Skylab Facilities and Operations

Total Page:16

File Type:pdf, Size:1020Kb

Skylab Facilities and Operations 1971 (8th) Vol. 1 Technology Today And The Space Congress® Proceedings Tomorrow Apr 1st, 8:00 AM Skylab Facilities and Operations Robert B. Krause Chief, Skylab Ground Systems Branch, Apollo- Skylab Programs Office, John. F Kennedy Space Center, NASA Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Krause, Robert B., "Skylab Facilities and Operations" (1971). The Space Congress® Proceedings. 1. https://commons.erau.edu/space-congress-proceedings/proceedings-1971-8th/session-11/1 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. SKYLAB FACILITIES AND OPERATIONS Robert B. Krause Chief, Skylab Ground Systems Branch Apollo- Skylab Programs Office John F, Kennedy Space Center, NASA Kennedy Space Center, Florida ABSTRACT The purpose of this paper is to outline the essen­ demonstrated by previous manned missions and tial objectives and elements of the Skylab Pro­ we expect to capitalize on this prior experience gram and to describe the impact of the Program during the Skylab Program. Infra-red photo­ on the Kennedy Space Center. The operational graphs taken by the Apollo 9 astronauts were test flows and the required facility modifications used by scientists at the U. S. Geological Center to support Skylab checkout and launch require­ at Menlo Park, California, to observe the St. ments will be highlighted. Andreas Fault. These observations indicated a pressure buildup which forecast the imminence of a major earthquake in this area. This earth­ INTRODUCTION quake activity occured during the Apollo 14 mission in the California Imperial Valley. The Skylab Program, using basic hardware de­ veloped to support the Apollo manned lunar Further, Skylab represents an effective and landing, supplemented by several new flight economical approach to the development of a hardware modules, represents the next major basis for potential future space programs. These step in the orderly progression of manned space include a long duration earth orbital space station, flight. The Program has a number of basic ob­ with the capability of operation of up to two years jectives. or longer, and manned planetary exploration. The information we gather in Skylab will serve First is the conduct of long duration space flights as a firm base upon which the future space sys­ of man and systems. These flights will demon­ tems can be developed. strate the unique capabilities of man to both function in a space environment for extended The Kennedy Space Center is cast in its tradi­ periods of up to 56 days and to contribute mater­ tional role - being charged with the responsibility ially to mission success. Further, it will allow to conduct prelaunch checkout and launch opera­ us to establish a habitable space workshop and tions for the Skylab missions. Accomplishment verify our ability to conduct experiments within of this task also requires modification of KSC that structure. We plan to conduct a number of checkout and launch facilities previously utilized biomedical and behavioral experiments to deter­ to support Apollo manned launches. The design, mine the effects of long duration space flight on development and incorporation of the required the crew so that a logical basis can be established modifications to meet the peculiar Skylab Pro­ for increasing crew orbital stay time. gram requirements is also a KSC responsibility. Secondly, we will conduct scientific investigations The remainder of this paper will briefly outline in earth orbit using the Apollo Telescope Mount the essential elements of the unique Skylab flight to observe the sun. Such observations can be hardware and will highlight the KSC operational much more accurately obtained outside the re­ test flows, describing the processing of each strictive atmosphere of the earth, module through the checkout areas of the Opera­ tions and Checkout Building and Launch Complex Thirdly, a number of specific applications in 39. Particular emphasis will be placed on the earth orbit will be explored. Meteorlogical and * major modifications required which include the earth resources experiments will be conducted ATM clean room, the pedestal on the Launch and communications methods and equipment will Umbilical Tower to enable the Saturn IB/CSM be exercised and evaluated. The value of earth vehicle to be launched from LC-39, and new ac­ observation from space has already been partially cess and service arms to meet peculiar program 11-41 requirements. Of particular note is the fact that intervals from the SL-2 launch. These missions the inherent capabilities of Launch Complex 39 are open ended and planned to last 56 days. These to absorb new program requirements are being missions will reactive the workshop and reper- fully exploited at