radioaktive, 104 Gliederung, 27 ice-cored moraine, 115, 241, 246, 251, 252, 256, stabile, 39, 379 in Mexiko, 348 271, 277, 409 Isotopenveränderungen, 39 Kulturentwicklung, 624 ice-layer counting, 190 Isotopenverhältnis, 131, 165 Temperatur, 49 Ichnofazies, 168, 169, 483 Isotopenzusammensetzung, 390, 433 holozäne Chronologie, 529 Ichnofossilien, 168 Israel, 151, 195 holozäne Gletschervorstöße, 251 Ilampú, 244, 248, 254 Isthmus von Panama, 86 holozäne hydrologische und geomorphologische Illimani, 101, 105, 252, 257, 286, 298, 302, 316, ITC, 45 records, 511 318 ITCZ, 41, 43, 46, 47, 49, 51, 55, 150, 181, 204, holozäne Klimaentwicklung, 599 Illiniza, 240 224, 253, 277, 280, 283, 296, 306, 325, holozäne Klimaoptimum Ilopango, 170, 631, 632 333, 343, 356, 357, 362, 373, 381, 389, Mexico, 138 Inca Huasi-Seephase, 252 392, 398, 399, 427, 434, 440, 441, 445, holozäne Klimaphasen, 296 Indien, 60, 354, 545, 572 447, 474, 475, 497, 498, 500, 509, 527, holozäne Klimarekonstruktion, 526, 530 geologische Skizze, 550 Sachverzeichnis 743

531, 549, 560, 566, 590, 594, 599, 605, Karakorum, 103, 111, 548, 551 Werke der darstellenden Kunst, 172 607, 612, 627, 629, 646 Kargletscher, 112 Klimabedingungen ITCZ in Mesoamerika, 321 Karibik, 80, 185 interstadiale, 376 ITCZ-Variabilität, 285 karibische Inseln, 320, 338 vom Altquartär, 246 ITCZ-Verlagerung, 122, 285 Karten, 172 Klimadaten, 96, 174 ITCZ-Wanderung, 524 Kartierungen von asiatischen Höhlen, 150 Iztaccíhuatl, 161, 170, 323, 328, 329, 331, 335, der glazialgeologischen/geomorphologischen Klimaentwicklung, 301, 319 338, 353 Formen, 273 der Zukunft, 636 der glaziären Formen, 265 und Kulturentwicklung, 532 J Kathmandu, 545 von Kalahari, 509 Jäger- und Sammler-Kulturen, 624 Katira, 229 von Sahara, 509 Jahreslagen im Eis, 104 Katmai, 49 Klimaerwärmung, 204, 361 Jahrringbreite, 159 Kenya, 164 Klimafluktuationen, 51, 307, 360 Jahrringchronologie, 157 Kernwaffenversuche, 318 des nördlichen Südamerika, 346 Japan, 172, 580 Kesselgletscher, 111, 570 Klima-forcing, 529 Java, 85, 618 Khmer, 627, 628 Klimaforschung, 96 Javasee, 544, 601 Khowarib Gorge, 484, 488 Klimagang, 58 Jetstream, 45 Khumbu Himal, 561, 563 der Erde, 86 Jüngere Dryas, 47, 110, 191, 197, 241, 253, 258, Kikai Island, 570 und Kulturentwicklung, 358 292, 445, 454, 496, 500, 560, 645 Kilimandscharo, 6, 7, 50, 100–102, 146, 195, und Sonnenaktivität, 532 Jüngere Dryaszeit, 24, 25, 31, 84, 104, 167, 168, 370, 377, 406, 408, 409, 413, 415, 450, Klimageschichte 251, 259, 260, 262, 265, 269, 276, 283, 454, 498, 523, 533 ostafrikanische, 440 286, 292, 306, 331, 332, 339, 349, 442, Eiskern-record, 524 Klimagradient, 254 496, 641, siehe auch YD und Younger Glazialchronologie, 411 Klimagürtel, 439 Dryas Moränen, 412 Klimaindikator, 102 Younger Dryas, YD, Deglaziation, 24 Kinabalu, 580 Klimaklassifikation, 91, 92, 544 jungquartäre Moränensequenzen, 265 Kirschblüte, 172 Klimakurve jungquartäre Temperaturverhältnisse, 163 Kivu-See, 521 Sahara, 142 jungquartäre Vergletscherungen, 268 Kleine Eiszeit, 34, 36, 43, 49, 79, 82, 88, 100, Klimamodell, 21, 33, 38, 39, 51, 52, 58, 62, 63, Junin, 147, 280 101, 105, 115, 152, 161, 168, 172, 174, 68, 75, 85, 88, 106, 126, 131, 201, 203, Junin-See, 262, 269 188, 257, 262, 298, 301, 307, 309, 317, 204, 213, 218, 439, 595, 652 Junin-Täler, 260 318, 328, 335, 336, 348, 351, 353–355, Bewölkung, 58 Juniperus, 161 365, 441, 484, 496, 527, 528, 530, 532, biologische Prozesse, 62 533, 535, 537–540, 542, 567, 568, 570, CCSM3, 286 K 587, 600, 625, 632, 636, 639, 646, siehe Deglaziation, 21 Kalahari, 122, 125, 137, 148, 157, 411, 418, auch LIA intermediärer Komplexität, 202 422, 424, 425, 427, 428, 431, 457, Gletscherbewegungen, 311 Ökosystemveränderung, 63 459–462, 464, 466, 470, 474, 478, 479, Gletschervorstöße, 313 Simulation der Konvektion, 39 489, 492, 502, 511, 526–528, 541 Humidität, 108 Vulkanismus, 51 Dünen, 397 Moränen, 332 Klimamodellentwicklung, 203 im LGM, 471 Moränenstadien, 309 Klimamodellierer, 172, 204 pluviale Phasen, 457 tiefste Temperatur, 152 Klimamodellierung, 46, 48, 69, 105, 130, 142, Salzpfannen, 480 Kleinsäuger, 165, 494 636 Synopse für die spätquartäre Entwicklung Klima, 45, 98, 373 Supercomputer, 204 der Südwest-Kalahari, 479 des Eiszeitalters, 72 Klima-Ökosystem-Mensch-Interaktionen, 624 Täler, 479 des LGM, 85 Klimaoszillationen, 294 Kalibrierung, 153, 161 Rekonstruktion, 96 Klimaproxy, 98 von Eiskerndaten, 105 solarer Einfluss, 77 Klimaproxydaten, 160 Kalkkrusten, 418 und biologische Evolution, 616 Klimarekonstruktion, 106, 110, 122, 126, 142, Kalkkrustenrelief, 417, 421 und Migration, 654 149, 156, 161, 272, 319, 366, 435, 439, Kältejahr, 157 Zentralafrikas, 436 470, 474, 525, 535 kältestes Jahrhundert, 152 Klima- und Besiedlungsgeschichte, 512 des tibetischen Hochlands, 569 Kalttropen, 92, 645 Klima- und Landschaftswandel, 641 klimarelevante Daten, 172 Kaltzeit, 36, 431, 586 Klima- und Vegetationszonen, 370 Klimarhythmus, 188 Kalt/Warm-Zyklus, 399 Klimaänderung, 5, 8, 22, 51, 70, 75, 91, 100, Klimaschwankung, 6, 31, 96, 110, 112, 219 Sauerstoffisotopenverhältnis, 15 102, 106, 163, 628, 651 der letzten Jahrtausende, 306 kaltzeitliche Abtragungsprozesse, 575 Arktis, Antarktis, 22 der letzten Jahrtausende im Siedlungsgebiet kaltzeitliche Bildung, 323 El Niño, 35 der Maya, 362 Kaluyo-Tal, 108, 111, 246, 254, 301 hygrische, 118 geomorphologische Reaktionen, 599 Kamerun, 137, 161, 435, 438 Toba-Eruption, 51 glazial-interglaziale, 550 Kamikaze, 188, 633 Ursache, 70, 104 im Quartär, 431 Kammeis zukünftige, 96 im tropischen Südamerika, 231 needle ice, 115 Klimaanomalie während des Termination I, 502 Kanémien, 448 mittelalterliche, 307 Klimasensitivität, 12, 69, 202, 204, 208, 636 Kangphu Kang-Massiv, 107 Klimaarchiv, 96, 98 Klimasimulation, 33, 294 Känguru, 595 der Meeressedimente, 184 hydrologisches System, 39 känozoische Ära, 70 in Südamerika, 213 Modell, 18 Kapflora, 504 Vernetzung der natürlichen Klimaarchive, 98 Klimasystem, 31, 75, 87, 92, 170, 190, 208 744 Sachverzeichnis

