(Pahs)-Contaminated Soil: Process Evaluation Through Composting and Anaerobic Digestion Approach

Total Page:16

File Type:pdf, Size:1020Kb

(Pahs)-Contaminated Soil: Process Evaluation Through Composting and Anaerobic Digestion Approach Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil: process evaluation through composting and anaerobic digestion approach A thesis submitted for the degree of Doctor of Philosophy (PhD) Presented by Tahseen A. S. Sayara Directors: Dr. Antoni Sánchez Ferrer Dra. Montserrat Sarrà Adroguer Departament d’Enginyeria Química Escola d’Enginyeria Universitat Autònoma de Barcelona Bellaterra (Cerdanyola del Vallès), September 2010 ANTONI SÁNCHEZ FERRER i MONTSERRAT SARRÀ ADROGUER professors titulars del Departament d’Enginyeria Química de la Universitat Autònoma de Barcelona. CERTIFIQUEM: Que l’enginyer Tahseen A. S. Sayara ha realitzat sota la nostra dirección el treball que, amb el títol “Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil: process evaluation through composting and anaerobic digestion approach”, es presenta en aquesta memòria, la qual contitueix la seva Tesi per optar al Grau de Doctor per la Universitat Autònoma de Barcelona. I perquè en prengueu coneixement i consti als efectes oportuns, presentem a l’Escola d’Enginyeria de la Universitat Autònoma de Barcelona l’esmentada Tesi, signant el present certicat a Bellaterra, Setembre de 2010 Dr. ANTONI SÁNCHEZ FERRER Dra. MONTSERRAT SARRÀ ADROGUER DON'T let the past hold you back, you're missing the good stuff IT IS OUR LIFE! WE CALL IT SOIL,,, IT IS THE STUFF, IN WHICH WE TOIL,,, FROM SOIL WE'VE SPRUNG, TO SOIL WE'LL GO,,, PROTECT THE SOIL OF THIS EARTH SO WE CAN GROW,,, Acknowledgment I would like to sincerely express my great gratitude and special appreciation to my supervisors Dr.Antoni Sánchez Ferrer and Dra. Montserrat Sarrà Adroguer for their valuable advice, guidance, wonderful encouragement and patience throughout the research and thesis preparation. I would like also to express my sincere thanks and appreciation to Dr. Tomaš Cathjmal for his generous hosting, guidance and recommendations during my research stay in their laboratory in Prague, Czech Republic. It is always impossible to personally thank everyone who has helped successful completion of this study. To those of you without specifically name, my sincere thanks go to all of you, my friends and colleagues in Spain and Czech Republic. Really, this is a great opportunity to express my acknowledgement, respect and gratefulness to you for your friendship, encouragement and assistance. I would like to thank all the people in the Department of Chemical Engineering in UAB for their nice treatment and friendship during my study, many thanks to all of you. I would like also to thank La Agencia Española de Cooperación Internacional para el Desarrollo (AECID) for the pre-doctoral scholarship, and El Ministerio de Educaciòn de España for the study-mobility grant during my research stay in Prague, Czech Republic. Last and surely not least, my wonderful and great family,,, To the soul of my father, God bless him, I dedicate this work. My beloved, honourable and great mother, the candle which was burnt to light the road for us, this is the real moment to thank for your infinite care from kinder till now. My great gratitude and sincere appreciation to my brothers; Hatem, Mohammad and Dr.Taleb for their endless support, encouragement and who never stop wishing me the best of luck. My sincere thanks and appreciation to my sisters for their wonderful encouragement, kindness, and wishing me the best of luck. My Great FAMILY,,, Every Thing I DO I DO It FOR YOU ALL,,, May God Bless You All. Table of contents Resume of the dissertation Abbreviations Chapter 1 ........................................................................................................................ 1 General Introduction...................................................................................................... 1 Background....................................................................................................................... 1 1.1 The need for soil remediation.............................................................................. 2 1.2 Remediation methods of contaminated soil ....................................................... 2 1.3 Remediation method: Selection criteria ............................................................. 4 1.4 Bioremediation strategies: In-situ versus ex-situ............................................... 5 1.4.1 In-situ bioremediation ..................................................................................... 5 1.4.2 Ex-situ Bioremediation.................................................................................... 6 1.5 Bioremediation of polycyclic aromatic hydrocarbons (PAHs)......................... 8 1.5.1 PAHs: Properties and sources ......................................................................... 8 1.5.2 Soil contamination with PAHs and European management.......................... 10 1.5.3 Health and environmental concern................................................................ 12 1.6 Bioremediation.................................................................................................... 12 1.6.1 Bioremediation controlling factors................................................................ 13 1.7 Strategies to enhance bioremediation efficiency.............................................. 14 1.7.1 Biostimulation approach................................................................................ 14 1.7.2 Bioaugmentation approach............................................................................ 15 1.7.3 Surfactants ..................................................................................................... 