Effect of Hyperkalemia on Membrane Potential: Depolarization

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Hyperkalemia on Membrane Potential: Depolarization ❖ CASE 3 A 6-year-old boy is brought to the family physician after his parents noticed that he had difficulty moving his arms and legs after a soccer game. About 10 minutes after leaving the field, the boy became so weak that he could not stand for about 30 minutes. Questioning revealed that he had complained of weakness after eating bananas, had frequent muscle spasms, and occasionally had myotonia, which was expressed as difficulty in releasing his grip or diffi- culty opening his eyes after squinting into the sun. After a thorough physical examination, the boy was diagnosed with hyperkalemic periodic paralysis. The family was advised to feed the boy carbohydrate-rich, low-potassium foods, give him glucose-containing drinks during attacks, and have him avoid strenuous exercise and fasting. ◆ What is the effect of hyperkalemia on cell membrane potential? ◆ What is responsible for the repolarizing phase of an action potential? ◆ What is the effect of prolonged depolarization on the skeletal muscle Na+ channel? 32 CASE FILES: PHYSIOLOGY ANSWERS TO CASE 3: ACTION POTENTIAL Summary: A 6-year-old boy who experiences profound weakness after exer- cise is diagnosed with hyperkalemic periodic paralysis. ◆ Effect of hyperkalemia on membrane potential: Depolarization. ◆ Repolarization mechanisms: Activation of voltage-gated K+ conductance and inactivation of Na+ conductance. ◆ Effect of prolonged depolarization: Inactivation of Na+ channels. CLINICAL CORRELATION Hyperkalemic periodic paralysis (HyperPP) is a dominant inherited trait caused by a mutation in the α subunit of the skeletal muscle Na+ channel. It occurs in approximately 1 in 100,000 people and is more common and more severe in males. The onset of HyperPP generally occurs in the first or second decade of life. HyperPP is neither painful nor life-threatening but can be dis- ruptive to normal activities. Symptoms are muscle weakness and paralysis, sometimes preceded by myotonia, fasciculations, or spasms. Fortunately, sig- nificant paralysis almost never occurs in intercostals or diaphragm muscles, and so breathing is not impaired. Attacks can occur spontaneously but often are triggered by exercise, stress, fasting, or the ingestion of large quantities of K+ (eg, in bananas). For unknown reasons, exercise-induced paralysis always follows exercise—it does not occur during exercise. Because exercise can pro- duce hyperkalemia and hyperkalemia triggers HyperPP attacks, there must be an additional mechanism that protects skeletal muscle during but not after intense activity. The mechanisms that underlie the effects of HyperPP result from several known mutations in the α subunit of the skeletal muscle Na+ channel that prevent it from closing effectively. Ineffective closing results in a small, persistent inward current that continuously depolarizes the muscle membrane; this lowers the action potential threshold, producing the hyperex- citability that results in fasciculations (spontaneous twitches) and spasms under resting conditions. If the depolarization increases further, as occurs when extracellular [K+] is elevated, the Na+ channels inactivate and remain inactivated until repolarization occurs. This inactivation blocks action poten- tial initiation in the muscle and produces paralysis. When extracellular [K+] decreases, the depolarization is reduced, inactivation is removed, and the paralysis is relieved. Amelioration of HyperPP attacks is attempted by reduc- ing plasma K+ levels. Insulin promotes the transport of extracellular K+ into intracellular compartments by activating the Na-K pump. Eating high- carbohydrate diets or pure glucose increases insulin secretion and thus decreases extracellular [K+]. Conversely, fasting decreases insulin secretion and can elevate extracellular [K+], increasing the chances of myotonia and paralysis in HyperPP patients. CLINICAL CASES 33 APPROACH TO ACTION POTENTIAL PHYSIOLOGY Objectives 1. Know the mechanisms of the resting potential. 