Flip-Flop, 32 Kongur, 551 Laguna La Gaiba, 230, 295 Variabilität, 33 Kongur Shan, 567 Laguna Pallcacocha, 313–316, 587 klimatische Extremereignisse, 172 Konkurrenzkampf, 624 Laguna Playa Grande, Vieques, Puerto Rico, 188 klimatische Schneegrenze, 103, 111, 216 Kontamination, 169 Lake Abhe, 453, 526 ELA, 103 kontinentale und marine Eismassen, 71 , 26, 29, 336 klimatische Umbrüche, 616 Kopfkapseln, 167 Lake Albert, 444 klimatisches System, 96 Koppieskraalpan, 475, 477 Lake Assom, 510 Klima, Klimasystem, 30 Koprolithe, 168, 169 Lake Baringo, 444 klimatisches Wechselwirkungssystem Korallen, 98, 160, 175, 184, 186, 450, 580, 602, Lake Barombi Mbo, 438, 443 Klimasystem, 31 638 Lake Bosum, 496 Klimavariabilität, 114, 294, 317 Bildungen, 314 Lake Bosumtwi, 376, 438, 441, 442, 496, 497, in Afrika, 373 Bleiche, 185 502, 512 natürliche, 651 Forschung, 185 Bosumtwi, 146 Klimaverhältnisse, 590 Riff, 4, 184, 456 Lake Challa, 454, 455, 511, 523, 524, 526, 527, Klimavorhersagbarkeit der Modelle, 208 Riffbildung, 452, 456 533, 536 Klima-Vulkanismus-Beziehungen, 48 Riffwachstum im LGM, 457 Challa, 146 Klimawandel, 8, 38, 40, 70, 87, 160, 187, 202, Skelette, 187, 570 Lake Chichancanab, 629 204, 430, 529, 623 Sterben, 65, 185 Lake Chilwa, 499, 511 Anden, 5 Wachstum, 356, 456 Lake Consuelo, 227 Erforschung, 5 Korallensee, 545 Lake Edward, 444 neoglazialer, 306 Korallenterrassen, 191 Lake Eyre, 590–592, 594–596, 600 Symbol, 100 Kordilleren-Eisschild, 621 Lake Frome, 592, 594, 596, 598 treibende Kräfte, 641 Korngrößenverteilung, 504 Lake Gregory, 596 und Anpassung, 652 Korrelation gleichalter terrestrischer wie auch und Besiedlung, 515 mariner Sedimentabfolgen, 170 Lahontan, 147 Klimawechsel, 540 Korrelationsanalysen, 366 Lake Magadi, 444 Klimazeugen, 96 Korrelationsforschung, 616 Lake Mahoma-Stadium, 415 periglaziäre, 114 Korrelierung, 96, 102, 191 Lake Malawi, 444, 455, 502, 526, 527, 578 Klimazone, 131 der Glazialchronologie, 279 Drilling Project, 393, 394 nach Köppen/Geiger, 373 von Peak zu Peak, 402 Malawi, 146, 164 nach Troll/Paffen, 373 kosmische Strahlen, 56, 75, 77, 78, 87, 196, 319 Lake Massoko, 443, 446, 499, 526, 527 Klimazukunft, 184, 208, 643, 646, 650, 651 kosmogene Isotope, 77, 190 Lake Mulan, 594 Klimazyklus, 31, 86, 137, 141 kosmogene Nuklide, 133, 199, 366 Lake Naivasha, 431, 444, 538 quartärer, 323 Krakatau, 170, 318 Lake Nakuru, 444 Klippschliefer, 166, 168 Kreislauf, biochemischer, 131 Lake Natron, 444 kohärente Chronologien, 190 kritische Evaluierung, 25, 311, 475 Lake Ngami, 529 Kohlenmonoxid Krokodil, 520 , 336 CO, 65 Krustenbildung, 120 Lake Ossa, 377 globale Konzentration, 64 Kryptotephra, 170 Lake Rukwa, 526 Kohlenstoff Analysen, 190 Lake Tana, 502 gesamtorganischer, 395 Kublai Khan, 188, 632 Lake Tanganyika, 455, 502 organischer, 177 Kubu Island, 377 Lake Tritrivakely, 400, 511 Kohlenstoffgehalt Kuiseb, 118, 168, 169, 418, 419, 485, 486, 531 Lake Tswaing, 526 der lebenden Biomasse, 61 Kulturentwicklung, 360 Lake Turkana, 444 Kohlenstoffhaushalt, 61, 175 im Holozän, 624 Lake Valencia Kohlenstoffisotope, 616 Kulturlandschaft, 360 Valencia, 147 Kohlenstoffisotopmuster von Kulturwandel, 632 Lake Victoria, 444, 502 Eichen-Baumringen, 163 Kunene, 122, 471, 503, 537 Lake Woods, 594, 596 Kohlenstoffkreislauf, 33, 82, 202 Kunst, 619 Lake Xere Wapo, 605 global, 68 Kurkur-Wadi, 388, 393 Lake Yao, 144, 377 Kohlenstoffspeicher Kuruman, 432 Lake-Challa-Proxydaten, 524 der tropischen Regenwälder, 62 Küstenänderungen, 560 Lake-Eyre-Seespiegelkurve, 594 Kökkenmödinger, 168 Küstenlinien, 561 Laki, 49, 170, 355 Kollaps der Maya-Zivilisation, 362 Kuwae, 170, 172 Land Mammal Age (LMA), 494 kolluviale Bildungen, 224 KZAI-01, 510, 512 Landbedeckungsklassifikation, 373 Kolluvium, 137 Landnutzung, 59, 131, 187 paläoklimatische Interpretation, 137 L Landoberfläche, 374 Südaustralien, 137 La Gaiba, 280 Lang’s Cave, 572 Kolumbien, 26, 265, 343 La Malinche, 323, 326, 328, 329, 331–333 Längsdünen, 462, siehe auch Düne Gletscher, 5 La Niña, VII, 36, 43, 88, 131, 175, 213, 253, innerer Aufbau, 124 Vergletscherungen, 265 277, 311, 599, 601 System, 592 Kombination von Simulationen und Daten, 206 La Niña-Jahr 2010–2011, 218 lapse rate, 45, 613 Kongo, 134 Lachamp-Ereignis, 190 Laramkkota-Gletscher, 215, 313 Kongo-Becken, 374, 381, 410, 411, 431, Ladakh (Himalaya), 201 Last Glacial Maximum, 17, 98, 220, 233, 500, 433–435, 438, 439, 443, 455, 495, 502, Laetoli, 618 siehe LGM 509, 511 Lagarostrobos franklinii, 601 MIS 2, 17 Kongo-Regenwald, 632 Lago de Valencia, 283 Lateinamerika, 210 Kongo-Tiefsee-Fächersystem, 383 Lago Quexil, 343, 345 Lateritkruste, 134 Sachverzeichnis 745

Latin American Pollen Database (LAPD), 156 OSL-Alter, 470 marine Klimaarchive, 605 Laurentischer Eisschild, 205, 621 Linzhu-Höhle, 559 marine Klimazeugen, 174 Leang Timpuseng, 176 Lipide, 161, 439, 443 marine Mikroorganismen, 177, 181 Lebenszyklus der Organismen, 186 Little Ice Age, siehe LIA marine ODP-658, 378 Lechuguilla-Höhle, 640 Llanos, 283 marine Organismen, 176 Leithorizonte, 170 LLGM (local last glacial maximum), 239 marine oxygen isotope stratotype, 190 Lesotho, 541 LLGM-ELA, 254 marine Paläoklimaarchive, 183, 184 Lethlakeng-Aquifer, 493 Logbuch, 172, 176 im SE-Atlantik, 503 LGM, 115, 174, 222, 259, 260, 266, 281, 319, Longitudinaldünen, 120, 432, siehe auch Düne Umweltveränderung, 175 324, 343, 344, 366, 380, 397, 401, 403, Löss, 98, 129, 130, 135, 551 marine records, 439, 557 408, 410, 415, 422, 424, 427, 433, Ablagerung, 126, 135 marine Sedimentdaten, 399 435–437, 439, 441, 442, 445–449, 453, Bildungen, 228, 403 marine Sedimente, 77, 98, 421 456–458, 461, 467, 470, 474, 475, 479, Landschaft in China, 128 Interpretation, 381 484, 486, 489, 491, 508, 524, 540, 554, Profil, 129, 137 marine Sedimentkerne, 130, 138, 279, 433, 435, 578, 586, 596, 598, 605, 612, 649 Profile im Kaschmir, 553 542 arides, 400 Sequenzen, 191 marine Sedimentsequenzen, 175 im tropischen Südamerika, 281 Verbreitung, 128 marine Terrassen, 188, 430, 435 in Neuguinea die Schneegrenzen, 578 Zyklostratigraphie, 130, 550 mariner Bohrkern, 142, 184, 441, 443 in Peru, 243 Lüderitz, 122 mariner Kern, 493, 638 Korallenriffwachstum, 457 Luftchemie, 170 marker, 106 letzteiszeitliche Maximalvergletscherung, Lumineszenz-Altersbestimmungen, 121, 555, Marker-Boden, 327 551 596 MARUM, 187 letztes Hochglazial, 558 luminosity, 75, 80 Massenbewegung Temperatur, 18 Lunettedünen, 424, 425, 427, 428, 464, 472, glazial-induziert, 110 trocken-kaltes, 336 475, 591, siehe auch Düne Massoko-See, 498, 521, siehe auch Lake um 30 ka BP, 260 Lydekker-Linie, 547, 622 Massoko Vergletscherungen, 439 Lynch-Krater, 146, 578, 595, 605 Mastodon, 283, 623 LGM (Maximum der glazialen Bedingungen), matching, 21, 104, 106, 195, 259, 260, 385, 391, 281 M 457, 558, 636 LGM (Ogolien), 403 Mäander-Generation, 140 Methoden, 195 LGM-Abkühlung, 605 Mababe, 529 Matuyama, 403, 410 LGM-ELA, 242, 264, 265, 269, 339, 409, 578, Mababe-Depression, 429, 464, 467 Matuyama-Brunhes (M–B), 196 610, 612 Machu Picchu, 627 Maui, 607 LGM-ELA-Depression in Costa Rica, 340 Madagaskar, 84, 127, 370, 399, 402, 443, 624 Mauna Kea, 263, 606–608, 610, 612, 613 LGM-ELA-Rekonstruktionen, 403 Madeira-Fluss, 230, 234 , 606 LGM-Gletscher, 254 Mae Hong Son (MHS), 159 Mauna-Kea-Glazialchronologie, 609 LGM-Gletschervorstöße, 291 magnetische Suszeptibilität (MS), 79, 130, 137, Maunder-Minimum, 78, 79, 157, 309, 311, 319, LGM-Moränen, 269, 409 194, 218, 251, 314, 315, 347, 348, 350, 352, 532, 535, 537, 538, 540, 567, 569, vermeintliche, 271 443, 446 636 LGM-SST, 455 magnetische Variabilität der Sonne, 56 Mauretanien, 118, 407, 512 LGM-Temperaturdepression, 411 magnetisches Reversal, 130 Mauritius, 431 LGM-Temperatur-Rekonstruktionen, 347 Mahi River, 572 Mawenzi, 409, 417 LGM-Vergletscherung, 248, 262, 578 Maisernte, 356 Maya, 321, 342, 625, 627, 628 LGM-zeitliche Aridität, 253, 440, 441 Makanaka, 608 Maya-Chronologie, 631 LGM-zeitliche Ausdehnung der Makapansgat, 489, 501, 535, 536, 538 Maya-Hiatus, 631 Vergletscherung, 406 Makarikari, 377, 388, 399, 418, 457, 469, 471, Maya-Kulturen, 345, 357, 359, 629 LGM-zeitliche ELAs, 582 473, 492, 529 Niedergang, 365, 630 LGM-zeitliche Klimarekonstruktion, 213, 254, Becken, 466 Maya-Landwirtschaft, 358 265, 480, 491 Ngami/Okavango-Gebiet, 458 Mayan Ice Cap, 339 LGM-zeitliche SSTs, 241 Paläosee, 457, 463, 465 MBT/CBT, 282 LGM-zeitliche Staubeinträge, 259 Pfannen, 118, 429, 462, 465, 474, 479, 489 MCA, 530, 585, 602, 605, 612, 628 LGM-zeitliche Vergletscherung, 240, 261, 267, Strandlinie, OSL-Alter, 464 MCM (Macrophysical Climate Model), 340 277, 409, 411 Makassar, 600 McMurdo-Trockentäler, 200 LGM-zeitlicher Klimawandel der Okavango– Malawi, 392, 400, siehe auch Lake Malawi MD 962094, 382, 385, 428 Makgadikgadi–Zambezi-Region, Malawi-See, 393–395, 431, 440, 445, 449, siehe MD02-2503, 609, 610 458 auch Lake Malawi MD03-2707, 497 LGM-zeitliches Klima der Namib-Wüste, 481 Mamane-Baumscheibe, 159 MD60, 601 LIA, 534, 538, 572, 585, 600, 601, 605, 612, Mammut, 623, 624 MD96-2087, 503, 504 651, siehe auch Kleine Eiszeit Mann, Michael, 160 MD96-2094, 492, 503, 504 LIA-Gletscher, 309 MARGO Project Members, 86, 107 MD79257, 527 LIA-Moränen MARGO-Daten, 183 MD962094, 499 am Carstensz Mountain, 586 marine Bohrkerne, 382, 456, 458 Medieval Climate Anomaly (MCA), 307, 350, Lichenometrie, 310 marine Chronologie, 149 355, 639 Analyse, 307 marine Daten, 174, 446 Medieval Quiet Period (MQP), 639 limnische Sedimente, 316, 516 marine Geoarchive, 500 Medieval Warm Anomaly (MWV), 88 Limpopo, 539 (MIS), 14, 175 Medieval Warm Period, 528, 529, 533, 572, Lineardünen, 418, 420, 422, 424–428, 430, 431, marine Kerne, 194, 449, 478, 510, 520, 577 siehe auch MWP 433, 470, 591, 595, 596, siehe auch Düne marine Kerne G6-4, 578 Medieval Warm Period (MWP), siehe MWP 746 Sachverzeichnis