minimum cost in support of form medical, technical, scientific, earth re­ Skylab Program needs. This theme will be sources, and solar astronomy experiments. A stressed throughout this paper. mission profile of the entire sequence of Skylab missions is shown in Figure 1. SKYLAB MISSION PROFILE SKYLAB UNIQUE MISSION HARDWARE The Skylab Program consists of four launches, one unmanned and three manned, to conduct three To accomplish the Skylab Program objectives, a interrelated missions. The first mission, SL-1/ number of new hardware flight modules have been SL-2 will consist of two launches approximately developed. The essential elements of each are one day apart. The SL-1 vehicle configuration briefly described below. consists of a two stage Saturn V launch vehicle - the S-IC and S-II stages - and the Saturn Work­ shop (SWS) comprised of a modified S-IVB ORBITAL WORKSHOP (OWS) Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Tele­ The OWS is a modified S-IVB stage that is ground scope Mount (ATM), and Instrument Unit (IU). outfitted to provide a habitable environment for After launch from LC-39 Pad A, the workshop extended crew operations. The LH2 tank is will be placed in a nominal 235 nautical mile al­ divided into two floors by open aluminum grid titude by the two launch vehicle, the ATM structures compartmented to provide space for deployed to its orbital configuration and the or- crew habitation and operational activities. See assembly stabilized in the proper attitude. Figure 2. The crew quarters are divided into four areas, as shown in Figure 3: sleep com­ The of the assembly will be verified by partment, waste management compartment, ground command telemetry data prior to the wardroom, and experiment compartment. A launch of the CSM mission, SL-2, from side hatch into the wardroom is provided for ac­ LC-39 Pad B, The launch vehicle is a standard cess into the OWS during ground checkout. Saturn IB, consisting of the S-IB and S-IVB stage and Instrument Unit, similar to that used Astronaut mobility/stability aids are required to on Apollo 7 to place the first manned Apollo assist the astronauts in performing tasks as­ spacecraft in earth orbit. The SL-2 vehicle sociated with activation, crew habitation, ex­ be launched approximately one day after the perimentation, and deactivation. These aids are SL-1 launch. The CSM will rendezvous and of two basic types: fixed and portable. Fixed the orbital assembly. Following astronaut aids include handrails, tether attach the crew will transfer into the OWS, devices, and the central handrail. They are per­ the OWS life support systems and place manently installed in locations throughout the the in a quiescent, minimum energy de- LH2 tank where it is expected that heavy traffic for the duration of this initial or task loading will occur. Portable astronaut operations period. aids include handholds, tether attach brackets and foot restraints. SL-1/SL-2 will be primarily directed toward the accomplishment of a series A meteoroid shield is designed as a structurally- of medical related to the extension integrated part of the OWS and protects the cylin­ of manned space!light. Secondary emphasis drical portion of the tank. After deployment, will be on. solar astronomy, earth resources, the shield does not extend more than 6 inches and technical experiments. This mission is radially from the outer surface of the LH2 tank. open but is to last 28 days begin- Deployment is accomplished during orbit by a with the launch of the SL-2 CSM. At the signal from the IU. of period, the will be pre­ pared for an during which it A Solar Array System (SAS) is provided as a will be in a semiactive condition. The crew source of power during orbital operations. will transfer to the CSM, from the or­ Routing of this power is accomplished via the bital assembly, deorbit return to earth. Airlock Module power distribution system. The SL-3 and SL-4 will perform at and six 11-42 AIRLOCK MODULE (AM) provides for the following: The AM provides the major work area and sup­ a. Installation and removal of experiment film port equipment required to activate and operate cassettes during orbital operations (by of the OWS. The AM includes a fixed airlock shroud EVA); (FAS) and an ATM Deployment Assembly. In­ tegration of the AM structure within the cluster b. Remote-controlled protective covers for the provides for: a pressurized interconnecting experiments and for the pointing optics at the passageway between the MDA and the OWS; sup­ sun end of the experiment canister. These port for intervehicular activity (IVA) and extra­ covers can be controlled from the ATM control vehicular activity (EVA) via the AM airlock; and display panel located in the MDA; structural support for the MDA; the supply, dis­ tribution and control of the cluster atmosphere, c.