2. Understand the mechanisms of the action potential in axons and skele- tal muscle. Definitions Action potential: A rapid, depolarizing change in membrane potential (often overshooting, so that the potential transiently reverses) that is used by excitable cells to convey all-or-none electrical signals quickly from one point on the cell to the remainder of the cell. Electrotonic conduction: The passive, exponentially falling, spread of a difference in membrane potential between different membrane regions, which occurs with potentials subthreshold for an action potential or with perturbations of membrane potential in inexcitable membrane regions. Nernst equilibrium potential: The membrane potential at which, for a given ion, there is no net flow of the ion across the membrane, which corresponds to the electrical force that exactly offsets the driving force of the concentration gradient acting on that ion. Resting potential: The electrical potential difference across the plasma membrane in the absence of action potentials or synaptic potentials. Voltage-gated channel: Pore-forming protein complexes that allow ions to flow across a membrane, and which can be opened (or, in some cases, closed) by a change in membrane potential. DISCUSSION The mechanisms that underlie the action potential cannot be understood with- out an understanding of how a resting membrane potential is generated. The resting potential in nearly all mammalian cells is produced primarily by dif- fusion of K+ down its concentration gradient from inside to outside the cell, whereas the membrane remains relatively impermeable to other ions. The intracellular concentration of K+ is very high compared with the outside concentration because K+ is pumped into the cell by the Na+-K+-ATPase (adenosine triphosphatase) (see Figure 3-1). Because the membrane is effec- tively impermeable to intracellular anions, as K+ flows down its concentra- tion gradient, it leaves behind anions. A transmembrane potential (Vm) develops as the K+ efflux brings a positive charge to the region just outside the membrane, leaving an equal amount of negative charge just inside the mem- brane. This process is self-limiting because as soon as a membrane becomes permeable to K+ and K+ efflux begins, the resulting separation of the charge generates an electrical driving force on the ions, and the electrical driving 34 CASE FILES: PHYSIOLOGY 2K+ β Outside α 3Na+ Inside Figure 3-1. Na+-K+-ATPase pump. The α subunit is the catalytic subunit, which uses adenosine triphosphate (ATP) for energy to drive the extrusion of three Na+ ions for every two K+ ions taken into the cell. The β subunit is impor- tant for assembly and membrane targeting of the Na+-K+-ATPase. Pump activ- ity can be blocked by cardiac glycosides, such as ouabain. (From Horisberger JD, Lemas V, Kraehenbuhl JP, Rossier BC. Structure–function relationship of Na-K-ATPase. Ann Rev Physiol. 1991;53:565. Reproduced, with permission, from the Annual Review of Physiology, vol. 53. Copyright © 1991 by Annual Reviews Inc.) force soon equals the opposing chemical driving force (the K+ concentration + gradient). For K or any ion X, this equilibrium occurs at a Vm called the Nernst equilibrium potential, which is defined as the electrical driving force (EX) that exactly offsets the chemical driving force. The electrical driving force is represented by the left side and the chemical driving force is repre- sented by the right side of the Nernst equation: RT []X = o EX In zF []X i R is the gas constant, T is the temperature in degrees Kelvin, z is the valence of the ion, F is the Faraday constant, and [X]o and [X]i are the ion’s extracel- lular and intracellular concentrations. In the case of K+ at 37°C and converting to log10, the equation becomes []K+ = o Ek 60 log + []K i It is important to note that a given ion X is at equilibrium across the membrane = only when Vm EX. Because of the relatively high intracellular concentrations CLINICAL CASES 35 + ∼− of K in mammalian cells, EK is always quite negative (eg, 90 mV). Because of the pumping action of the Na+-K+-ATPase, the concentration gra- + + + = dient for Na is in the opposite direction (ie, [Na ]o >> [Na ]i), and thus ENa ∼+55 mV. However, in cells, such as glia, in which there is no significant per- + + meability to Na ,Na influx makes almost no contribution to Vm. ≠ In most cells, including all excitable cells, Vm EK, although the values are often close. This is the case because the membrane is also permeable to other ions, and it is the net effect of all ion permeability across the membrane that determines Vm. In many axons, Vm is determined almost entirely by opposing fluxes (or, in electrical terms, currents) carried by K+ and Na+. These can be α= described, in terms of the ratio of permeabilities ( PNa/PK) and ionic con- centrations, by the Goldman-Hodgkin-Katz equation, which is closely related to the Nernst equation: []KNa+++ α [ ] V = 60 log oo m +++ α []KNaio [ ] In an axon at rest, α=approximately 0.01, and so the contributions of the Na+ ∼− concentrations in the expression are slight, and Vm is close to EK ( 90 mV). In many neuronal cell bodies or dendrites, PNa is somewhat greater than this when ∼− the cell is at rest and Vm is more depolarized (eg, 65 mV). Permeabilities (P) often are referred to by their electrical