medivial climate anomaly, siehe MCA midden, 165, 166, 168, 297 Modellierung, 12, 34, 35, 40, 45, 51, 52, 85, 86, Meereis, 57 Umweltgeoarchiv, 168 88, 94, 98, 99, 143, 150, 187, 190, 201, Albedo, 57 Migration 205, 206, 235, 288, 300, 337, 340, 380, Einfluss, 56 als Anpassung, 654 479, 489, 506, 510, 542, 605, 640, 645, Meereisausdehnung Migrationsbewegungen, 652 650, 651 Meereisrückgang, 204 Mikrobe, 113 der Gletscherbedeckung, 612 Südozean, 82 Mikrofossilien, 86, 153 der hydrologischen Energiebilanz, 297 Meereisbedeckung, 131, 307, 347, 558 Mikronährstoff, 126 Niederschlag, 45 Meeresoberflächentemperaturen (SST), 175, Mikronesien, 605 numerische, 100 321, siehe SST (Sea Surface Mikroorganismen, 37 Modellsimulationen, 376, 527 Temperature) Milankovitch, 641 Modellstrukturen, 69 Meeressedimente, 98 Frequenz, 394 Moderate Resolution Imaging Meeresspiegel, 101, 188, 218, 576, 605 Theorie, 70, 71, 86, 106, 176, 645 Spectroradiometer (MODIS), 52 Rekonstruktion, 28 Zyklus, 71, 508, 610 MODIS, 52 Meeresspiegelabsenkung, 84, 131, 232, 452, Milben, 532 molecular clocks, 190 545, 547, 622 Milluni, 248 molekulares Fossil, 159 Meeresspiegeländerungen, 184, 188, 638 Tal, 247, 260, 263 Mollusken, 475, 476 Meeresspiegelanstieg, 32, 33, 188, 643 Minchin, 222, 223, 270 Molopo, 424, 427, 474–477, 479 Ozean, 29 Ming-Dynastie, 172 Molukkensee, 544 Meeresspiegelhochstände, 435 Miozän, 129 Mongolei, 130 Meeresspiegelrekonstruktion, 193 Miragoane-See, 356, 358 Monsun, 32, 46, 47, 49, 51, 84, 105, 157, 306, Meeresspiegelschwankungen, 430 MIS (marine isotope stages), 192 373, 375, 398, 402, 408, 454, 509, 514, Meeres-/Seespiegelschwankungen, 106 MIS 1, 643 516, 524, 526, 548, 550, 554, 558, 561, Meeresströmungen, 36, 40, 384, 398, 456, 458, MIS 2, 236 585, 592, 598, 612, 626, 633, 642, 643 497 LGM, 108 Intensität, 319 Mega-Eruptionen, 172 MIS 3, 102, 399, 415, 426, 427, 435, 438, 449, nacheiszeitliches tropisches monsunales Megafauna, 283, 595, 623 457, 481, 554 Zirkulationssystem, 498 Landmegafauna, 284 MIS 4, 108, 608 Südwestmonsun, 374 Megaherbivoren, 165 MIS 4/5-Grenze, 51 westafrikanischer, 43 Megapaläoseen, 610 MIS 4–2, 578 Monsunasien, 159, 545 Megatherium, 284 MIS 5, 387, 416, 426, 449, 469, 557, 559, 578, Monsuneinfluss, 354, 570 Melanesien, 605 590, 592 Monsungebiet, 51 MELM, 104, 264 MIS 5e, 188, 389, 591 Monsungeschichte, 148 meltwater pulse, 343, 496 MIS 6, 397, 399, 426, 578, 608 Monsunindex, 390, 392, 511, 558 1A Deglaziation, 24 MIS 7, 387, 578 Monsunklima, 545 Termination I, 25 MIS 7–6, 590 Monsunniederschläge, 56, 60, 150, 234 Menschen MIS 7a, 389 Monsunregenzone, 390 prähistorische Aktivitäten, 64 MIS 9, 389 Monsunrekonstruktionen, 449 Menschheitsentwicklung, 174, 374, 616, 618, MIS 11, 385, 387, 403, 406, 421, 427, 431, 576, Monsunsystem, 105, 447, 524, 556, 587 619 595, 639, 642–644 Monsunverstärkung, 285 Sprache, 618 Paläoklimaarchive, 645 Monsunzirkulation, 445, 489, 549, 557, 558, Menschheitsgeschichte, 547 Mittelalter, 174 560, 561, 571 menschlicher Einfluss, 651 warme Periode, siehe MWP Moräne, 96, 98, 105–108, 111, 198, 201, 339 Mera, 229 Mittelamerika, 319, 338, 366 14C datiert, 108 Pollenprofil, 282 Mittelholozän, 27, 351, siehe auch Holozän Aufbau, 108 Profil, 222, 226 aride Phase, 295 der Kleinen Eiszeit, 311, 332 Mérida Glaciation, 265 Aridität, 297 der quartären Gletschervorstöße, 237 Meridional Overturning Circulation D MOC, Klima des tropischen Amerikas, 340 des ACR, 289 siehe MOC Mittelpleistozän, 318, 323, 389, 431, siehe auch des Mount Kenia, 412 Mesoamerika, 354, 625 Pleistozän formfrische, 300 Mesopotamien, 625, 626 Vergletscherungen, 411 Ground Moraines, 251, 256 Messinian Salinity Crisis (MSC), 86 Moa, 623 neoglaziale, 313, 410 meteorologische Variablen, 297 MOC, 32, 343, 525, 560 prä-LGM-zeitliche, 245 meteorologischer Messwert, 98 Moçambique, 455 schwarze, 300, 308, 309, 311 Methan (CH4), 37, 82, 106, 113 Modell, 2, 35, 36, 43, 52, 75, 80, 81, 88, 93, 96, Verbreitung, 610 Methoden 122, 133, 161, 174, 179, 180, 186, 190, Moräneausdehnung, 409 der geomorphologischen Analyse, 199 207, 294, 336, 337, 399, 497, 609, 633, Moränenalter, 199 der Probennahme, 182 639, 641 mittelpleistozänes, 120 Fehlerquellen, 196 CO2-Haushalt, 16 Moränenbildung, 199 physikalische und chemische, 96 des irdischen Klimas, 201 Moränendatierung, 542 Mexiko, 85, 113, 115, 144, 157, 170, 235, 287, ENSO, 43 Moränengruppen, 267 319–321, 343, 351–353, 357, 360 Klimamodell, 35 Moränenschutt, 132 Becken von, 320, 324 komplexe Erd-System-Modelle, 205 Moränensequenz, 247, 274 Gletscherbewegungen im Spätquartär, 338 pollenbasiert, 156 Moränensystem, 108 Klimaentwicklung, 348 modellbasierte Umweltrekonstruktionen, 186 Moränenwälle Mg/Ca-Werte, 183, 184, 187, 283, 345 Modellentwicklung, 205 Aufbau, 298 Mid-Brunhes Event (MBE), 82, 576, 595, 639, Modellergebnisse, 640 Erhaltung, 273 642 Größe und Form, 292 Sachverzeichnis 747

