Pharmacology of Neuronal Background Potassium Channels

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacology of Neuronal Background Potassium Channels Neuropharmacology 44 (2003) 1–7 www.elsevier.com/locate/neuropharm Review Pharmacology of neuronal background potassium channels Florian Lesage Institut de Pharmacologie Mole´culaire et Cellulaire, CNRS UMR6097, 660, route des lucioles, Sophia Antipolis, 06560 Valbonne, France Received 10 May 2002; received in revised form 9 August 2002; accepted 26 September 2002 Abstract Background or leak conductances are a major determinant of membrane resting potential and input resistance, two key components of neuronal excitability. The primary structure of the background K+ channels has been elucidated. They form a family of channels that are molecularly and functionally divergent from the voltage-gated K+ channels and inward rectifier K+ channels. In the nervous system, the main representatives of this family are the TASK and TREK channels. They are relatively insensitive to the broad- spectrum K+ channel blockers tetraethylammonium (TEA), 4-aminopyridine (4-AP), Cs+, and Ba2+. They display very little time- or voltage-dependence. Open at rest, they are involved in the maintenance of the resting membrane potential in somatic motoneu- rones, brainstem respiratory and chemoreceptor neurones , and cerebellar granule cells. TASK and TREK channels are also the targets of many physiological stimuli, including intracellular and extracellular pH and temperature variations, hypoxia, bioactive lipids, and neurotransmitter modulation. Integration of these different signals has major effects on neuronal excitability. Activation of some of these channels by volatile anaesthetics and by other neuroprotective agents, such as riluzole and unsaturated fatty acids, illustrates how the neuronal background K+ conductances are attractive targets for the development of new drugs. 2002 Elsevier Science Ltd. All rights reserved. Keywords: Leak channels; Resting potential; Excitability Contents 1. Introduction . 1 2. The two-pore- domain K+ channels . 2 3. TASK channels in the nervous system . 3 4. TREK channels in the nervous system . 4 5. Modulation of neuronal background K+ channels by clinically relevant compounds . 5 6. Conclusion . 6 1. Introduction currents involved in action potential generation, these authors proposed a voltage-insensitive leak current as the The existence of background conductances in neu- basis of the resting membrane potential. Subsequently, rones was originally postulated by Hodgkin and Huxley it was shown that the resting potential in different types (1952). In addition to the voltage-sensitive Na+ and K+ of neurones depended primarily on K+-selective currents showing a relative insensitivity to classical K+ channel blockers (Baker et al., 1987; Jones, 1989; Premkumar et E-mail address: [email protected] (F. Lesage). al., 1990; Shen et al., 1992; Koh et al., 1992; Koyano 0028-3908/03/$ - see front matter 2002 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0028-3908(02)00339-8 2 F. Lesage / Neuropharmacology 44 (2003) 1–7 et al., 1992; Theander et al., 1996). For example, in mye- domains are crucial for the formation of the pore selec- linated nerve, different K+ conductances can be success- tivity filter. Given that K+ subunits with one P domain ively removed by sequential applications of TEA, 4-AP are active as tetramers and that four P domains form the and Cs+; but treated axons still exhibit strong outward K+-selectivity filter (Doyle et al., 1998), it was hypoth- rectification suggesting that residual K+ conductance is esised early that leak K+ channels with two P domains present. The conductance, which is believed to set the were active as dimers. As expected, TWIK1 does form resting potential, is voltage-independent but outwardly dimers (Lesage et al., 1996b). These multimers contain rectifying, as expected from constant field theory (Baker an interchain disulfide bridge. The cysteine residue et al., 1987). This type of current is easily distinguish- involved in this bond is part of the extracellular loop able from the voltage-sensitive inwardly rectifying K+ located between the first membrane-spanning segment currents that play a similar role in cardiac and skeletal (M1) and the first P domain (P1). The predicted structure muscle cells (Hille, 1992). Until recently, neuronal back- of this M1P1 loop is an alpha-helix containing a regular ground currents received only a fraction of the attention occurrence of hydrophobic and charged