16 1.7.4 Cometabolism .............................................................................................. 16 1.8 Advantages and disadvantages of the bioremediation process ...................... 16 1.9 Composting technology ...................................................................................... 17 1.9.1 Composting process....................................................................................... 17 1.9.2 Fundamentals of composting......................................................................... 18 1.10 Bioremediation of PAHs-contaminated soil through composting................ 21 1.11 Anaerobic digestion .......................................................................................... 23 1.11.1 Anaerobic digestion stages .......................................................................... 23 1.11.2 General operating parameters of anaerobic digestion ................................. 24 1.12 PAHs degradation through anaerobic digestion ........................................... 25 References...................................................................................................................... 27 Chapter 2 ...................................................................................................................... 35 Research objectives....................................................................................................... 35 Chapter 3 ...................................................................................................................... 37 Analytical methods and bioremediation approaches ................................................ 37 3.1 Analytical methods ............................................................................................. 37 3.1.1 Moisture content (MC) and dry matter (DM)................................................ 37 3.1.2 Total organic matter (OM) ............................................................................ 38 3.1.3 pH .................................................................................................................. 38 3.1.4 Total Kjeldahl Nitrogen (TKN)..................................................................... 38 3.1.5 Humic matter ................................................................................................. 39 3.1.6 Organic matter stability ................................................................................. 39 3.1.7 Anaerobic digestion: Biogas production ....................................................... 44 i 3.2 Bioremediation systems...................................................................................... 46 3.2.1 Composting system ....................................................................................... 46 3.2.2 Anaerobic digestion system........................................................................... 48 3.3 Experiment Design Methodology...................................................................... 49 References...................................................................................................................... 52 Chapter 4 ...................................................................................................................... 55 Bioremediation of PAHs-contaminated soil through composting............................ 55 4.1 Published articles................................................................................................ 55 Article I.......................................................................................................................... 57 Preliminary screening of cosubstrates for bioremediation of pyrene-contaminated soil through composting. ............................................................................................ 57 Article II .......................................................................................................................
Recommended publications
  • Advanced Biofuel Policies in Select Eu Member States: 2018 Update
    © INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION POLICY UPDATE NOVEMBER 2018 ADVANCED BIOFUEL POLICIES IN SELECT EU MEMBER STATES: 2018 UPDATE This policy update provides details on the latest measures that select European ICCT POLICY UPDATES Union (EU) member states, namely Denmark, Germany, Italy, the Netherlands, SUMMARIZE Sweden, and the United Kingdom, are taking to support advanced alternative fuels. REGULATORY AND OTHER EU POLICY BACKGROUND DEVELOPMENTS In 2018, the European Union (EU) set its climate and energy objectives for 2030. RELATED TO CLEAN They included a greenhouse gas (GHG) reduction of at least 40% and a minimum of a TRANSPORTATION 32% share of renewable energy consumption across all sectors.1 GHG emissions in the WORLDWIDE. European transportation sector have declined by only 3.8% since 2008, compared to an 18% decrease, or more, in all other sectors, indicating that the decarbonization of transportation should be a priority for the future.2 Biofuels are one of the options considered to increase renewable energy and decrease the carbon intensity of the transportation sector. Through the use of directives and national legislation, the EU has incentivized both the adoption of conventional food-based biofuels and advanced biofuels, which are made from non-food feedstocks. Such incentives date to 2009, when the EU Renewable Energy Directive (RED) mandated that by 2020, 10% of energy used in the transportation sector should come from renewable energy sources (RES).3 In 2015, the RED was 1 Jacopo Giuntoli, Final recast Renewable Energy Directive for 2021-2030 in the European Union, (ICCT: Washington, DC, 2018), https://www.theicct.org/publications/final-recast-renewable-energy-directive- 2021-2030-european-union 2 EUROSTAT (Greenhouse gas emissions by source sector (env_air_gge), accessed November 2018), https://ec.europa.eu/eurostat.