Morphologie, 245 natürliches forcing, 172 Nuklearkonflikt, 75 morphodynamische Aktivität, 437 Neandertaler, 620 numerische Klimamodelle, 202 morphogenetische Zonen, 499 needle ice, 115 numerische Modellierungen, 100 morphostratigraphische Altersansprache, 112 NEEM, 170 Morro dos Seis Lagos, 230 Negev-Wüste, 388–390 Mount Elgon, 416 Neoglazial, 237, 285, 298, 299, 302, 317, 325, O Mount Kenia, 375, 403, 406, 408–411, 413, 417, 353, 362, 367, 570, 646 O3, 40 444, 498, 523, 525 Beginn, 528 obere Baumgrenze, 582 Glazialchronologie, 411 Chronologie, 299 obere Waldgrenze, 220 Mozambique, 84 Gletschervorstöße, 336, 411, 523, 582 Depression, 328 MPT, siehe Pleistozän Moränen, 636 LGM, 85 MS (Magnetic Susceptibility), 79 NEOTOMA Paleoecology Database, 156 Oberflächenaltersdatierung, 190, 239, 259, 406, MSA (Middle Stone Age), 165 Nepal, 117, 545 407, 415, 423, 555, 567, 568, siehe auch Mt. Everest, 545, 551, 568 Nettoprimärproduktion, 218 SED (Surface Exposure Dating) Mt. Giluwe, 580, 583 Neue Welt, 620, 623 SED, 138 Mt. Kinabalu, 546, 578 Neuguinea, 7, 106, 191, 341, 354, 547, 578, 582 von Moränen des Milluni- und Zongo-Tals, Mt. Trikora, 580 Mount Carstensz, 7 253 Multiproxy-Analyse, 146 neoglaziale Moränen, 585 Oberflächen-Expositionsaltersbestimmung (SED Annäherungen, 96 Neukaledonien, 159, 605 – Surface Exposure Dating, 198 Parameter-Netzwerk, 98 Neuseeland, 110, 170, 580, 624 Oberflächenformen, 403, 409 Murray-Darling-Becken, 598 Deglaziation, 27 Oberflächenlufttemperatur, 492 Murray-Dünen-Region, 591 YD, 25 Oberflächentemperatur der Meere, 84 Murray-Gebiet, 595 Nevado Coropuna, 269 Oberflächentemperaturänderungen, 88 Murzuk-Becken, 118, 388, 389, 392, 402, 449, Nevado de Colima, 323, 354 Oberflächenwasser, 65 498 Nevado de Toluca, 115, 323, 331, 332, 336 Ozean, 33 Muschelschalen, 186 Nevados-de-Putre, 273 obliquity forcing, 294 Muztag Ata, 551, 567 Ngami-See, 429, 457, 458, 464, 467 ODP658, 566 MWA, 600, 601 Ngandong-Terrasse, 572 ODP658/659, 510 MWP, 317, 318, 365, 535, 572, 632 NGRIP, 47, 194, 292, 293, 511, 524, 555, 558, ODP806B, 583 Mystery Interval, 346 585, 609 ODP820, 578, 579, 595 •18O, 258 ODP1078C, 458 N Bohrkern, 216 ODP1084B, 503, 504 N2O, 40, 82, 102 Eiskern, 47 ODP1084b, 527 Nährstoffangebot, 379 NH4, 40 Ogolien, 448 Nährstoffe durch Sahara-Staubeintrag, 131 Niederschlag, 38, 51, 56, 107, 131, 212, 397, OIS (Oxygen Isotope Stages), 192 Nährstoffhaushalt, 177 435, 492 Okavango, 429, 464, 467, 469, 511, 526, 529, Nährstoffkreislauf, 37 bei globaler Erwärmung, 650 535 Nahrungskette, 179 in den Tropen, 41 Okavango-Delta, 429 Nahrungsspielraum, 651 lokal, 66 Okavango-Makarikari-Region, 533 Namib, 118, 122, 125, 172, 382, 386, 388, 392, Niederschlagsanomalien, 175, 315 Oki-Phase, 276 411, 423, 430, 431, 485, 486, 526, 527, Niederschlagsreduzierung, 227 Okondeka, 474 531, 537, 539, 600, 650 Niederschlagsrekonstruktion, 314, 365, 524, 541 Ökosystem, 92, 131, 146, 153, 163, 176 Namib Sand Sea, 418 Niederschlagsschwankungen Afrikas, 153 Namib-Erg, 411, 419, 420, 422, 424, 481 in der Cariaco-Region, 359 des Sees, 147 Namibia, 148, 370, 520 Niederschlagstrend limnisches, 146, 147 holozäne Klimaentwicklung, 527 Tropen, 60 tropisches, 156 Namibküste, 434 Niederschlagsverhältnisse, 354, 584 Ökosystemänderungen, 228, 595 Namibtäler, 537, 538 Amazoniens während des LGM, 221 Ökozonen des südlichen Afrika, 166 Namibwüste, 96, 141, 148, 474, 481, 482, 488, Niger, 84, 451 Okwa, 466, 467, 475, 479, 480, 489, 535 636 Nil, 535 Talsystem, 429 14C-Daten, 481, 483 Nilfluten, 392, 402, 530, 535 Olduvai-Becken, 616 Ablagerungen von extremen Fluten in Nilsedimente, 530 Ollagüe-Vulkan, 271, 276 Tälern, 490 Niltal, 402, 449, 498, 514, 528 Oman, 148, 151, 195, 388–390, 453 Alter, 422 Nilwasser, 625 OMPARE2013, 183 Klimaarchive, 492 Noble gases, 345 One Rabbit Famine, 170 Namushasha, 124, 426, 429–431 Nordafrika, 389 Opal, 379 Nanga Parbat, 554, 568, 570 Paläoklima-records, 382 Opalkörper, 156 NAO, 78, 352 Randtropen, 510 optisch stimulierte Lumineszenz, 190 Ereignis, 157 Nordamerika, 150, 621, 623 Oranje, 484, 537, 538 Napo-Refugium, 230 Nordatlantik, 32, 150, 350, 561, 573 orbital cycles, 34 Narabeb, 415, 419–421 allgemeine Zirkulation, 346 orbital forcing, 71, 187, 294, 318, 343, 350, 352, Narmada River, 572 Ozean, 32 509, 554, 587, 592, 642, 644, 650, 651 Nasca-Kultur, 627 nordatlantische Klimaschwankungen, 253 Orbitale Insolations-Anomalien, 74 Geoglyphen, 636 Nordhemisphäre Orbitale Konstellation von Sonne und Erde, 72 Nata, 467 Aerosol-forcing, 59 orbitale Parameter, 642 natural climate variability, 652 North Atlantic Oscillation (NAO), 43 orbitales und solares forcing, 208 natürlichen Variabilität Nossob, 427, 432, 433, 475, 476 Orbiting Carbon Observatory, 62 Klima, 35 Ntem-Tal, 510, 512 organischer geochemischer Proxy, 455 748 Sachverzeichnis

OSL (Optically Stimulated Luminescence), 198, Paläoklimaarchiv, 48, 135, 167, 217, 235, 317, Panama, 185, 338, 356 463, 567 326, 370, 412, 470 Pantanal, 233, 281, 295 Alter, 423, 426, 429, 478 äolischer Sedimente und Formen, 120 Papallacta, 241, 244, 245, 287 Alter der äolischen Ablagerungen, 475 äolisches, 474 Papua New Guinea, 582 Daten, 146, 416, 425, 426 der Tropen, 143 paraglacial, 218 Datierung, 118 des tropischen Australasiens, 578 paraglaziäre (paraglacial) Abtragung und Proben, 420 Dünen, 529 Akkumulation, 118 Ossa, 441 fluviales, 571 paraglaziäre Geomorphologie, 118 Ostafrika, 6, 100, 101, 156, 163, 170, 172, 195, geomorphologisches, 434, 435, 458, 470, 490 Parameterisationen, 201 313, 370, 374, 392, 393, 400, 403, 406, geomorphologisch-sedimentologisches, 590 Páramo, 85 411, 431, 439, 443, 447, 455, 498, 521, limnisches, 322 Páramo-Vegetation, 219, 220 531, 534, 616, 618, 625 marines, 379, 650 Paraná, 282 Glazialchronologie, 406 mit großer zeitlicher Spanne, 214 Parapatrie, 469 Klimarekonstruktionen, 406 mit großer Zeitspanne, 376 Parinacota, 270, 271, 276 ostafrikanische Dürrephasen, 533 terrestrische, 148 Passat, 36, 122, 383, 384, 590, 607 ostafrikanische Hochländer, 354 terrestrisches, 294, 319, 457, 638 Nordostpassat, 374 ostafrikanischer Eiszeit-Klimazyklus, 392 Paläoklimaforschung, 187 SE trade wind index, 492, 504 Ostrakoden, 395, 534 Paläoklimageoarchiv, 170 Passatwind, 36, 253, 285, 348, 378, 384, 399, , 252 Paläoklimaindikatoren, 96 427, 456, 501 Out-of-Africa, 619, 620, 654 Paläoklimaproxy, 147, 195, 337, 366, 370, 489, Stärke, 122 Migration, 617 535 Patagonien, 131, 292 Oxygen Isotope Stage (OIS), 14, 175 glaziäres, 107 Pátzcuaro, 147, 321, 322, 324, 355, 357 Ozean, 33, 68, 71, 87, 88, 174 im südlichen Afrika, 491 Pazifik, 36, 293, 547, 560, 587, 605 allgemeine Zirkulation, 75 Paläoklimarekonstruktion, 212, 370, 438, 446 tropischer, 605, 613 Atmosphäre-feedback, 646 des südlichen Afrika, 489 PDO, 307 Atmosphäre-Modell, 38 des tropischen Südamerika, 225 Pebble Tool, 134 Atmosphäre-System, 31, 356 für das südliche Afrika im LGM, 493 Pedogenese, 551 Atmosphäre-Zirkulation, 204 saharische, 512 pedostratigraphische records, 471 Chemismus, 81 und Dünenbildung, 122 Pedra Furada Rock Shelter, 621 Ökologie, 37 paläoklimatische Deutung Peking-Mensch, 618 Ozeanien, 605 des Längsdünensystems, 125 PEP-II-Transekts, 596 Produktivität, 379 ehemaliger Gletscherstände, 107 Periglazialgebiete, 85 Salinität, 36 paläoklimatische Information, 111, 131 periglazialmorphologisch, 447 Sauerstoffisotopenverhältnis, 15 paläoklimatische Interpretation, 288, 411 Periglaziär, 103, 112 Strömungen, 379 der SWDs, 536 Hangformung, 409 Zirkulation, 21, 306, 434 paläoklimatische Rekonstruktion, 504 Hangsedimente, 349 Ozon, 40 paläoklimatischer Aussagewert, 120 Klimazeugen, 129 Ozonosphäre, 93 Paläoklimatologie, 96 Paläoklimaproxy, 481 Paläoklimazeitskala, 190 Phänomene, 234 Paläoklimazeugen, 489 Prozess, 219, 291, 415 P paläolimnologische records, 147 Schutthorizont, 329 P178-15P, 455 paläomagnetische Zeitskala, 192 Überformung, 271, 276 Pacific Decadal Oscillation, 307, siehe auch Paläomagnetismus, 196, 403 Periodizitäten von •18O und •13C, 159 PDO Paläo-Makarikari-See, 475 Permafrost, 107, 112–115, 118, 169, 214, 237, PDO, 88 Paläoniederschlag, 520 238, 251, 332, 336, 454, 624, 639 Pacliash-Gletscher, 215 Paläoniederschlagsabschätzung, 516 als Klimaarchiv, 113 PAGES 2k, 99, 100 Paläontologie, 152 Anden, 114 Pakhuis Pass, 503 Paläoökosystem, 165 in den Tropen, 114 palaeoenvironmental DNA (PalEnDNA), 168 Paläosee, 391, 402, 406, 457, 462, 470, 519, 594 Mexiko, 114 Palaeotempestology-Forschung, 188 des bolivianischen Altiplano, 252 Neuguinea, 114 Paläoanthropologie, 616 im MIS, 388 Ostafrika, 114 Paläoböden, 131, 133, 138, 218, 227, 234, 281, Paläosol, 133, 135 Permafrostbedingung, 117 322, 326, 329, 391, 403, 411, 413, 557, Paläo-SSS, 187 Permafrostboden, 113 595 Paläo-SSTs, 187 Permafrostforschung, 112 Paläobodensequenzen, 376 Paläostrandlinien, 523 Permafrostgrenze, 115, 210, 237 Paläodrainagesysteme, 447, 516–518 Paläoströmung, 153 Lage ü. NN, 117 Paläodünensysteme, 281 Paläotemperaturen, 110, 114, 115, 151, 163, Permafrosttemperaturregime, 114 Paläofauna, 197 341, 349 Permafrostverbreitung, 114 Paläofeuer, 68 Paläoumwelt-Rekonstruktion, 142 Permafrostzeugen, 114, 115 Paläoflusssystem, 516 paläozoologische Daten, 494 Persischer Golf, 566 Paläoflut, 538, 540, 571, 600 Paleoclimate Modeling Intercomparison Project Peru, 105, 120, 195, 213, 215, 257, 311, 341, Paläoflutforschungen in Indien, 572 (PMIP), 94 353, 585 paläo-geomorphologischer Prozesse Paleosol, 133, siehe auch Paläoböden Gletscher, 5 Rekonstruktionen, 480 Paläosol, 133 Moränen, 245 Paläohydrologie, 142 PALSAR-Radarbilder, 379 paraglaziäre Prozesse, 118 paläohydrologische records, 293, 526 Palynologie (Pollenanalyse), 154, 344 peruanische Anden, 587 paläohydrologische Veränderungen, 513 Palynomorph, 154 Petén Iztá, 349, 355 Paläoklima, 153, 403 Pamir, 199 Petén-Iztá-See, 343, 346 Sachverzeichnis 749