residues. This that was devoted to the voltage-gated and Ca2+- sensitive profile is typical of interdigitating helices that interact K+ currents, but the recent cloning of a new family of through hydrophobic interactions. The regular occur- K+ channels has permitted a detailed characterisation of rence of hydrophobic and charged residues is conserved the electrophysiological and pharmacological properties, in the M1P1 loops of all the TWIK-related subunits. The and regulation of these currents (for reviews see Lesage cysteine residue and the ability to form covalent disul- and Lazdunski, 2000; Patel and Honore´, 2001). Electro- fide-dridged dimers are also conserved in the majority physiology of the corresponding conductances in vivo, of these subunits (Lesage et al., 2001). A functional in association with in situ hybridization and immunohis- approach has recently demonstrated that TASK1 tochemistry, has revealed a broad distribution of these (although it lacks this cysteine) is also active as a dimer channels in the nervous system. Another major result is (Lopes et al., 2001). In addition, the covalent dimeriz- the tight and specific regulation of these channels by a ation of some of these channels has been confirmed by variety of physical and chemical stimuli, suggesting that Western blot analysis of native proteins (Lesage and precise tuning of their activity is associated with cell- Lazdunski, 2000; Reyes et al., 2000; Hervieu et al., specific regulation of neuronal activity. 2001). These dimers contain four P domains, two P1 and two P2, supporting the idea that both P domains are functional and are involved in the formation of the ionic 2. The two-pore- domain K+ channels pore. In the leak channels, the first P1 domain can accommodate residues that are never observed in the K+ channels form the largest family of ion channels. one-P channels and that can suppress the channel activity More than 70 genes encoding pore-forming subunits when introduced in these channels. The unusual sym- have been identified in the human genome. These sub- metry, resulting from dimerization, probably provides an units are organised into three main families according evolutionary flexibility that is not possible with the to their predicted membrane topology. The two largest tetrameric symmetry of one-P-domain channels. Two-P- families comprise subunits with six or two membrane- domain channels are mainly active as homodimers but spanning segments and one pore (P) domain (Jan and a recent study suggest that TASK1 and TASK3, in parti- Jan, 1997). These subunits assemble as homo- or heterot- cular, are able to form heterodimers (Czirjak and etramers to form active channels belonging to different Enyedi, 2002). functional groups including the extensively characterised Two-P-domain K+ channels are present in all exam- voltage-gated K+ channels, Ca2+-dependent K+ channels, ined tissues. However, each channel has its own profile ATP-sensitive K+ channels, G-protein-coupled K+ chan- of expression giving to each tissue a unique channel nels, and inward rectifiers. The third family of pore-for- combination (Lesage and Lazdunski, 2000; Medhurst et ming subunits was discovered by DNA database mining. al., 2001). In human brain, the most represented two- The first channel to be cloned was TWIK1 (Lesage et al., P-domain K+ channels are TWIK1, KCNK7, TASK1, 1996a), subsequently followed by 13 additional TWIK- TASK3, TREK1, TREK2 and TRAAK (Fig. 1) related channels in human (Fig. 1). The corresponding (Medhurst et al., 2001). TWIK1, KCNK7, TASK3 and genes, designated KCNK1 to 17, are only distantly TRAAK are predominantly expressed in the CNS, related to the other K+ channel genes in evolution whereas TASK1 and TREK2 are equally present in the (Lesage et al., 1996a; Patel and Honore´, 2001; Girard et CNS and peripheral tissues (Medhurst et al., 2001). In al., 2001; Karschin et al., 2001). the brain, each channel displays a unique pattern of The TWIK1-related proteins are 300–500 residues expression with some striking differences between spec- long and share similar hydropathic profiles predicting ies. For example, TASK3, which is nearly exclusively four membrane-spanning segments. The most salient expressed in the cerebellum in human (Medhurst et al., feature is the presence of two P domains per subunit. P 2001), is found more widely in rodent brain with high F. Lesage / Neuropharmacology 44 (2003) 1–7 3 Fig. 1. The two-P-domain K+ channels form different structural and functional subclasses. The dendrogram has been produced by Treeview using