    [Show full text]
  • Bioaugmentation: an Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge
    International Journal of Environmental Research and Public Health Review Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge Alexis Nzila 1,*, Shaikh Abdur Razzak 2 and Jesse Zhu 3 1 Department of Life Sciences, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 468, Dhahran 31261, Saudi Arabia 2 Department of Chemical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; [email protected] 3 Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +966-13-860-7716; Fax: +966-13-860-4277 Academic Editors: Rao Bhamidiammarri and Kiran Tota-Maharaj Received: 12 May 2016; Accepted: 9 July 2016; Published: 25 August 2016 Abstract: A promising long-term and sustainable solution to the growing scarcity of water worldwide is to recycle and reuse wastewater. In wastewater treatment plants, the biodegradation of contaminants or pollutants by harnessing microorganisms present in activated sludge is one of the most important strategies to remove organic contaminants from wastewater. However, this approach has limitations because many pollutants are not efficiently eliminated. To counterbalance the limitations, bioaugmentation has been developed and consists of adding specific and efficient pollutant-biodegrading microorganisms into a microbial community in an effort to enhance the ability of this microbial community to biodegrade contaminants. This approach has been tested for wastewater cleaning with encouraging results, but failure has also been reported, especially during scale-up. In this review, work on the bioaugmentation in the context of removal of important pollutants from industrial wastewater is summarized, with an emphasis on recalcitrant compounds, and strategies that can be used to improve the efficiency of bioaugmentation are also discussed.
    [Show full text]
  • Bioaugmentation of Chlorinated Solvents
    BIOAUGMENTATION FOR REMEDIATION OF CHLORINATED SOLVENTS: TECHNOLOGY DEVELOPMENT, STATUS, AND RESEARCH NEEDS October 2005 GeoSyntec Consultants TABLE OF CONTENTS LIST OF TABLES ...........................................................................................................................................III LIST OF FIGURES .........................................................................................................................................III ACRONYMNS AND ABBREVIATIONS........................................................................................................V FOREWORD...................................................................................................................................................VII EXECUTIVE SUMMARY ............................................................................................................................... IX 1. INTRODUCTION ..........................................................................................................................................1 2. EARLY DEVELOPMENT OF BIOAUGMENTATION.............................................................................5 3. RECENT PROGRESS IN CHLORINATED SOLVENT BIOREMEDIATION .....................................13 4. DEHALORESPIRATION: THE KEY PROCESS UNDERLYING CURRENT BIOAUGMENTATION PRACTICES..............................................................................................................................................................19 4.1 THE UBIQUITY CONCEPT REVISITED
    [Show full text]
  • Biological Methods
    Biological Methods Jerry Walsh, Jenna Bishop, Quinn Albertson, Shane Galloway, Carlos Rivera, Tom Devenney, Jeff Green Physical Mechanisms In Situ Methods Permeable Reactive Barriers Biostimulation Bioaugmentation Phytoremediation Permeable Reactive Barriers (Biobarriers) • Semi-permeable reactive media in flow path • Chemically or biologically-mediated reactions transform contaminants into non-toxic or immobile products • Hydrocarbons need to be oxidized • Chlorinated solvents and nitrate need to be reduced • Microorganisms help mediate redox reactions to gain energy and materials for synthesis Reactive Media Reactive Medium Removal Mechanism Contaminants Removed Organic Material Microbial sulfate reduction Acid mine drainage and precipitation Organic Material Microbial nitrate reduction Nitrate Oxygen/Nitrate-Releasing Microbial degradation BTEX Compounds Resting-State Microbial cometabolism Chlorinated aliphatics Microorganisms Oxidative Biodegradation • To respire electrons removed from contaminants, need electron acceptors Aerobic: • Aerobic methods Molecular Oxygen Anaerobic: • Anaerobic methods Nutrients (nitrate, sulfates, CO2, ferric iron, metal oxides, etc) • Aerobic methods are generally preferred to provide more energy to the microbes • Biochemical oxygen demands (BOD’s) often exceed available oxygen, so adding oxygen to the system can stimulate oxidative biodegradation Reductive Biodegradation • Electron donors are required, which anaerobic environments more abundantly produce • Organic matter is a well-suited electron donor for this process • This method works well for TCE, hexavalent chromium, sulfate, and nitrate contamination • Heterotrophic denitrification to remove nitrate Biostimulation • Modification of environment to stimulate existing bacteria capable of bioremediation. • Only works if correct bacteria are present. • Often done through use of phosphorous, nitrogen, carbon, and oxygen. • Chemicals usually added through injection wells. • EPA approved method. Advantages • Low Costs • Can be tailored to the specific site conditions.