Petén-Iztá-Seesediment-Stratigraphie, 347 Polylepis, 314, 316 Reaktionszeiten der Klimaproxys, 550 Pfannen, 418, 424, 479 Polynesien, 605 Recycling der Niederschläge, 213, 336 Pfannenrand-Dünen, 471 Pomerape, 271, 276 Referenz-Chronologien, 193 Pflanzendomestifikation, 354 Poopo, Coipasa und Uyuni (POCOYU), 252 Reflexion Pflanzenlipide, 433 Popigai-Impakt, 86 Aerosole und Reflektion der solaren Pflanzen-Makrofossilien, 156 Popocatépetl, 170, 323, 329 Strahlung, 58 Photosynthese, 68, 154, 163, 218 Porites-sp.-Korallen, 600 Reflexionsgrad global, 68 Postglazial, 142 Sediment, 47, 285 phytogeographische Einheiten, 384 potenzielle Evapotranspiration, 98 Refugien, 222, 379, 435, 516 Phytolith, 131, 156, 157, 384 prähistorische Kunst, 172 Regenwald, 153, 222, 283, 574, 596 Phytoplankton, 60, 66, 68, 87, 131, 176, 179 Prä-LGM, 267 Regenwald-Angiospermen, 578 Phytoplanktonblüte, 65 Prä-LGM-Alter, 246, 252, 254, 263, 266, 271 Regenwälder der Andenhänge, 583 Phytoplanktonkonzentrationen, 65 Prä-LGM-Moränen, 257 Regenwaldkrise, 510 Pichincha-Vulkan, 242 Prä-LGM-Vergletscherungen, 580 Regenwaldrefugien, 227, 230, 436, 438 Pico de Orizaba, 113, 172, 323 Prä-LGM-Vergletscherungsgeschichte, 247 Regenwaldrodungen, 178 Pinatubo, 49, 57, 170, 318 Prä-LGM-zeitlicher Talgletscher, 308 Regenzeit, 370, 438, 646 Pinus aristata, 161 Präzession (precession), 71, 74, 201, 396, 397, Regolith, 131 Pinus hartwegii, 326 441, 445, 490, 500, 509, 557, 587, 592, Reinterpretation der SED-Alter, 261 Pinus longaeva, 159 620, 641, 642 Reiskultivierung, 622, 625 Pinus-Prozentanteile, 349 Holozän, 75 Rekonstruktion Pithecanthropus erectus, 574 Präzessionseinfluss, 550 biologischer Proxys, 168 Plankton, 37 Präzessionsinsolation, 299, 394 der Biotope, 521 planktonisch, 176 Präzessionsinsolations-forcing, 441, 526 der LGM-zeitlichen Paläowinde, 122 planktonische Algen, 37 Präzessionszyklus, 234, 378, 442, 524, 556 der mittleren Jahresniederschläge, 528 Pleistozän, 71, 73, 396, 417, 573, 574 precession forcing, 294 eiszeitlicher Temperaturbedingungen, 114 Definition, 12, 17 Primärproduktion, 178 langer Zeitreihen, 392 Pleistozän-/Holozän-Grenze, 437 Probennahme, 122, 196, 198 von Temperatur- und Niederschlagstrends, Pleistozän-/Holozän-Wende, 329 Prognosen, 641 246 pleistozäne Gletscher, 338 Proxy Reliefformen, 407 Pliozän, 417 für Meeresoberflächentemperaturen, 181 Reservoir-Alter, 524 Pliozän/Pleistozän-Grenze, 14, 380 Proxy- bzw. Stellvertreterdaten, 98 resilience, 654 Pluvial, 8, 457 Proxy- und Modelldaten, 497 Ressourcen PMIP2-Simulation, 93, 351, 510 Proxyauswahl, 161 Überbeanspruchung der natürlichen R., 652 PMIP-LGM-Simulation, 445 Proxydaten, 87, 96, 161, 172, 281, 285 Restpopulationen, 624 Pocoyu (Poopo-Coipasa-Uyuni), 222 der Speläotheme, 148 Rhizocarpon, 307 Podocarpus sp., 159, 226, 376 terrestrische, 282 Rhizocarpon-geographicum-Flechten, 310 Pohakuloa, 609, 612 Proxyparameter Ries-Einschlag, 86 Pohakuloa-Tal, 607 organisch-geochemische, 147 Río Atuel, 108 Polarbär, 163 Proxytemperatur-records, 282 Río Curi Leuvú, 108 Polarregion Prozess Río Negro, 230 Albedo, 66 an den Hängen, 301 Río-Acre-Becken, 230 Pollen, 155, 156, 165, 280, 317, 345, 379, 402, fluvial, 140 Río-Kaluyo-Tal 527 periglaziäre (solifluidale), 107 glazialmorphologische Skizze, 250 in marinen Sedimenten, 155 Ptolemäussee, 516, 518 Río-Mocha-Tal, 241, 246 MAT-Methode, 156 Río-Zongo-Tal, 247 Verwitterungseinfluss, 155 Q Rising Star Cave, 617 WA-PLS-Methode, 156 Quantifizierungen, 651 Ritacuba-Negro-Gletscher, 288–290 Pollen-%-Diagramm, 155 Quartär, 12, 29, 70, 410 rock hyrax (Klippschliefer), 165 Pollen/Klima-Kalibrierung, 156 Definition, 12, 17 Roman Warm Period, 307 Pollenauswertungen, 281 Klimaschwankungen, 641 Rondonia, 224 Pollendaten, 163 quartäre events in Indien und Arabien, 554 Rössing-Höhle, 96, 148, 386, 388, 416, 421, Pollendatenbank, 156 quartäre glaziale Stadien, 241 431, 481, 492 Pollendiagramm, 378, 443 quartäre Klimaänderungen, 94 Roter-Kamm-Impakt-Krater, 424 Polleneintrag, 222 quartäre Klimaschwankungen, 210 Rotes Meer, 457 Pollenerhaltung, 155 in den Tropen, 610 Rub-al-Khali, 118, 526 Pollengehalte, 397 quartärer Klimawechsel, 129 Rückkoppelung, 38 Pollengruppen, 345 Quelccaya, 105, 262, 267, 301, 307, 310, 318 im quartären Klimasystem, 397 Pollenproduktion, 155 Eisbohrkern, 315 im System Atlantische Meeresströmungen – Pollenprofil, 85, 322, 325, 326, 328, 343, 376, Eiskappe, 317 Klima, 306 399, 438, 441, 496, 561 Gletscher, 298 Klima, 69 vom Lynch-Krater, 579 Qunf Cave, 151, 526 Klima und Evolution, 620 vom Titicacasee, 223 Klima-C-Kreislauf, 38 Pollen-records, 500 R Ruß, 60 marine, 376 Radiolarien, 180 Ruwenzori, 164, 370, 409, 415, 417, 455 Pollenspektrum, 155 Radioluminescence, 198 Glazialchronologie, 411 Pollentransport, 155 rainforest crisis, 443, 512, 626, 627 Pollentransportmodell, 384 Rare Earth Elements (REE), 126 S Pollenverteilung, 381 Rarotonga, 600 Sacred Lake, 164, 411, 455 750 Sachverzeichnis