a ClustalW alignment of human sequences. levels of expression in cerebellar granule neurones, play only little time- or voltage-dependence. Their acti- somatic motoneurones, raphe nuclei, and neurones of vation and inactivation kinetics are very fast. These cur- locus coeruleus and hypothalamus (Karschin et al., 2001; rents display an outward rectification that can be Talley et al., 2001). Conversely, TREK2, which is approximated by the Goldman–Hodgkin–Katz (GHK) restricted to the granule cell layer in the rodent cerebel- current equation that predicts a curvature of the I–V lum (Talley et al., 2001), is broadly expressed in human relationships in physiological asymmetric K+ conditions. brain, especially in the occipital lobe, putamen and thala- A notable property of TASK channels is their extreme mus (Lesage et al., 2000). Finally, a recent study showed sensitivity to variations in external pH in a narrow an abundant expression of the TASK2 protein in rat physiological range (TASK standing for TWIK-related brain (Gabriel et al., 2002), whereas the messenger for Acid-Sensitive K+ channel). They are inhibited by extra- this channel was barely detected by PCR in human and cellular acidosis with a midpoint of inhibition of 7.3 for mouse brains (Reyes et al., 1998; Medhurst et al., 2001).
Recommended publications
  • Chapter 1 Zoom in On… Patch Configurations in the Jargon of Electrophysiologists, a Patch Is a Piece of Neuronal Membrane
    CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 1 Zoom in on… Patch configurations In the jargon of electrophysiologists, a patch is a piece of neuronal membrane. Researchers invented a technique known as a patch-clamp, which records the current through a single ion channel, some ion channels or through all open ion channels in the neuron membrane. To obtain these recordings, researchers use different patch configurations. We'll explain here only the three configurations used in the course: the cell-attached configuration, the whole-cell configuration, and the "outside-out" excised patch configuration. According to the type of recording to perform, a particular type of configuration will be chosen: 1. to record a unitary current: cell-attached or outside-out configuration; 2. to record a total current: whole-cell configuration; 3. to record changes in membrane potential (action potentials or postsynaptic potentials): whole-cell configuration. The cell-attached configuration (attached to the pipette - Figure a) First, the pipette is filled with an extracellular fluid. Positive pressure is applied in the electrode by means of a syringe connected to the electrode, so that the intrapipette fluid tends to leave the pipette. The electrode is then brought near to the soma of a neuron. When the electrode touches the membrane, the positive pressure is withdrawn to draw the membrane toward the mouth of the pipette. We wait without moving the pipette; a seal is made between the walls of the pipette and the soma membrane. This seal strength can be measured by applying a low level of amplitude current in the pipette. Since V = RI, one can measure the resistance of the seal.
    [Show full text]
  • Contribution of the Potassium / Chloride Cotransporter KCC2 to Hippocampal Rhythmopathy Marie Goutierre
    Contribution of the potassium / chloride cotransporter KCC2 to hippocampal rhythmopathy Marie Goutierre To cite this version: Marie Goutierre. Contribution of the potassium / chloride cotransporter KCC2 to hippocampal rhythmopathy. Neurobiology. Sorbonne Université, 2018. English. NNT : 2018SORUS600. tel- 02613734 HAL Id: tel-02613734 https://tel.archives-ouvertes.fr/tel-02613734 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale n°158 - Cerveau Cognition Comportement - Institut du Fer à Moulin Equipe « Plasticité des réseaux corticaux et épilepsie » Contribution of the potassium / chloride cotransporter KCC2 to hippocampal rhythmopathy. Implication du transporteur potassium / chlore KCC2 dans la rythmopathie hippocampique. Par Marie GOUTIERRE Thèse de doctorat de Neurosciences Dirigée par Dr Jean-Christophe PONCER Présentée et soutenue publiquement le 28 juin 2018 Devant un jury composé de : Pr Ann LOHOF Présidente du jury Pr Claudio RIVERA Rapporteur Pr Andrew TREVELYAN Rapporteur Dr Lisa ROUX Examinateur Dr Corentin LE MAGUERESSE Examinateur Dr Jean-Christophe PONCER Directeur de thèse ABSTRACT In the CNS, synaptic release of the neurotransmitter GABA is responsible for fast inhibitory transmission. This is predominatly mediated by chloride flow through GABAA receptors.