    [Show full text]
  • Selecting Bacteria Candidates for the Bioaugmentation of Activated Sludge to Improve the Aerobic Treatment of Landfill Leachate
    water Article Selecting Bacteria Candidates for the Bioaugmentation of Activated Sludge to Improve the Aerobic Treatment of Landfill Leachate Justyna Michalska *, Artur Pi ´nski , Joanna Zur˙ and Agnieszka Mrozik Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiello´nska28, 40-032 Katowice, Poland; [email protected] (A.P.); [email protected] (J.Z.);˙ [email protected] (A.M.) * Correspondence: [email protected] Received: 6 November 2019; Accepted: 27 December 2019; Published: 1 January 2020 Abstract: In this study, a multifaceted approach for selecting the suitable candidates for bioaugmentation of activated sludge (AS) that supports leachate treatment was used. To determine the exploitation of 10 bacterial strains isolated from the various matrices for inoculating the AS contaminated with the Kalina pond leachate (KPL), their degradative potential was analyzed along with their aptitude to synthesize compounds improving remediation of pollutants in wastewater and ability to incorporate into the AS flocs. Based on their capability to degrade aromatic compounds (primarily catechol, phenol, and cresols) at a concentration of 1 mg/mL and survive in 12.5% of the KPL, Pseudomonas putida OR45a and P. putida KB3 can be considered to be the best candidates for bioaugmentation of the AS among all of the bacteria tested. Genomic analyses of these two strains revealed the presence of the genes encoding enzymes related to the metabolism of aromatic compounds. Additionally, both microorganisms exhibited a high hydrophobic propensity (above 50%) and an ability to produce biosurfactants as well as high resistance to ammonium (above 600 µg/mL) and heavy metals (especially chromium).
    [Show full text]
  • Bioremediation of Groundwater: an Overview
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 24 (2018) pp. 16825-16832 © Research India Publications. http://www.ripublication.com Bioremediation of Groundwater: An Overview Shivam Mani Tripathi 1, Shri Ram2 1 ,2 Civil Engineering Department, MMMUT Gorakhpur, India Abstract can be treated on site, thus reducing exposure risks for clean- In past, we have large open area and abundant land resources up personnel, or potentially wider exposure as a result of and groundwater. But after the industrialization the use of transportation accidents. Methodology of this process is not hazardous chemicals increased due to unmanageable technically difficult, considerable experience and knowledge conditions. The chemical disposed on the ground surface & may require implementing this process, by thoroughly many other anthropogenic activities by humans like use of investigating the site and to know required condition to pesticides and oil spillage contaminated the soil and achieve. groundwater. The different type of contaminant by percolation The usual technique of remediation is to plow up through the ground reach to the aquifer and get affected which contaminated soil and take away to the site, or to cover or cap causes serious problem. We spend lot of money and use many the contaminated area. There are some drawbacks. The first technologies to extract and remediate the contamination. In method simply transport the contaminated materials which spite of different methods, bioremediation is a technology create major risks is excavation, handling, and transport of which is cost efficient and effective by using natural microbes hazardous material. It is very difficult to find the new landfill and degrades the contaminants the conditions and different sites for disposal.