equivalents, conductances (g). Note that an increase in extracellular K+, that is, hyperkalemia, will depolarize cells, whereas hypokalemia will hyperpolarize cells. An all-or-none action potential is generated in an axon when membrane depolarization reaches a level at which voltage-gated Na+ channels open, + increasing PNa. This results in an inward current of Na , which causes further depolarization, which then opens additional Na+ channels. This regenerative (positive feedback) cycle quickly produces an overshooting action potential. In terms of the Goldman-Hodgkin-Katz equation, α quickly goes from + approximately 0.01 to 100, Vm becomes dominated by the Na concentration gradient, and thus Vm approaches ENa at the peak of the action potential. Axonal action potentials last only a few milliseconds because two mecha- nisms rapidly repolarize the membrane.
Recommended publications
  • Glossary - Cellbiology
    1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF).
    [Show full text]
  • Chapter 1 Zoom in On… Patch Configurations in the Jargon of Electrophysiologists, a Patch Is a Piece of Neuronal Membrane
    CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 1 Zoom in on… Patch configurations In the jargon of electrophysiologists, a patch is a piece of neuronal membrane. Researchers invented a technique known as a patch-clamp, which records the current through a single ion channel, some ion channels or through all open ion channels in the neuron membrane. To obtain these recordings, researchers use different patch configurations. We'll explain here only the three configurations used in the course: the cell-attached configuration, the whole-cell configuration, and the "outside-out" excised patch configuration. According to the type of recording to perform, a particular type of configuration will be chosen: 1. to record a unitary current: cell-attached or outside-out configuration; 2. to record a total current: whole-cell configuration; 3. to record changes in membrane potential (action potentials or postsynaptic potentials): whole-cell configuration. The cell-attached configuration (attached to the pipette - Figure a) First, the pipette is filled with an extracellular fluid. Positive pressure is applied in the electrode by means of a syringe connected to the electrode, so that the intrapipette fluid tends to leave the pipette. The electrode is then brought near to the soma of a neuron. When the electrode touches the membrane, the positive pressure is withdrawn to draw the membrane toward the mouth of the pipette. We wait without moving the pipette; a seal is made between the walls of the pipette and the soma membrane. This seal strength can be measured by applying a low level of amplitude current in the pipette. Since V = RI, one can measure the resistance of the seal.
    [Show full text]
  • Interplay Between Gating and Block of Ligand-Gated Ion Channels
    brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes.
    [Show full text]
  • Nernst Potentials and Membrane Potential Changes
    UNDERSTANDING MEMBRANE POTENTIAL CHANGES IN TERMS OF NERNST POTENTIALS: For seeing how a change in conductance to ions affects the membrane potential, follow these steps: 1. Make a graph with membrane potential on the vertical axis (-100 to +55) and time on the horizontal axis. 2. Draw dashed lines indicating the standard Nernst potential (equilibrium potential) for each ion: Na+ = +55 mV, K+ = -90mV, Cl- = -65 mV. 3. Draw lines below the horizontal axis showing the increased conductance to individual ions. 4. Start plotting the membrane potential on the left. Most graphs will start at resting potential (-70 mV) 5. When current injection (Stim) is present, move the membrane potential upward to Firing threshold. 6. For the time during which membrane conductance to a particular ion increases, move the membrane potential toward the Nernst potential for that ion. 7. During the time when conductance to a particular ion decreases, move the membrane potential away from the Nernst potential of that ion, toward a position which averages the conductances of the other ions. 8. When conductances return to their original value, membrane potential will go to its starting value. +55mV ACTION POTENTIAL SYNAPTIC POTENTIALS 0mV Membrane potential Firing threshold Firing threshold -65mV -90mV Time Time Na+ K+ Conductances Stim CHANGES IN MEMBRANE POTENTIAL ALLOW NEURONS TO COMMUNICATE The membrane potential of a neuron can be measured with an intracellular electrode. This 1 provides a measurement of the voltage difference between the inside of the cell and the outside. When there is no external input, the membrane potential will usually remain at a value called the resting potential.