    [Show full text]
  • Potassium Channels in Epilepsy
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Potassium Channels in Epilepsy Ru¨diger Ko¨hling and Jakob Wolfart Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany Correspondence: [email protected] This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dy- namic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With 80 potassium channel types, of which 10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. INTRODUCTION TO POTASSIUM evolutionary appearance of voltage-gated so- CHANNELS dium (Nav)andcalcium (Cav)channels, Kchan- nels are further diversified in relation to their otassium (K) channels are related to epilepsy newer function, namely, keeping neuronal exci- Psyndromes on many different levels, ranging tation within limits (Anderson and Greenberg from direct control of neuronal excitability and 2001; Hille 2001).
    [Show full text]
  • Chemical Synthesis, Proper Folding, Nav Channel Selectivity Profile And
    toxins Article Chemical Synthesis, Proper Folding, Nav Channel Selectivity Profile and Analgesic Properties of the Spider Peptide Phlotoxin 1 1, 2,3, 4,5, 1 Sébastien Nicolas y, Claude Zoukimian y, Frank Bosmans y,Jérôme Montnach , Sylvie Diochot 6, Eva Cuypers 5, Stephan De Waard 1,Rémy Béroud 2, Dietrich Mebs 7 , David Craik 8, Didier Boturyn 3 , Michel Lazdunski 6, Jan Tytgat 5 and Michel De Waard 1,2,* 1 Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx “Ion Channels, Science & Therapeutics”, F-44007 Nantes, France; [email protected] (S.N.); [email protected] (J.M.); [email protected] (S.D.W.) 2 Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France; [email protected] (C.Z.); [email protected] (R.B.) 3 Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, 38000 Grenoble, France; [email protected] 4 Faculty of Medicine and Health Sciences, Department of Basic and Applied Medical Sciences, 9000 Gent, Belgium; [email protected] 5 Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium; [email protected] (E.C.); [email protected] (J.T.) 6 Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 6560 Valbonne, France; [email protected] (S.D.); [email protected] (M.L.) 7 Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, 60488 Frankfurt, Germany; [email protected] 8 Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia; [email protected] * Correspondence: [email protected]; Tel.: +33-228-080-076 Contributed equally to this work.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Nernst Potentials and Membrane Potential Changes
    UNDERSTANDING MEMBRANE POTENTIAL CHANGES IN TERMS OF NERNST POTENTIALS: For seeing how a change in conductance to ions affects the membrane potential, follow these steps: 1. Make a graph with membrane potential on the vertical axis (-100 to +55) and time on the horizontal axis. 2. Draw dashed lines indicating the standard Nernst potential (equilibrium potential) for each ion: Na+ = +55 mV, K+ = -90mV, Cl- = -65 mV. 3. Draw lines below the horizontal axis showing the increased conductance to individual ions. 4. Start plotting the membrane potential on the left. Most graphs will start at resting potential (-70 mV) 5. When current injection (Stim) is present, move the membrane potential upward to Firing threshold. 6. For the time during which membrane conductance to a particular ion increases, move the membrane potential toward the Nernst potential for that ion. 7. During the time when conductance to a particular ion decreases, move the membrane potential away from the Nernst potential of that ion, toward a position which averages the conductances of the other ions. 8. When conductances return to their original value, membrane potential will go to its starting value. +55mV ACTION POTENTIAL SYNAPTIC POTENTIALS 0mV Membrane potential Firing threshold Firing threshold -65mV -90mV Time Time Na+ K+ Conductances Stim CHANGES IN MEMBRANE POTENTIAL ALLOW NEURONS TO COMMUNICATE The membrane potential of a neuron can be measured with an intracellular electrode. This 1 provides a measurement of the voltage difference between the inside of the cell and the outside. When there is no external input, the membrane potential will usually remain at a value called the resting potential.