Recommended publications
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • PEANUTS and SPACE FOUNDATION Apollo and Beyond
    Reproducible Master PEANUTS and SPACE FOUNDATION Apollo and Beyond GRADE 4 – 5 OBJECTIVES PAGE 1 Students will: ö Read Snoopy, First Beagle on the Moon! and Shoot for the Moon, Snoopy! ö Learn facts about the Apollo Moon missions. ö Use this information to complete a fill-in-the-blank fact worksheet. ö Create mission objectives for a brand new mission to the moon. SUGGESTED GRADE LEVELS 4 – 5 SUBJECT AREAS Space Science, History TIMELINE 30 – 45 minutes NEXT GENERATION SCIENCE STANDARDS ö 5-ESS1 ESS1.B Earth and the Solar System ö 3-5-ETS1 ETS1.B Developing Possible Solutions 21st CENTURY ESSENTIAL SKILLS Collaboration and Teamwork, Communication, Information Literacy, Flexibility, Leadership, Initiative, Organizing Concepts, Obtaining/Evaluating/Communicating Ideas BACKGROUND ö According to NASA.gov, NASA has proudly shared an association with Charles M. Schulz and his American icon Snoopy since Apollo missions began in the 1960s. Schulz created comic strips depicting Snoopy on the Moon, capturing public excitement about America’s achievements in space. In May 1969, Apollo 10 astronauts traveled to the Moon for a final trial run before the lunar landings took place on later missions. Because that mission required the lunar module to skim within 50,000 feet of the Moon’s surface and “snoop around” to determine the landing site for Apollo 11, the crew named the lunar module Snoopy. The command module was named Charlie Brown, after Snoopy’s loyal owner. These books are a united effort between Peanuts Worldwide, NASA and Simon & Schuster to generate interest in space among today’s younger children.
    [Show full text]
  • Appendix a Apollo 15: “The Problem We Brought Back from the Moon”
    Appendix A Apollo 15: “The Problem We Brought Back From the Moon” Postal Covers Carried on Apollo 151 Among the best known collectables from the Apollo Era are the covers flown onboard the Apollo 15 mission in 1971, mainly because of what the mission’s Lunar Module Pilot, Jim Irwin, called “the problem we brought back from the Moon.” [1] The crew of Apollo 15 carried out one of the most complete scientific explorations of the Moon and accomplished several firsts, including the first lunar roving vehicle that was operated on the Moon to extend the range of exploration. Some 81 kilograms (180 pounds) of lunar surface samples were returned for anal- ysis, and a battery of very productive lunar surface and orbital experiments were conducted, including the first EVA in deep space. [2] Yet the Apollo 15 crew are best remembered for carrying envelopes to the Moon, and the mission is remem- bered for the “great postal caper.” [3] As noted in Chapter 7, Apollo 15 was not the first mission to carry covers. Dozens were carried on each flight from Apollo 11 onwards (see Table 1 for the complete list) and, as Apollo 15 Commander Dave Scott recalled in his book, the whole business had probably been building since Mercury, through Gemini and into Apollo. [4] People had a fascination with objects that had been carried into space, and that became more and more popular – and valuable – as the programs progressed. Right from the start of the Mercury program, each astronaut had been allowed to carry a certain number of personal items onboard, with NASA’s permission, in 1 A first version of this material was issued as Apollo 15 Cover Scandal in Orbit No.