    [Show full text]
  • Nicotinic Acetylcholine Receptor Signaling in Neuroprotection
    Akinori Akaike · Shun Shimohama Yoshimi Misu Editors Nicotinic Acetylcholine Receptor Signaling in Neuroprotection Nicotinic Acetylcholine Receptor Signaling in Neuroprotection Akinori Akaike • Shun Shimohama Yoshimi Misu Editors Nicotinic Acetylcholine Receptor Signaling in Neuroprotection Editors Akinori Akaike Shun Shimohama Department of Pharmacology, Graduate Department of Neurology, School of School of Pharmaceutical Sciences Medicine Kyoto University Sapporo Medical University Kyoto, Japan Sapporo, Hokkaido, Japan Wakayama Medical University Wakayama, Japan Yoshimi Misu Graduate School of Medicine Yokohama City University Yokohama, Kanagawa, Japan ISBN 978-981-10-8487-4 ISBN 978-981-10-8488-1 (eBook) https://doi.org/10.1007/978-981-10-8488-1 Library of Congress Control Number: 2018936753 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Information Processing in the Axon Dominique Debanne
    Information processing in the axon Dominique Debanne To cite this version: Dominique Debanne. Information processing in the axon. Nature Reviews Neuroscience, Nature Publishing Group, 2004, 5 (4), pp.304-316. 10.1038/nrn1397. hal-01766862 HAL Id: hal-01766862 https://hal-amu.archives-ouvertes.fr/hal-01766862 Submitted on 27 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INFORMATION PROCESSING IN THE AXON Dominique Debanne Axons link distant brain regions and are generally regarded as reliable transmission cables in which stable propagation occurs once an action potential has been generated. However, recent experimental and theoretical data indicate that the functional capabilities of axons are much more diverse than traditionally thought. Beyond axonal propagation, intrinsic voltage-gated conductances together with the intrinsic geometrical properties of the axon determine complex phenomena such as branch-point failures and reflected propagation. This review considers recent evidence for the role of these forms of axonal computation in the short-term dynamics of neural communication. GAP JUNCTIONS Since the pioneering work of Santiago Ramón y Cajal, of propagation and how intrinsic channels that are Morphological equivalent of the axon has been defined as a long neuronal process present in the axon shape the action potential.
    [Show full text]
  • Electrical Activity of the Heart: Action Potential, Automaticity, and Conduction 1 & 2 Clive M
    Electrical Activity of the Heart: Action Potential, Automaticity, and Conduction 1 & 2 Clive M. Baumgarten, Ph.D. OBJECTIVES: 1. Describe the basic characteristics of cardiac electrical activity and the spread of the action potential through the heart 2. Compare the characteristics of action potentials in different parts of the heart 3. Describe how serum K modulates resting potential 4. Describe the ionic basis for the cardiac action potential and changes in ion currents during each phase of the action potential 5. Identify differences in electrical activity across the tissues of the heart 6. Describe the basis for normal automaticity 7. Describe the basis for excitability 8. Describe the basis for conduction of the cardiac action potential 9. Describe how the responsiveness relationship and the Na+ channel cycle modulate cardiac electrical activity I. BASIC ELECTROPHYSIOLOGIC CHARACTERISTICS OF CARDIAC MUSCLE A. Electrical activity is myogenic, i.e., it originates in the heart. The heart is an electrical syncitium (i.e., behaves as if one cell). The action potential spreads from cell-to-cell initiating contraction. Cardiac electrical activity is modulated by the autonomic nervous system. B. Cardiac cells are electrically coupled by low resistance conducting pathways gap junctions located at the intercalated disc, at the ends of cells, and at nexus, points of side-to-side contact. The low resistance pathways (wide channels) are formed by connexins. Connexins permit the flow of current and the spread of the action potential from cell-to-cell. C. Action potentials are much longer in duration in cardiac muscle (up to 400 msec) than in nerve or skeletal muscle (~5 msec).