    [Show full text]
  • Effect of Hyperkalemia on Membrane Potential: Depolarization
    ❖ CASE 3 A 6-year-old boy is brought to the family physician after his parents noticed that he had difficulty moving his arms and legs after a soccer game. About 10 minutes after leaving the field, the boy became so weak that he could not stand for about 30 minutes. Questioning revealed that he had complained of weakness after eating bananas, had frequent muscle spasms, and occasionally had myotonia, which was expressed as difficulty in releasing his grip or diffi- culty opening his eyes after squinting into the sun. After a thorough physical examination, the boy was diagnosed with hyperkalemic periodic paralysis. The family was advised to feed the boy carbohydrate-rich, low-potassium foods, give him glucose-containing drinks during attacks, and have him avoid strenuous exercise and fasting. ◆ What is the effect of hyperkalemia on cell membrane potential? ◆ What is responsible for the repolarizing phase of an action potential? ◆ What is the effect of prolonged depolarization on the skeletal muscle Na+ channel? 32 CASE FILES: PHYSIOLOGY ANSWERS TO CASE 3: ACTION POTENTIAL Summary: A 6-year-old boy who experiences profound weakness after exer- cise is diagnosed with hyperkalemic periodic paralysis. ◆ Effect of hyperkalemia on membrane potential: Depolarization. ◆ Repolarization mechanisms: Activation of voltage-gated K+ conductance and inactivation of Na+ conductance. ◆ Effect of prolonged depolarization: Inactivation of Na+ channels. CLINICAL CORRELATION Hyperkalemic periodic paralysis (HyperPP) is a dominant inherited trait caused by a mutation in the α subunit of the skeletal muscle Na+ channel. It occurs in approximately 1 in 100,000 people and is more common and more severe in males.
    [Show full text]
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]
  • Cholesterol Modulates the Recruitment of Kv1.5 Channels from Rab11-Associated Recycling Endosome in Native Atrial Myocytes
    Cholesterol modulates the recruitment of Kv1.5 channels from Rab11-associated recycling endosome in native atrial myocytes Elise Balsea,b, Saïd El-Haoua,b, Gilles Dillaniana,b, Aure´ lien Dauphinc, Jodene Eldstromd, David Fedidad, Alain Coulombea,b, and Ste´ phane N. Hatema,b,1 aInstitut National de la Sante´et de la Recherche Me´dicale, Unite´Mixte de Recherche Scientifique-956, 75013 Paris, France; bUniversite´Pierre et Marie Curie, Paris-6, Unite´Mixte de Recherche Scientifique-956, 75013 Paris, France; cPlate-forme imagerie cellulaire IFR14, 75013 Paris, France; and dDepartment of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 Edited by Lily Y. Jan, University of California, San Francisco, CA, and approved June 19, 2009 (received for review March 17, 2009) Cholesterol is an important determinant of cardiac electrical proper- important role in the regulation of expression of KCNQ1/KCNE1, ties. However, underlying mechanisms are still poorly understood. pacemaker HCN channels and Kv1.5 channels. This process in- Here, we examine the hypothesis that cholesterol modulates the volves several Rab-GTPases (8–10). Rab-GTPases regulate the turnover of voltage-gated potassium channels based on previous trafficking of vesicles between plasma membrane and intracellular observations showing that depletion of membrane cholesterol in- compartments by regulating sorting, tethering and docking of creases the atrial repolarizing current IKur. Whole-cell currents and trafficking vesicles. Rab4, associated with the early endosome (EE), single-channel activity were recorded in rat adult atrial myocytes mediates the fast recycling process while Rab11, linked to the (AAM) or after transduction with hKv1.5-EGFP.