Sahara, 94, 118, 172, 374, 379, 391, 392, 447, Schwefel-record, Eiskerne, 631 SHI-9014, 578 502 Schwellenwert, 202, 645, 651 Sibirien, 113, 623 Aridifizierung der heutigen Sahara, 380 Schwemmfächer, 108, 247, 250, 254, 301, 314 Siedlungsgang und Klimawandel, 636 Aridität, 512 schwimmende Chronologien, 96 Sierra Nevada, 324 green, 512 Sclerochronologie, 186 Sierra Nevada del Cocu, 271 grüne, 374, 516 Sea Level Pressure (SLP), 604 Silcrete, 133 Ost-Sahara, 405, 497 Sea Surface Salinity (SSS), 71 Simbabwe, 529, 540, 541 Sahara-Sahel-Grenze, 376, 382 Sea Surface Temperature (SST), 71 Simpson Desert, 591, 592 Saharastaub, 178 SE-Atlantik, 126, 382, 458 Simulation, 86 Sahel, 41, 60, 84, 496 Sebcha, 118 Modellierung, 86 Flüsse, 495 SED (Surface Exposure Dating), 108, 199, 218, Sinterbildungen Sahelanthropus tschadensis, 617 245, 247, 251, 252, 254, 256, 259–262, Intensität, 388 Sahul, 84, 545, 573, 582, 595, 596, 622 269, 277, 279, 287, 289, 291, 292, 319, Siwalik, 573 Sajama, 251, 259, 318, 628 339, 343 Siwalik Hills, 550, 551 •18O-record, 251 SED(TCN)-Altersbestimmung, 556 Skalierung, 267, 277 Eisbohrkern, 246, 315 SED-Alter, 199, 246–248, 252, 260, 262, 263, Skalierungsschemata, 243 Eiskappe, 317 266, 286, 287, 292, 299, 409, 561, 562 Skardu-Becken, 111 Eiskern, 298 Interpretation, 242 slackwater deposits (SWD), 96, 141, 142, 169, Vulkan, Bolivien, 256 SED-Altersbestimmung, 251, 252, 254, 257, 482, 484, 536, 592, 602 -See, 253, 276 261, 269, 292, 294, 298, 319 Smilodon, 284 , 214, 217, 223 von Moränen, 267 Snail Shell und Bukit Assam Caves, 151 -Seephase, 252 Sediment, 131 SO-14-08-05, 591, 596 Salinitätsänderungen, 532 der Ozeane, 175 SO-14-08-15, 596 Salomonsee, 544 des Titicacasees, 251 SO2, 170 Salzgehalt der Meere, 84 marines, 428 Software, 208 Samalas, 59 verschiedener Seen, 342 solar dimming, 58 Sambesi, 84, 418, 445, 450, 498, 511, 520 Sedimentation von organischem C, 68 Sonne, 38 Sambia, 470, 529 Sedimentationsrate, 174 solar forcing, 71, 75, 78–81, 87, 187, 309, 317, San, 626 Sedimentkerne 366, 454, 528, 572, 587, 605, 639, 640, San Francisco-Tal, 252 marine, 376 645, 646, 649–651 Sanbao Cave, 234, 559, 572, 642 Sedimentologie, 567 solar radiation, 75 San-Juan Bosco, 226 Sediment-records, 143 Solarstrahlung, 43, 71, 72, 75, 80, 86, 202, 318, Santa Maria, 170 See 347, 349, 350, 352, 362, 366, 508, 528, Sapropel, 379, 382, 390, 392, 403, 516 des Rift Valley, 440 532, 535, 536, 538, 570, 585, 625, 632, SASM, 280 warmzeitliche pluviale, 639 649, 650 Satellit, 51, 52 Seekreide, 518, 519 gesamte, 75 Satellitensensoren, 66 Seesedimente, 98, 143, 169, 233, 343, 351, 355, Holozän, 78 Satschén-Gletscher, 571 394, 411 Solifluktion, 115, 415 Sauerstoff, 40 lakustrine Carbonate, 391 Sommerinsolation, 445, 532 stabile Isotope, 39 Seespiegel, 392, 401, 431, 498, 538 Sommermonsun, 187, 498, 518, 547, 554, 559, Sauerstoffisotopen, 15, 152, 160, 170, 178, 180, im LGM, 397 560, 566, 570, 572, 599, 632 181, 190, 192, 378 LGM, 148 Sonne, 75, 77, 80, 86, 87 Interpretation, 15 LGM-zeitliche, 297 thermische Diffusionswellen, 14 Säuger, 153 Schwankungen, 447 Sonnenaktivität, 77, 157, 194, 366, 569, 627, Nahrungsansprüche, 166 Seespiegel- und Salinitätsänderung, 96 633, 650 Säugetierfauna, 282, 380 Seespiegeländerungen, 195, 234, 295, 321, 453, Sonneneinstrahlung, 306 Savanne 523, 536 Insolation, 70 Ausweitung, 222 Seespiegelhochstand, 101 Sonneneruptionen, 75 Savannenboden, 156 Ostafrika, 101 Sonnenflecken, 78, 538, 625 Savannenbrand, 63–65 Seespiegelrekonstruktionen, 395 Wolf-, Spörer-, Maunder- und Dalton Savannenwald, 624 für das Makarikari-Becken, 467 Minima, 78 scheinbare Synchronität der Ereignisse, 319 Seespiegelschwankungen, 99, 374, 440, 469, Sonnenfleckenaktivität, 542, 573, 636 Schiefe der Ekliptik (Obliquity), 71, 73, 642 496, 526, 532, 590, 598 Sonnenfleckenkurve, 532 Schlamm des Pátzcuaro, 357 Sonnenfleckenminima, 535, 570 hemipelagischer, 382 und Sonne, 535 Sonnenfleckenzyklus, 75, 538 Schmelzwasser, 84, 100, 560 Seespiegelstände, 216, 382, 394, 512, 594, 596, Sonnenoberfläche, 77 Schmelzwasserabflussbahnen, 337 610 Sonnenstand (Tropen), 58 Schmelzwassereinspeisung, 343 Schweizer Jura, 80 Sonnenstrahlung, 40, 58, 94, 101 in den Nordatlantik, 336 Seestadien Sonnenwind, 69, 75, 77, 79, 87, 202, 641 Schmelzwasserereignisse, 347 holozäne, 448 Sonnenzyklus, 88, 206, 253 Schnee- und Eisbedeckung, 45 spätpleistozäne, 448 Sorata-Tal, 245 Schneegrenze, 85, 91, 108, 210, 214, 269, 341, Seezustandsrekonstruktionen, 281 Soreq Cave, 151, 195 454 Sénégal, 403 Sossus Vlei, 125, 418, 481, 531 ELA, 103 Sensitivität Southern Annular Mode, 600 LGM, 85 der tropischen Ökosysteme, 378 spanische Armada, 632 Schuttbedeckung, 309 des Klimas, 636 Spätglazial, 102, 142, 167, 260, 281, 406, 474, Schwarzwasserfluss, 230 Gletscher, 100 486 Schwebfracht, 178 Seychellen, 188 in Amazonien, 222 Sachverzeichnis 751