    [Show full text]
  • Celebrate Apollo
    National Aeronautics and Space Administration Celebrate Apollo Exploring The Moon, Discovering Earth “…We go into space because whatever mankind must undertake, free men must fully share. … I believe that this nation should commit itself to achieving the goal before this decade is out, of landing a man on the moon and returning him safely to Earth. No single space project in this period will be more exciting, or more impressive to mankind, or more important for the long-range exploration of space; and none will be so difficult or expensive to accomplish …” President John F. Kennedy May 25, 1961 Celebrate Apollo Exploring The Moon, Discovering Earth Less than five months into his new administration, on May 25, 1961, President John F. Kennedy, announced the dramatic and ambitious goal of sending an American safely to the moon before the end of the decade. Coming just three weeks after Mercury astronaut Alan Shepard became the first American in space, Kennedy’s bold challenge that historic spring day set the nation on a journey unparalleled in human history. Just eight years later, on July 20, 1969, Apollo 11 commander Neil Armstrong stepped out of the lunar module, taking “one small step” in the Sea of Tranquility, thus achieving “one giant leap for mankind,” and demonstrating to the world that the collective will of the nation was strong enough to overcome any obstacle. It was an achievement that would be repeated five other times between 1969 and 1972. By the time the Apollo 17 mission ended, 12 astronauts had explored the surface of the moon, and the collective contributions of hundreds of thousands of engineers, scientists, astronauts and employees of NASA served to inspire our nation and the world.
    [Show full text]
  • A Pictorial History of Rockets
    he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here.
    [Show full text]
  • John F. Kennedy Space Center
    1 . :- /G .. .. '-1 ,.. 1- & 5 .\"T!-! LJ~,.", - -,-,c JOHN F. KENNEDY ', , .,,. ,- r-/ ;7 7,-,- ;\-, - [J'.?:? ,t:!, ;+$, , , , 1-1-,> .irI,,,,r I ! - ? /;i?(. ,7! ; ., -, -?-I ,:-. ... 8 -, , .. '',:I> !r,5, SPACE CENTER , , .>. r-, - -- Tp:c:,r, ,!- ' :u kc - - &te -- - 12rr!2L,D //I, ,Jp - - -- - - _ Lb:, N(, A St~mmaryof MAJOR NASA LAUNCHINGS Eastern Test Range Western Test Range (ETR) (WTR) October 1, 1958 - Septeniber 30, 1968 Historical and Library Services Branch John F. Kennedy Space Center "ational Aeronautics and Space Administration l<ennecly Space Center, Florida October 1968 GP 381 September 30, 1968 (Rev. January 27, 1969) SATCIEN S.I!STC)RY DCCCIivlENT University uf A!;b:,rno Rr=-?rrh Zn~tituta Histcry of Sciecce & Technc;oGy Group ERR4TA SHEET GP 381, "A Strmmary of Major MSA Zaunchings, Eastern Test Range and Western Test Range,'" dated September 30, 1968, was considered to be accurate ag of the date of publication. Hmever, additianal research has brought to light new informetion on the official mission designations for Project Apollo. Therefore, in the interest of accuracy it was believed necessary ta issue revfsed pages, rather than wait until the next complete revision of the publiatlion to correct the errors. Holders of copies of thia brochure ate requested to remove and destroy the existing pages 81, 82, 83, and 84, and insert the attached revised pages 81, 82, 83, 84, 8U, and 84B in theh place. William A. Lackyer, 3r. PROJECT MOLL0 (FLIGHTS AND TESTS) (continued) Launch NASA Name -Date Vehicle -Code Sitelpad Remarks/Results ORBITAL (lnaMANNED) 5 Jul 66 Uprated SA-203 ETR Unmanned flight to test launch vehicle Saturn 1 3 7B second (S-IVB) stage and instrment (IU) , which reflected Saturn V con- figuration.
    [Show full text]
  • America's Greatest Projects and Their Engineers - VII
    America's Greatest Projects and Their Engineers - VII Course No: B05-005 Credit: 5 PDH Dominic Perrotta, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] America’s Greatest Projects & Their Engineers-Vol. VII The Apollo Project-Part 1 Preparing for Space Travel to the Moon Table of Contents I. Tragedy and Death Before the First Apollo Flight A. The Three Lives that Were Lost B. Investigation, Findings & Recommendations II. Beginning of the Man on the Moon Concept A. Plans to Land on the Moon B. Design Considerations and Decisions 1. Rockets – Launch Vehicles 2. Command/Service Module 3. Lunar Module III. NASA’s Objectives A. Unmanned Missions B. Manned Missions IV. Early Missions V. Apollo 7 Ready – First Manned Apollo Mission VI. Apollo 8 - Orbiting the Moon 1 I. Tragedy and Death Before the First Apollo Flight Everything seemed to be going well for the Apollo Project, the third in a series of space projects by the United States intended to place an American astronaut on the Moon before the end of the 1960’s decade. Apollo 1, known at that time as AS (Apollo Saturn)-204 would be the first manned spaceflight of the Apollo program, and would launch a few months after the flight of Gemini 12, which had occurred on 11 November 1966. Although Gemini 12 was a short duration flight, Pilot Buzz Aldrin had performed three extensive EVA’s (Extra Vehicular Activities), proving that Astronauts could work for long periods of time outside the spacecraft.