    [Show full text]
  • Electrical Activity of the Heart: Action Potential, Automaticity, and Conduction 1 & 2 Clive M
    Electrical Activity of the Heart: Action Potential, Automaticity, and Conduction 1 & 2 Clive M. Baumgarten, Ph.D. OBJECTIVES: 1. Describe the basic characteristics of cardiac electrical activity and the spread of the action potential through the heart 2. Compare the characteristics of action potentials in different parts of the heart 3. Describe how serum K modulates resting potential 4. Describe the ionic basis for the cardiac action potential and changes in ion currents during each phase of the action potential 5. Identify differences in electrical activity across the tissues of the heart 6. Describe the basis for normal automaticity 7. Describe the basis for excitability 8. Describe the basis for conduction of the cardiac action potential 9. Describe how the responsiveness relationship and the Na+ channel cycle modulate cardiac electrical activity I. BASIC ELECTROPHYSIOLOGIC CHARACTERISTICS OF CARDIAC MUSCLE A. Electrical activity is myogenic, i.e., it originates in the heart. The heart is an electrical syncitium (i.e., behaves as if one cell). The action potential spreads from cell-to-cell initiating contraction. Cardiac electrical activity is modulated by the autonomic nervous system. B. Cardiac cells are electrically coupled by low resistance conducting pathways gap junctions located at the intercalated disc, at the ends of cells, and at nexus, points of side-to-side contact. The low resistance pathways (wide channels) are formed by connexins. Connexins permit the flow of current and the spread of the action potential from cell-to-cell. C. Action potentials are much longer in duration in cardiac muscle (up to 400 msec) than in nerve or skeletal muscle (~5 msec).
    [Show full text]
  • Stem Cells and Ion Channels
    Stem Cells International Stem Cells and Ion Channels Guest Editors: Stefan Liebau, Alexander Kleger, Michael Levin, and Shan Ping Yu Stem Cells and Ion Channels Stem Cells International Stem Cells and Ion Channels Guest Editors: Stefan Liebau, Alexander Kleger, Michael Levin, and Shan Ping Yu Copyright © 2013 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Stem Cells International.” All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Nadire N. Ali, UK Joseph Itskovitz-Eldor, Israel Pranela Rameshwar, USA Anthony Atala, USA Pavla Jendelova, Czech Republic Hannele T. Ruohola-Baker, USA Nissim Benvenisty, Israel Arne Jensen, Germany D. S. Sakaguchi, USA Kenneth Boheler, USA Sue Kimber, UK Paul R. Sanberg, USA Dominique Bonnet, UK Mark D. Kirk, USA Paul T. Sharpe, UK B. Bunnell, USA Gary E. Lyons, USA Ashok Shetty, USA Kevin D. Bunting, USA Athanasios Mantalaris, UK Igor Slukvin, USA Richard K. Burt, USA Pilar Martin-Duque, Spain Ann Steele, USA Gerald A. Colvin, USA EvaMezey,USA Alexander Storch, Germany Stephen Dalton, USA Karim Nayernia, UK Marc Turner, UK Leonard M. Eisenberg, USA K. Sue O’Shea, USA Su-Chun Zhang, USA Marina Emborg, USA J. Parent, USA Weian Zhao, USA Josef Fulka, Czech Republic Bruno Peault, USA Joel C. Glover, Norway Stefan Przyborski, UK Contents Stem Cells and Ion Channels, Stefan Liebau,
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]