    [Show full text]
  • Bringing Biofuels on the Market
    Bringing biofuels on the market Options to increase EU biofuels volumes beyond the current blending limits Report Delft, July 2013 Author(s): Bettina Kampman (CE Delft) Ruud Verbeek (TNO) Anouk van Grinsven (CE Delft) Pim van Mensch (TNO) Harry Croezen (CE Delft) Artur Patuleia (TNO) Publication Data Bibliographical data: Bettina Kampman (CE Delft), Ruud Verbeek (TNO), Anouk van Grinsven (CE Delft), Pim van Mensch (TNO), Harry Croezen (CE Delft), Artur Patuleia (TNO) Bringing biofuels on the market Options to increase EU biofuels volumes beyond the current blending limits Delft, CE Delft, July 2013 Fuels / Renewable / Blends / Increase / Market / Scenarios / Policy / Technical / Measures / Standards FT: Biofuels Publication code: 13.4567.46 CE Delft publications are available from www.cedelft.eu Commissioned by: The European Commission, DG Energy. Further information on this study can be obtained from the contact person, Bettina Kampman. Disclaimer: This study Bringing biofuels on the market. Options to increase EU biofuels volumes beyond the current blending limits was produced for the European Commission by the consortium of CE Delft and TNO. The views represented in the report are those of its authors and do not represent the views or official position of the European Commission. The European Commission does not guarantee the accuracy of the data included in this report, nor does it accept responsibility for any use made thereof. © copyright, CE Delft, Delft CE Delft Committed to the Environment CE Delft is an independent research and consultancy organisation specialised in developing structural and innovative solutions to environmental problems. CE Delft’s solutions are characterised in being politically feasible, technologically sound, economically prudent and socially equitable.
    [Show full text]
  • Advances in Anaerobic Benzene Bioremediation: Microbes, Mechanisms, and Biotechnologies
    Advances in Anaerobic Benzene Bioremediation: Microbes, Mechanisms, and Biotechnologies Sandra Dworatzek, Phil Dennis and Jeff Roberts RemTech, Virtual October 15, 2020 Introduction and Acknowledgements • Sandra Dworatzek, Jennifer Webb (SiREM, Guelph, ON) • Elizabeth Edwards, Nancy Bawa, Shen Guo and Courtney Toth (University of Toronto, Toronto, ON) • Kris Bradshaw and Rachel Peters (Federated Co-operatives Ltd., Saskatoon, SK) • Krista Stevenson (Imperial Oil, Sarnia, ON) The Landscape of Hydrocarbon Bioremediation: A Lot Has Changed… Microbial bioremediation is currently the most common technology used to remediate petroleum hydrocarbons Microbial Remediation Phytoremediation Chemical Treatment Contain and Excavate Pump and Treat Other Near Cold Lake, Alberta Adapted from Elekwachi et al., 2014 (J Bioremed Biodeg 5) What Sites are Currently Being Targeted for Hydrocarbon Bioremediation? 4 Shallow Soils and Groundwater 1 2 (aerobic) Offshore Spills Ex situ Bioreactors (mostly aerobic) (mostly aerobic) 3 Tailings Ponds 5 Deeper Groundwater (aerobic and anaerobic) (intrinsically anaerobic) Groundwater Bioremediation Technologies Focusing on Anaerobic Microbial Processes Natural Attenuation Biostimulation Bioaugmentation unsaturated zone aquifer 3- PO4 sugars Plume source - 2- NO3 SO4 VFAs GW flow aquitard Bioaugmentation for anaerobic sites works! Dehalococcoides (Dhc) bioaugmentation is widely accepted to improve reductive dehalogenation of chlorinated ethenes 1 Month Post KB-1® Bioaugmentation Dhc TCE Bioaugmentation for anaerobic
    [Show full text]
  • Microbial Community Changes in Methyl Tert-Butyl Ether (MTBE)- Contaminated Soils
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2004 Microbial Community Changes in Methyl tert-Butyl Ether (MTBE)- Contaminated Soils Bo Yang University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Civil and Environmental Engineering Commons Recommended Citation Yang, Bo, "Microbial Community Changes in Methyl tert-Butyl Ether (MTBE)-Contaminated Soils. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/2223 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Bo Yang entitled "Microbial Community Changes in Methyl tert-Butyl Ether (MTBE)-Contaminated Soils." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Environmental Engineering. Kung-Hui Chu, Major Professor We have read this thesis and recommend its acceptance: Chris D. Cox, Paul D. Frymier Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Bo Yang entitled “Microbial Community Changes in Methyl tert-Butyl Ether (MTBE)-Contaminated Soils.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Environmental Engineering.