    [Show full text]
  • Apollo Space Suit
    APOLLO SPACE S UIT 1962–1974 Frederica, Delaware A HISTORIC MECHANICAL ENGINEERING LANDMARK SEPTEMBER 20, 2013 DelMarVa Subsection Histor y of the Apollo Space Suit This model would be used on Apollo 7 through Apollo 14 including the first lunar mission of Neil Armstrong and Buzz International Latex Corporation (ILC) was founded in Aldrin on Apollo 11. Further design improvements were made to Dover, Delaware in 1937 by Abram Nathanial Spanel. Mr. Spanel improve mobility for astronauts on Apollo 15 through 17 who was an inventor who became proficient at dipping latex material needed to sit in the lunar rovers and perform more advanced to form bathing caps and other commercial products. He became mobility exercises on the lunar surface. This suit was known as famous for ladies apparel made under the brand name of Playtex the model A7LB. A slightly modified ILC Apollo suit would also go that today is known worldwide. Throughout WWII, Spanel drove on to support the Skylab program and finally the American-Soyuz the development and manufacture of military rubberized products Test Program (ASTP) which concluded in 1975. During the entire to help our troops. In 1947, Spanel used the small group known time the Apollo suit was produced, manufacturing was performed as the Metals Division to develop military products including at both the ILC plant on Pear Street in Dover, Delaware, as well as several popular pressure helmets for the U.S. Air Force. the ILC facility in Frederica, Delaware. In 1975, the Dover facility Based upon the success of the pressure helmets, the Metals was closed and all operations were moved to the Frederica plant.
    [Show full text]
  • Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
    chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples.
    [Show full text]
  • Apollo 7 Mission Report December 1968
    oolt_o,.IoJo Ioeloolo_oIQeieIolo_le= :::::::::::::::::::::::........... MSC-PA-R-68-15 °°,°°,°%=*oQ*.,oI,,,*°io°%%-°°° %Io%%oloooootoolliol "_ NATIONAL AERONAUTICS AND SPACE ADMINISTRATION :.:,.......... .%%o.'ao.'aoa'.%*e" I .:.:.:.:.:.:.:.:.:.:.:. ==-..-.-,%,o,=O= °%* :-:':.:.:.:':-:':.:C': t.¢3 ":':':':':':':':':':':" t'_ .'-o%%°..Q.',%.o...'.°•°.%'='• • i ::::::::::::::::::::::: ¢O .:.:.:.:,:.:.:•:.:.:.:, '_ %%%%:::::::::::::::::::::::*:%°...%-.%. APOLLO 7 MISSION REPORT _ i .:•:,:.:':.:.:•:.:.:.:, ,4: ::::::::::::::::::::::: ::::::::::::::::::::::: | o%%%%%°o=o%•o%•o 0 ::::::::::::::::::::::: (/) .:.:.:.:.:.:.:.:.:.:.:. _ =_iiiiii!_iiiiiiiiiiiiiii ,oO.%Oo%,,o.%,.-.o,- ..,,,,oo,o,. oo.o,,,oo,o•ooo.,,oo,o. ,o,,,,•oo,o oo.°ooo,...o•°.,,,.o,,o • ., .... ,o,.o ,°,,o.,o,,,. •.,,,ooo,oo,,.,,.,,o.,o ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: .=%Oo=..=*oO.-.°..=%. ::::::::::::::::::::::: i:i:!:i:!:i:i:i:i:i:i:i ,,,:::::::::::=,o.,,.,. ::::::::::::::::::::::: iii!!iiiiiii!!!!!!!!! .:.:.:.:.:.:.:.:.:.:. • • • • • o_%%%,o• ::::::::::::::::::::: :::::::::::::::::::::: ::::::::::::::::::::: • ,,_•o%O_%%,.%o • • ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: Oo,o,,O•,,O,Oo%,.,o%• ::::::::::::::::::::::: :::::::::::::::::::::: ::::::::::::::::::::::: DISTRIBUTION AND REFERENCING .,.,,.o.,o, ...oo,o,,,o.%-.-,,°,,,o,oo o=o,.-,, •:.:,:.:,:,:,:.:,:.:.:, This
    [Show full text]
  • APOLLO NAVIGATION, GUIDANCE, and CONTROL SYSTEMS a PROGRESS REPORT » BQ David G