    [Show full text]
  • 9.01 Introduction to Neuroscience Fall 2007
    MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02) RECITATION #2: Tuesday, September 18th Review of Lectures: 3, 4 Reading: Chapters 3, 4 or Neuroscience: Exploring the Brain (3rd edition) Outline of Recitation: I. Previous Recitation: a. Questions on practice exam questions from last recitation? II. Review of Material: a. Exploiting Axoplasmic Transport b. Types of Glia c. THE RESTING MEMBRANE POTENTIAL d. THE ACTION POTENTIAL III. Practice Exam Questions IV. Questions on Pset? Exploiting Axoplasmic Transport: Maps connections of the brain Rates of transport: - slow: - fast: Examples: Uses anterograde transport: - Uses retrograde transport: - - - Types of Glia: - Microglia: - Astrocytes: - Myelinating Glia: 1 THE RESTING MEMBRANE POTENTIAL: The Cast of Chemicals: The Movement of Ions: ­ Influences by two factors: (1) Diffusion: (2) Electricity: Ohm’s Law: I = gV Ionic Equilibrium Potentials (EION): + Example: ENs * diffusional and electrical forces are equal 2 Nernst Equation: EION = 2.303 RT/zF log [ion]0/[ion]i Calculates equilibrium potential for a SINGLE ion. Inside Outside EION (at 37°C) + [K ] + [Na ] 2+ [Ca ] ­ [Cl ] *Pumps maintain concentration gradients (ex. sodium­potassium pump; calcium pump) Resting Membrane Potential (VM at rest): Measured resting membrane potential: ­ 65 mV Goldman Equation: + + + + VM = 61.54 mV log (PK[K ]o + PNa[Na ]o)/ (PK[K ]I + PNa[Na ]i) + + Calculates membrane potential when permeable to both Na and K . Remember: at REST, gK >>> gNa therefore, VM is closer to EK THE ACTION POTENTIAL (Nerve Impulse): Phases of an Action Potential: Vm (mV) ENa 0 EK Time 3 Conductance of Ion Channels during AP: Remember: Changes in conductance, or permeability of the membrane to a specific ion, changes the membrane potential.