Spätglazial/Holozän-Übergangszeit, 283 Standard-Pollen-Summe, 220 Pazifikküste, 313 spätglaziale Entwicklung der Vergletscherungen, Standortbedingung, 157 Physiogeographie, 212 241 Starkregenereignis, 314 Sommermonsun (SAM), 277 spätglaziale Gletscherschwankungen, 292, 411 statistische Methode, 96, 172 Temperaturanomalien, 318 spätglaziale Gletschervorstöße, 291 Staub, 50, 120, 126, 130, 260, 280, 396, 399 YD, 25 spätglaziale klimatische Asymmetrie, 505 äolischer, 376, 382 Sudan, 388 spätglaziale Moränen in Eiskernen, 126 Sudanzone, 496 Alter, 287 interplanetarischer, 86 Südatlantische Konvergenzzone, 213 spätglaziale Umweltverhältnisse, 298 Staub-Aerosole, 126, 131 Südchinesisches Meer, 544, 560 spätglazialer Gletschervorstoß, 263 Staubdaten, 130 Südhemisphäre, 192 Spätholozän, 27, 349 Staubdeposition, 60, 131 Südostasien, 544, 572 Spätholz, 159, 163 kaltzeitliche, 131 Südsahara, 650 spätpleistozän-frühholozäne Fauna, 521 Staubeintrag, 178, 195, 380, 449, 595, 641 südwestliches Afrika, 385 Spätquartär der Ost-Sahara, 165 Staubfracht in Kaltzeiten, 131 Sukzession, 156 spätquartäre Vergletscherung der mexikanischen Staubkreislauf, 50 Sulawesi, 176, 547, 574, 585, 587 Vulkane, 331 Staubphasen, 257 Sulfat SPCZ (South Pacific Convergence Zone), 549 Staubquellen, 55, 131, 473 vulkanisches, 106 speciation, 228 Staub-record, 129 Sulfataerosole, 56 SPECMAP-Kurve, 193, 642 Staubsedimente Sulusee, 544 Speläothem, 49, 96, 98, 148, 170, 218, 233, 294, Amazonien, 130 Sumatra, 85 389–391, 431, 449, 458, 481, 492, 498, Ozean, 68 Sunda, 84, 545, 547, 573, 582, 585, 595, 596, 511, 516, 535, 557, 570, 572, 575, 584, Staubtransport, 38, 47, 504, 616 622 592, 596, 600, 605, 639 kaltzeitlicher, 130 Super-Interglazial MIS 11, 643 •18O-Kurve, 556 SE-Atlantik, 122 Surface Exposure Dating (SED), 242, siehe auch •18O-Werte, 150, 151, 224, 358 Staub-Trajektorien, 501 SED (Surface Exposure Dating) Bildung, 385, 388, 391, 392, 481 Weg, 127, 596 surges, 103, 106 Chronologie, 629 Steinlagen, 133 Surucucho, 147 Daten, 149, 403 Steinpflaster, 126, 138 Süßwasserdiatomeen, 376 Lagen, 366 Steinsohlen, 133 Süßwasserzufuhr in den Nordatlantik, 506 Laminierung, 149 Sterndünen, 118 SW African humidity index, 504 records, 190, 366 Stickstoff, 40 Swakopmund, 122 Wachstum, 148 Stoffkreisläufe, 178 Swakop-Tal, 483 Speziation, 469, 620 stoneline, 133, 134, 224, 434, 437 SWD, 537, 538, siehe auch slackwater deposits Sporen, 154 Strahlstrom, 560 (SWD) Spörer- und Wolf-Sonnenflecken-Minima, 366 Strahlung, 40, 41, 51, 59, 69, 107, 205 Daten, 537 Spörer-Minimum, 78, 573 solare, 48, 74 synchrones Gletscherverhalten, 236 Spurengas, 40, 56, 71 Strahlungsbilanz, 69, 170, 233 Synchronisation von Isotopen-records, 196 Treibhausgas, 56 Strahlungs-forcing, 538 synoptische klimatische Situation, 566 Squall Lines, 518, 523 Strahlungshaushalt, 41, 45, 50, 202, 636 Synthese der Paläoklimazeugen, 281 Sr/Ca data, 187, 345 globaler, 56, 60, 61 System Erde, 45 SSS (Sea Surface Salinity), 84, 600 Strandlinien, 188, 457, 462 Szenarien der anthropogenen SST (Sea Surface Temperature), 36, 82, 84–86, Strandterrassen, 439 Klimabeeinflussung, 201 106, 183, 194, 258, 283, 296, 341, 348, Strandwall, 463, 465, 470, 471, 473 379, 399, 401, 431, 434, 441, 444, 454, stratified screes, 115 T 456–458, 492, 538, 577, 583, 600, 601, stratified slope deposits, 115, 237–239, siehe Tacora-Vulkan, 271, 277 609 auch bedded slope deposits Tafel-Eis der Karibik, 341 Stratigraphie, 96, 106 tabular ice, 101 der Sulu-See, 585 Stromatolith, 146, 392, 444, 457 Taifun, 188, 550, 632 des Indischen Ozeans, 445 Strömung, 33 Taima-Taima, 324 des WPWP, 578 Ozean, 33 Taklamakan, 127 im Golf von Mexiko, 337 Strömungsgeschwindigkeit der Luft, 120 Talbildung in den zentralen Anden, 259 LGM, 85 Strzelecki-Wüste, 591, 595 Talepu-Hominin-Lokalität, 575 von der Sargasso-See, 573 Sturmablagerungen, 603 Talformanalysen, 271 SST-Absenkung, 301 Sublimation, 101 Talgletscher, 111 SST-Gradienten im Pazifik, 253 submarine Rutschungen, 184 Talgletscherlängen, 262 SST-Karte, 605 Subsidenz, 609 talus-derived rock glacier, 114, 118 SST-Rekonstruktion, 585 Subtropen, 92 Tamanrasett-Paläo-Flusssystem, 381 St. Paul Island, 624 China, 556 Tambora, 48, 59, 170, 318, 356 Stadiale, 376, siehe auch Eiszeit, Kaltzeit Subtropenhoch, 370 Tephra, 601 Stage 11 problem subtropische Front, 75 Tanganjika, 400, 431, 444 MIS 11, 71 Südafrika, 66, 84, 151, 159, 381, 397, 411, 499, Tanganjika-See, 393, 394, 445, 498, 511, 521, Stalagmiten, 148, 229, 365, 385–387, 463, 559, 536 siehe auch Lake Tanganyika 577, 629 Umweltrekonstruktion, 539 Tansania, 618 •18O-records, 577 Westküste, 478 Tarawera, 170 Oman, 46 Zirkulationssysteme, 527 Tasmanien, 598 record von Belize, 363 Südamerika, 26, 168, 170, 175, 294, 621, 623 Tassili, 176 Stampriet-Aquifer, 489, 493, 529 Andenbereich, 102 Tauca, 217, 223, 253, 258, 270, 276 Standardisierungsverfahren, 96 Monsun, 213, 218 TCP-Dürren, 366 752 Sachverzeichnis