    TECHNOLOGY TECHNOLOGY OF OF AND CONTROL INSTITUTE INSTITUTE Va) — — ee a) fe 4 Y. say Approved: MLZegy bee F an Dare: 2 Japno7 — R.R. RAGAN(/DEPUTY DIRE@TOR pe INSTRUMENTATION LABORATORY U < Presented at the National Space Meeting WN of the Institute of Navigation, April 22-24, a) 1969, Houston, Texas. < 2 E-2411 APOLLO NAVIGATION, GUIDANCE, AND CONTROL SYSTEMS A PROGRESS REPORT » BQ David G. Hoag APRIL 1969 Wwe Bil INSTRUMENTATION CAMBRIDGE 39, MASSACHUSETTS L AB O R AT © R Y ACKNOW LEDGMENT This report was prepared under DSR Project 55-23870, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065 with the Instrumentation Laboratory of Massachusetts Institute of Technology in Cambridge, Massachusetts. The publication of this report does not constitute approval by the National Aeronautics and Space Administration of the findings or the con- clusions contained therein. It is published only for the exchange and stimulation of ideas. li E-2411 APOLLO NAVIGATION, GUIDANCE, AND CONTROL SYSTEMS | A PROGRESS REPORT ABSTRACT The status of certain aspects of the Apollo navigation, guidance, and control systems in the command module and lunar module are examined on the basis of experience with the first eight development flights. Covered in this paper are facets of the inertial, optical, and computer hardware operation. The application of these hardware subsystems to the digital autopilots, rendezvous navigation, midcourse navigation, and entry are examined. The systems are judged to be fully ready to help a crew of astronauts land on the moon. by David G. Hoag April 1969 ill TABLE OF CONTENTS section Title Page INTRODUCTION NAVIGATION, GUIDANCE, AND CONTROL FUNCTIONS .
    [Show full text]
  • IAC-13-E6.2.6 Page 1 of 16 IAC-13
    64th International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved. IAC-13-E6.2.6 x19035 INDUSTRIAL INNOVATION CYCLE ANALYSIS OF THE ORBITAL LAUNCH VEHICLE INDUSTRY Julio Aprea European Space Agency, France, [email protected] Ulfert Block European Space Agency, France, [email protected] Emmanuelle David Deutsches Zentrum für Luft- und Raumfahrt e.V., Germany, [email protected] The analysis in this paper provides an initial look at the Orbital Launch Vehicle Industry within the Model for Industrial Innovation, proposed by James M. Utterback and William J. Abernathy in their article “Patterns of Industrial Innovation” (1978). The paper starts with a summary of the Abernathy-Utterback Model, its phases (fluid, transitional and specific) and its characteristics, the concept of dominant design and the focus on product and process innovation. This work then analyses the Orbital Launch Vehicle industry from a historical perspective of its major innovations and compares the development of this industry with the Abernathy-Utterback Model. It as well highlights some interesting current developments and analyses certain technology innovations that will likely shape the industry in the future, namely serial production and incremental degrees of reusability. Based on this analysis this paper finally draws some preliminary conclusions and proposes future work on the subject. INTRODUCTION at defining the elements of the dominant design and This paper is part of a series of papers aiming at determining which phase of the Innovation Model we analysing the different sectors of the space industry are currently experiencing. from the point of view of different innovation models and industry structure theories.
    [Show full text]