    [Show full text]
  • Pahs) and SOOT FORMATION Fikret Inal A; Selim M
    This article was downloaded by: [CDL Journals Account] On: 7 October 2009 Access details: Access Details: [subscription number 912375050] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Combustion Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713456315 EFFECTS OF OXYGENATE ADDITIVES ON POLYCYCLIC AROMATIC HYDROCARBONS(PAHs) AND SOOT FORMATION Fikret Inal a; Selim M. Senkan b a Department of Chemical Engineering, Izmir Institute of Technology, Urla-Izmir, Turkey. b Department of Chemical Engineering, University of California Los Angeles, Los Angeles, California, USA. Online Publication Date: 01 September 2002 To cite this Article Inal, Fikret and Senkan, Selim M.(2002)'EFFECTS OF OXYGENATE ADDITIVES ON POLYCYCLIC AROMATIC HYDROCARBONS(PAHs) AND SOOT FORMATION',Combustion Science and Technology,174:9,1 — 19 To link to this Article: DOI: 10.1080/00102200290021353 URL: http://dx.doi.org/10.1080/00102200290021353 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources.
    [Show full text]
  • Cometabolic Degradation of Polycyclic Aromatic Hydrocarbons (Pahs) and Aromatic Ethers by Phenol- and Ammonia-Oxidizing Bacteria
    AN ABSTRACT OF THE DISSERTATION OF Soon Woong Chang for the degree of Doctor of Philosophy in Civil Engineering presented on November 11, 1997. Title: Cometabolic Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) and Aromatic Ethers by Phenol- and Ammonia-Oxidizing Bacteria Redacted for Privacy Abstract approved: /Kenneth J. Williamson Cometabolic biodegradation processes are potentially useful for the bioremediation of hazardous waste sites. In this study the potential application of phenol- oxidizing and nitrifying bacteria as "priming biocatalysts" was examined in the degradation of polycyclic aromatic hydrocarbons (PAHs), aryl ethers, and aromatic ethers. We observed that a phenol-oxidizing Pseudomonas strain cometabolically degrades a range of 2- and 3-ringed PAHs. A sequencing batch reactor (SBR) was used to overcome the competitive effects between two substrates and the SBR was evaluated as a alternative technology to treat mixed contaminants including phenol and PAHs. We also have demonstrated that the nitrifying bacterium Nitrosomonas europaea can cometabolically degrade a wide range polycyclic aromatic hydrocarbons (PAHs), aryl ethers and aromatic ethers including naphthalene, acenaphthene, diphenyl ether, dibenzofuran, dibenzo-p-dioxin, and anisole. Our results indicated that all the compounds are transformed by N. europaea and that several unusual reactions are involved in these reactions. In the case of naphthalene oxidation, N. europaea generated predominantly 2­ naphthol whereas other monooxygenases generate 1-naphthol as the major product. In the case of dibenzofuran oxidation, 3-hydroxydibenzofuran initially accumulated in the reaction medium and was then further transformed to 3-hydroxy nitrodibenzofuran in a pH- and nitrite-dependent abiotic reaction. A similar abiotic transformation reaction also was observed with other hydroxylated aryl ethers and PAHs.
    [Show full text]
  • Strategies for Remediation of Polycyclic Aromatic Hydrocarbons from Contaminated Soil-An Overview
    Innovare Journal of Critical Reviews Academic Sciences ISSN- 2394-5125 Vol 2, Issue 1, 2015 Review Article STRATEGIES FOR REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBONS FROM CONTAMINATED SOIL-AN OVERVIEW NILANJANA DAS*, DEVLINA DAS Bioremediation Laboratory, SBST, VIT University, Vellore 632014, Tamil Nadu, India. Email: [email protected] Received: 05 Oct 2014 Revised and Accepted: 23 Dec 2014 ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) are one of the most prevalent contaminants having toxicity, mutagenecity and carcinogenicity. Pollution caused by PAHs is a serious problem throughout the world. To solve the problem, substantial research efforts have been directed worldwide to adopt sustainable technologies for the treatment of PAHs containing soil. PAH compounds are transferred, degraded and sequestered in soils. They are relocated in the environment through volatilization, adsorption, leaching and erosion without alteration in their structure. Degradation causes alteration of PAHs structures from their original form though biological and chemical processes and sequestration occurs when PAHs are removed from bioavailable pools and stored for a long period of time. The conventional techniques for PAH removal involve excavation of contaminated soil and its incineration which are quite expensive and in many cases pollutants are transferred from one phase to another. The commonly employed biological methods for PAHs remediation in soil are landfarming, composting, bioaugmentation, biostimulation, phytoremediation etc. and chemical
    [Show full text]