Teak-Chronologie, 159 terrestrischer Eintrag, 381 Treibhausgas, 18, 21, 33, 36, 40, 46, 48, 52, 55, tektonische Aktivität, 321 terrestrisches Klimaarchiv, 87, 88, 319, 439, 520 65, 68, 81, 101, 102, 105, 113, 202, 294, Telapón, 323 TEX86, 164, 282 636, 645 Telata-Gletscher, 298, 300, 301 Index, 163, 441 CO2, 18, 21 Temperatur, 51 Temperatur-Kurve, 449 Emission, 160 der Tiefenwasser, 86 Texcoco, 320 Erwärmung, 204 LGM, 86 See, 324 Gehalte, 632 LGM-zeitliche, 439 Th/U-Alter, 148 GHG, 81 Temperatur- und Hydrologie-records, 400 Thailand, 159 Konzentrationen, 202, 206 Temperatur/Tiefen-Profile im Permafrost, 152 THAR, 104, 264, 267 Savannenbrand, 65 Temperaturabnahme Tharr, Wüste, 550, 558 Tres Lagunas, 279 während des LGM, 332 THC, 34, 84, 86, 202 Tridacna gigas, 186 Temperaturabschätzung, 161 The Day After Tomorrow (Film), 35 Trinil auf Java, 618 Temperaturabsenkung, 234 Theorie der Hydraulischen Geometrie, 140 Tritrivakely, 399, 402, 431, 443 LGM, 106 thermischer Gradient, 151 Trockengebiet, 129 Vulkaneruptionen, 57 thermohaline Zirkulation (THC), 26, 32, 71, 84, Trockenklimate, 373 Temperaturänderung, 114, 117, 281 86, 202 Trockentropen, 92, 294 Permafrost, 113 Thermokarst-See, 118 Tropen, 40, 92, 98, 129, 133, 140, 167 Temperaturanomalie, 48, 175, 355, 646 Thermokline, 605, 606 Abgrenzung, 92–94 für das 8,2 ka event, 337 Ozean, 36 Aerosol, 65 Temperaturdepression, 215, 220, 241, 253, 267, Thermolumineszenz, 198, 200 Definition, 373 339, 343, 439, 444, 481, 578, 583 Tiahuanaco, 627 der Neuen Welt, 165 im LGM, 370 Tianmen-Höhle, 559 Gliederung nach Lauer, 92 LGM-zeitliche, 455, 578 Tibesti, 142, 403, 449, 498, 517 Heinrich-event, 32 während des LGM, 345 Tibet, 117, 545, 551, 569 Jahrringe, 157 Temperaturentwicklung, 82 letzteiszeitliche Vergletscherung, 555 Klima, 4 Temperaturerniedrigung, 239 Tiefdruckgürtel, 45 quartäre Klimaschwankungen, 610 im LGM, 609 Tiefenwasser Verschiebung des nördlichen Tropengürtels, Temperaturgradient, 131, 239, 439, 605, 609 Ozean, 33 94 Temperaturhöhengradient Temperatur, 86 volcanic forcing, 59 lapse rate, 45 Tierpopulationen, 227 wechselfeuchte, 447 Temperaturindikatorwert, 110 Tikal, 627 Tropengebirge, 112 Temperaturkurve, 195, 631 , 5 Tropengletscher, 112 Temperaturproxy, 393, 645 Timorsee, 545 Tropengrenze, 91, 94, 544, 590 •18O, 20 Timta-Höhle, 560 im Holozän, 94 Temperaturrekonstruktion, 264, 353 Tiquié-Fluss, 230 Tropenzone mit Biomarkern, 164 Tirari-Wüste, 590, 591, 595 Ausdehnung, 650 Ostafrika, 164 Titan, 46, 335, 350, 365 Tropical Temperate Troughs (TTT), 492, 494, Temperaturschwankung Titicaca, 235, 280 525, 539, 602 glazial-interglaziale, 576 Titicacasee, 6, 146, 214, 215, 220, 252, 253, tropische Anden, 102, 105 Temperaturtrend, 206 269, 296, 299 tropische Eisbohrkerne, 85 Temperaturunterschied, 46 Sedimente, 282 tropische Gletscher, 100, 102 Nord/Südhemisphäre, 46 Seespiegel-Rekonstruktionen, 297 tropische Klimate, 36, 149 Temperaturverhältnisse im Permafrost, 114 Seespiegelschwankungen, 296 tropische Klimazeugen, 105 Tepetate, 218, 323, 325, 361 Tiwanaku(Tiahuanaco)-Kultur, 628 tropische westafrikanische Küsten, 520 Tepexpan, 320 Tláloc, 323, 326 tropische Zyklone, 93 Tephra, 106, 132, 155, 170, 194, 239, 315, 329, Tláloc-Statue, 352 tropischer Atlantik, 259, 435 403, 580, 607 Toba-Sedimente, Mexiko, 218, 323, 325, 327 tropischer Pazifik, 292, 293, 613 Tephren, 170 Toba-Vulkanausbruch, 49–51, 54, 172, 576, 578 tropischer Regenwald, 155, 178, 202, 381 Terminal Classic Period (TCP), 359, siehe auch TOC-Gehalte, 399 Reduzierung, 433 TCP-Dürren Ton, 133 tropischer Wald, 157 Termination, 30, 206, 285, 397, 558, 642 Tonminerale, 379 tropisches Gebirge, 85, 115 Termination I, 163, 283, 286, 319, 336, 344, Toona ciliata, 159 tropisches südamerikanisches Klima, 210 367, 435, 449, 450, 495, 496, 498, 499, Total Solar Irradiance (TSI), 43, 59, 75, 87, 190 Tsauchab, 418, 419, 481, 511, 531 503, 506, 508, 516, 526, 540, 551, 580, Totes Meer, 518, 523 Tschad, 131, 144 586, 595, 596, 612, 621, 623, 645, 651 Totorillas, 235 Tschadbecken, 449, 533 Allgemeine Zirkulation der Atmosphäre, 498 Toxodonten, 283 Tschadsee, 146, 352, 447, 448, 451–453, 515, im südlichen Afrika, 502 Transferfunktionen, 281 520, 529, 534 Klimaschwankungen, 502 transient climate sensitivity (TCS), 641 Paläo-Mega-Tschadsee, 515 Temperaturanstieg, 640 Transpiration, 62 Paläo-Tschadseen, 451 Termination II, 24 der Pflanzen, 38 TSI (Total Solar Irradiance), 639 Termiten, 133, 134, 138 Transversaldüne, 120, siehe auch Düne Tsodilo Hills, 176, 458, 462, 464, 492, 529 terra-firme-Wald, 296 Travertin, 229, 391 Tsondab, 419 Terrassen, 433, 551 Travertinterrassen, 393 Tsunami, 86, 126, 188 Bildung, 141 Treibhauseffekt, 40, 43, 82, 93, 106 Tswaing, 396–401, 428, 480, 491, 511, 528 terrestrische Befunde, 285 des CO2, 87 Tulparaju-Gletscher, 304 terrestrische Klimazeugen, 100 Tuni, 248, 254 terrestrische records, 281 Sachverzeichnis 753 tuning, 21, 106, 190, 193, 195, 216, 223, 259, Venezuela, 26, 106, 141, 314, 343 Wallace-Linie, 547, 573, 622 385, 391, 457, 636 Gletscher, 5 Walvis Ridge, 382 synchrones globales Verhalten, 191 Seesedimente, 356 Wanderungen der Flora und Fauna, 545 tuned, 397, 398 Verbrennung von Biomasse, 68 Wanderungen Out-of-Africa, 620 YD, 26 Verdunstung, 38, 66, 297 Warm/Kaltzeit-Rhythmus, 394, 616, 651 Turbidity-Ströme, 180 Tropen, 39 Wärmehaushalt, 64 TWINSPAN, 220 Vergletscherung, 103, 170, 260, 370, 403, 410, Ozean, 33 Twyfelfontein, 176, 370 607 warming hiatus, AD 1999–2014, 207 Tzabnah, 359 Ausmaß, 318 Warmtropen, 92, 645 Tzabnah-Höhle, 365 der peruanischen Anden, 264 Warmzeit, 36, 431, 586 der venezolanischen Anden, 265 Warrawoocarra-Schwelle, 594 U des Himalaya-Tibet, 551 Warve, 96, 143, 239 U/Ca-Verhältnisse, 187 detaillierte Kartierung, 243 Wasserdampf, 40, 43, 81, 213, 518, 522, 561, U/Th-Altersbestimmungen, 227, 453 Hochasiens, 110 639, 650 U K0 37 (alkenone unsaturation index), 85, 183, 282 in Ladakh, 557 Wasserführung der Flusssysteme, 222 Übergang in Lahul, 557 Wassergehalt der Probe, Thermolumineszenz, von pleistozänen zu holozänen Makanaka, 607 198 Klimabedingungen, 346 Makanaka-, 611 Wasserhaushalt, 140, 222 vonSchneezuEis,102 während des globalen LGM, 276 Wasserkreislauf, 38, 39 Überschwemmungssee, 141 Waihu-, 608 tropischer, 557 Ufermoräne, 108 Vergletscherungsphase, 240, 242 Wasserstoff Uganda, 164 Vergletscherungsstil stabile Isotope, 39 Uitenhage, 493 Wandel, 554 Wassertemperaturen, Rekonstruktion mittels ultraviolette B-Strahlung, 85, 582 Verlagerung der Siedlungen, 514 mariner Mikroorganismen, 181 Uluru (Ayers Rock), 591 vernetztes geoökologisches System, 654 Weber-Linie, 547 Undavi, 248, 301 Verschiebung des nördlichen Tropengürtels, 94 Weichtiere tropischer Regionen, 165 Untergrundverhältnisse, 94 Vertebraten, 165 Weißer Nil, 406 Upwelling, 187, 285, 379, 399, 449, 456, 477, Verwitterung, 131, 132, 199, 245, 247, 250, 262, Weißwasserfluss, 230, 232 478, 497, 503, 605 403 Weltbevölkerung, 651 Intensität, 122 Viehhaltung, 652 Weltklimakonferenz, 651 Ozean, 24, 34 Vietnam, 159 Welt-Klima-Programm, 201 Upwelling-Proxy, 181 Vikarianz, 227 Welwitschia mirabilis, 423, 540 Ursache Viktoria-See, 410, 529, 535, siehe auch Lake Wende YD/Holozän, 287 der Klimaänderungen, 104 Victoria Werkzeuge, 618 Ursachen-Wirkungs-Geflecht Virus, 37, 176 West Pacific Warm Pool, 549, 577, 595 von orbital forcing, Glazialzyklen, CO2 und Vogelarten, 227 Westafrika, 55, 133, 403, 443, 496 Proxydaten, 75 neotropische, 231 westafrikanische Vegetationszonen, 382 Ursache-Wirkungs-Geflecht, 360 volcanic forcing, 48 Westindien, 130 US National Academy of Sciences, 160 vorindustrielle Zeit, 93 Westwindzone, 306, 502 U-series, 188 Vorzeitform, 120 Wetter, 45, 651 USGS HydroSHEDS database, 381 Vostok, 170, 195, 259, 559 Wetter-/Witterungsereignis, 170, 205, 632 UV-B-Strahlungsverhältnisse, 584 CO2-Chronologie, 216 Whiterock Cave, 572 Uyuni-See, 271 Eisbohrkern, 246 wiggle-match-Datierung, 524 Vulkaneruption, 51, 57, 58, 104, 150, 157, 170, Windkanter, 126 V 632 Windrichtung, 126, 497 Valencia-See, 283 vulkanische Aerosole, 88 Windschliff, 118, 120, 126 Valsequillo, 321, 621 vulkanische Aktivität, 321 Windstärke, 478 Vanuatu, 170, 172, 605 vulkanische Aschen, 170 im LGM, 477 Várzea, 140 vulkanische Ereignisse, 59, 96, 633 Windsystem, 122 Vegetation, 45, 60, 69, 153 vulkanische Eruption, 48, 51, 54, 86, 170, 356 Wintermonsun, 129, 187, 547, 570 afroalpine, 410 Aerosol, 48, 54 Winterniederschläge, 474 Höhen- und Trockengrenzen, 234 vulkanische Sulfate, 106 Winterregen, 469, 479, 480, 489, 491, 492, 494, Modellierungen, 281 Vulkanismus, 43, 69, 106 500 Zentralafrikas, 436 Vulkanismus und Klima, 58 Wintertemperaturanomalie-Änderungen, 174 Vegetationsänderung, 63, 155, 376, 633 vulnerability, 654 Wirbelsturmfrequenz, 188 während des Spätquartärs, 584 Wirbeltier, 138 Vegetationsbedeckung, 63, 131 W Witterung, 45, 217, 632, 651 Vegetationsgrenzen, 294 Wachstumslinien, 386 Wolf-Minimum, 78 Vegetationsgürtel, 379 Wachstumsperiode, 154 Wolken, 40, 45, 48, 50–52, 81, 202, 204 Vegetationshöhenstufen, 454 Wachstumsstrukturen der Muschel, 186 Wolken-Albedo, 46 Vegetationsrekonstruktionen, 376 Waffen, 619 Wolkenbildung, 87 Vegetationsstufen, 220, 227, 582 Wahiba Sand Sea, 390 Wolkenbildung durch Bleibestandteile, 58 Vegetationszerstörung, 165 Waldbedeckung Wolkendecke, 604 Vegetationszone, 156, 521 eiszeitliche, 82 Wolkenobergrenze, 93 im LGM, 444 Waldgrenze, 91, 215, 339 Wonderkrater, 480, 481, 529 Vegetationszusammensetzung, 165 Waldrodung, 345 Wüste, 120, 129, 130, 132, 138, 392, 471 VEI, 58 Walker-Zirkulation, 549, 550, 616 venezolanische Anden, 79, 298 Wallacea, 354, 622 754 Sachverzeichnis

X Yok Balum Cave, 150 Zirkulation der Ozeane, 12, 31, 306 Xiaobailong, 556, 559–561 Younger Dryas, 272, 446, 626 Zirkulationsmuster, Südamerika, 212 Yucatan, 86, 325, 329, 338, 343 Zivilisation Y Einfluss von Klimaänderungen, 357 Yangtze, 174 Z Pharaonen, 515 Yardang, 126 zeitlich hochauflösende Daten, 143 Ziway Shala, 195, 449, 453 YD, 25, 26, 31, 187, 236, 277, 283, 285, 286, zeitlich hochauflösendes Profil, 148 Zongo, 105, 216, 244, 245, 248, 263, 264, 298, 288, 293, 295, 298, 318, 329, 336, 338, Zeitscheibe, 535, 536 300, 301, 612 344, 353, 367, 433, 441, 443, 445, 449, Zeitserien, 149 Zooplankton, 37 456, 458, 495, 498, 500, 503, 505, 506, Zeitskala, 636, 651 Zu-jung-Alter, 291 509, 515, 521, 524–526, 558, 559, 561, Zenitalregen, bei zukünftiger Erwärmung, 650 Zyklone, 84 580, 585, 587, 596, 598, 612, 645, 651, Zentralafrika, 431, 438 tropische, 601 siehe auch Jüngere Dryas, Younger Dryas Zentralamerika, 320, 355 Zyklus, 12 Einfluss, 286 Zentralmexiko, 325 der Glazial-/Interglazialzeiten, 610 Ereignis, 580 Temperaturentwicklung, 339 marine isotope stage, MIS, 16 Ursache, 26 Zirkulation der Atmosphäre, 40, 96, 398, 564 Yellowwood-Baumscheibe, 159 allgemeine, 43 springer.com

Willkommen zu den Springer Alerts Jetzt anmelden! •• Unser Neuerscheinungs-Service für Sie: aktuell *** kostenlos *** passgenau *** flexibel

Springer veröffentlicht mehr als 5.500 wissenschaftliche Bücher jährlich in gedruckter Form. Mehr als 2.200 englischsprachige Zeitschriften und mehr als 120.000 eBooks und Referenzwerke sind auf unserer Online Plattform SpringerLink verfügbar. Seit seiner Gründung 1842 arbeitet Springer weltweit mit den hervorragendsten und anerkanntesten Wissenschaftlern zusammen, eine Partnerschaft, die auf Offenheit und gegenseitigem Vertrauen beruht. Die SpringerAlerts sind der beste Weg, um über Neuentwicklungen im eigenen Fachgebiet auf dem Laufenden zu sein. Sie sind der/die Erste, der/die über neu erschienene Bücher informiert ist oder das Inhalts- verzeichnis des neuesten Zeitschriftenheftes erhält. Unser Service ist kostenlos, schnell und vor allem flexibel. Passen Sie die SpringerAlerts genau an Ihre Interessen und Ihren Bedarf an, um nur diejenigen Informa- tion zu erhalten, die Sie wirklich benötigen.

Mehr Infos unter: springer.com/alert

A14445 | Image: Tashatuvango/iStock