    [Show full text]
  • 11 Introduction to the Nervous System and Nervous Tissue
    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
    [Show full text]
  • The Action Potential
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/6316219 The action potential ARTICLE in PRACTICAL NEUROLOGY · JULY 2007 Source: PubMed CITATIONS READS 16 64 2 AUTHORS, INCLUDING: Mark W Barnett The University of Edinburgh 21 PUBLICATIONS 661 CITATIONS SEE PROFILE Available from: Mark W Barnett Retrieved on: 24 October 2015 192 Practical Neurology HOW TO UNDERSTAND IT Pract Neurol 2007; 7: 192–197 The action potential Mark W Barnett, Philip M Larkman t is over 60 years since Hodgkin and called ion channels that form the permeation Huxley1 made the first direct recording of pathways across the neuronal membrane. the electrical changes across the neuro- Although the first electrophysiological nal membrane that mediate the action recordings from individual ion channels were I 2 potential. Using an electrode placed inside a not made until the mid 1970s, Hodgkin and squid giant axon they were able to measure a Huxley predicted many of the properties now transmembrane potential of around 260 mV known to be key components of their inside relative to outside, under resting function: ion selectivity, the electrical basis conditions (this is called the resting mem- of voltage-sensitivity and, importantly, a brane potential). The action potential is a mechanism for quickly closing down the transient (,1 millisecond) reversal in the permeability pathways to ensure that the polarity of this transmembrane potential action potential only moves along the axon in which then moves from its point
    [Show full text]
  • The Nervous System Action Potentials
    The Nervous System Action potentials Jennifer Carbrey Ph.D. Department of Cell Biology Nervous System Cell types neurons glial cells Methods of communication in nervous system – action potentials How the nervous system is organized central vs. peripheral Voltage Gated Na+ & K+ Channels image by Rick Melges, Duke University Depolarization of the membrane is the stimulus which leads to both channels opening. To reset the Na+ channel from inactive to closed need to repolarize the membrane. Refractory period is when Na+ channels are inactivated. Action Potentials stage are rapid, “all or none” and do not decay over 1 2 3 4 5 distances top image by image by Chris73 (modified), http://commons.wikimedia.org/wiki/File:Action_potential_%28no_labels%29.svg, Creative Commons Attribution-Share Alike 3.0 Unported license bottom image by Rick Melges, Duke University Unidirectional Propagation of AP image by Rick Melges, Duke University Action potentials move one-way along the axon because of the absolute refractory period of the voltage gated Na+ channel. Integration of Signals Input: Dendrites: ligand gated ion channels, some voltage gated channels; graded potentials Cell body (Soma): ligand gated ion channels; graded potentials Output: Axon: voltage gated ion channels, action potentials Axon initial segment: highest density of voltage gated ion channels & lowest threshold for initiating an action potential, “integrative zone” Axon Initial Segment image by Rick Melges, Duke University Integration of signals at initial segment Saltatory Conduction Node of Ranvier Na+ action potential Large diameter, myelinated axons transmit action potentials very rapidly. Voltage gated channels are concentrated at the nodes. Inactivation of voltage gated Na+ channels insures uni-directional propagation along the axon.
    [Show full text]
  • Responses of Bipolar Cells Each Bipolar Cell Receives Its Direct Input Either from Rods Or Cones
    Transduction and Transmission in the Retina 423 Free vesicle FIGURE 20.18 Molecular Components of Tethered vesicle Ribbon Synapses. The electron-dense body of the ribbon is made up largely of the Ribeye (CtBP2) protein, with contributions from CtBP1/ BARS and KIF3A. Piccolo and Rab3-interact- ing molecule 1 (RIM1) are ribbon-associated Ribeye Piccolo proteins. L-type calcium channels cluster in RIM1 the plasma membrane beneath the ribbon and associate with Bassoon, RIM2, Munc13-1, and Presynaptic RIM2 membrane ERC2/CAST1 proteins. Metabotropic (mGluR) Bassoon and ionotropic (iGluR) glutamate receptors Munc13-1 are located in the postsynaptic membranes of bipolar and horizontal cell. (After Dieck and ERC2/CAST1 Brandstatter, 2006.) Ca2+ channel α mGluR 1 subunit iGluR Postsynaptic membranes long before intracellular electrodes were inserted into individual retinal neurons. Although a product of necessity, beginning with the output signal was nonetheless an excellent start- ing point for analyzing retinal processing. Two important features were established by such recordings. The first was that the receptive field of a retinal ganglion cell is organized in a circular, center-surround manner. That is, light in the receptive field surround area produces an opposite effect to that in the center (see Figure 2.5). The second essential feature obtained from ganglion cell recordings was that some retinal ganglion cells were excited by light in their receptive field center, the on retinal ganglion cells; in contrast, other ganglion cells were inhibited by light in their receptive field center, the off retinal ganglion cells. This dichotomy of on and off pathways is now known to be a fundamental property of all vertebrate retinas and establishes an organizing principle for higher visual centers.56 From these recordings of retinal ganglion cells, it is clear that the eye tells the brain about patterns of light and dark.
    [Show full text]